module Quox.Equal import Quox.BoolExtra import public Quox.Typing import public Control.Monad.Either import public Control.Monad.Reader import Data.Maybe public export record CmpContext where constructor MkCmpContext mode : EqMode public export 0 HasCmpContext : (Type -> Type) -> Type HasCmpContext = MonadReader CmpContext public export 0 CanEqual : (q : Type) -> (Type -> Type) -> Type CanEqual q m = (HasErr q m, HasCmpContext m) private %inline mode : HasCmpContext m => m EqMode mode = asks mode parameters {auto _ : CanEqual q m} (ctx : EqContext q n) private %inline clashT : Term q 0 n -> Term q 0 n -> Term q 0 n -> m a clashT ty s t = throwError $ ClashT ctx !mode ty s t private %inline clashTy : Term q 0 n -> Term q 0 n -> m a clashTy s t = throwError $ ClashTy ctx !mode s t private %inline clashE : Elim q 0 n -> Elim q 0 n -> m a clashE e f = throwError $ ClashE ctx !mode e f private %inline wrongType : Term q 0 n -> Term q 0 n -> m a wrongType ty s = throwError $ WrongType ctx ty s ||| true if a term is syntactically a type, or is neutral. ||| ||| this function *doesn't* push substitutions, because its main use is as a ||| `So` argument to skip cases that are already known to be nonsense. and ||| the substitutions have already been pushed. public export %inline isTyCon : (t : Term {}) -> Bool isTyCon (TYPE {}) = True isTyCon (Pi {}) = True isTyCon (Lam {}) = False isTyCon (Sig {}) = True isTyCon (Pair {}) = False isTyCon (Enum {}) = True isTyCon (Tag {}) = False isTyCon (Eq {}) = True isTyCon (DLam {}) = False isTyCon Nat = True isTyCon Zero = False isTyCon (Succ {}) = False isTyCon (E {}) = True isTyCon (CloT {}) = False isTyCon (DCloT {}) = False public export %inline sameTyCon : (s, t : Term q d n) -> (0 ts : So (isTyCon s)) => (0 tt : So (isTyCon t)) => Bool sameTyCon (TYPE {}) (TYPE {}) = True sameTyCon (TYPE {}) _ = False sameTyCon (Pi {}) (Pi {}) = True sameTyCon (Pi {}) _ = False sameTyCon (Sig {}) (Sig {}) = True sameTyCon (Sig {}) _ = False sameTyCon (Enum {}) (Enum {}) = True sameTyCon (Enum {}) _ = False sameTyCon (Eq {}) (Eq {}) = True sameTyCon (Eq {}) _ = False sameTyCon Nat Nat = True sameTyCon Nat _ = False sameTyCon (E {}) (E {}) = True sameTyCon (E {}) _ = False parameters (defs : Definitions' q g) ||| true if a type is known to be a subsingleton purely by its form. ||| a subsingleton is a type with only zero or one possible values. ||| equality/subtyping accepts immediately on values of subsingleton types. ||| ||| * a function type is a subsingleton if its codomain is. ||| * a pair type is a subsingleton if both its elements are. ||| * all equality types are subsingletons because uip is admissible by ||| boundary separation. ||| * an enum type is a subsingleton if it has zero or one tags. public export isSubSing : HasErr q m => {n : Nat} -> Term q 0 n -> m Bool isSubSing ty = do Element ty nc <- whnfT defs ty case ty of TYPE _ => pure False Pi {res, _} => isSubSing res.term Lam {} => pure False Sig {fst, snd} => isSubSing fst `andM` isSubSing snd.term Pair {} => pure False Enum tags => pure $ length (SortedSet.toList tags) <= 1 Tag {} => pure False Eq {} => pure True DLam {} => pure False Nat => pure False Zero => pure False Succ {} => pure False E (s :# _) => isSubSing s E _ => pure False export ensureTyCon : HasErr q m => (ctx : EqContext q n) -> (t : Term q 0 n) -> m (So (isTyCon t)) ensureTyCon ctx t = case nchoose $ isTyCon t of Left y => pure y Right n => throwError $ NotType (toTyContext ctx) (t // shift0 ctx.dimLen) parameters (defs : Definitions' q _) {auto _ : (CanEqual q m, IsQty q)} mutual namespace Term ||| `compare0 ctx ty s t` compares `s` and `t` at type `ty`, according to ||| the current variance `mode`. ||| ||| ⚠ **assumes that `s`, `t` have already been checked against `ty`**. ⚠ export covering %inline compare0 : EqContext q n -> (ty, s, t : Term q 0 n) -> m () compare0 ctx ty s t = wrapErr (WhileComparingT ctx !mode ty s t) $ do let Val n = ctx.termLen Element ty nty <- whnfT defs ty Element s ns <- whnfT defs s Element t nt <- whnfT defs t tty <- ensureTyCon ctx ty compare0' ctx ty s t ||| converts an elim "Γ ⊢ e" to "Γ, x ⊢ e x", for comparing with ||| a lambda "Γ ⊢ λx ⇒ t" that has been converted to "Γ, x ⊢ t". private %inline toLamBody : Elim q d n -> Term q d (S n) toLamBody e = E $ weakE e :@ BVT 0 private covering compare0' : EqContext q n -> (ty, s, t : Term q 0 n) -> (0 nty : NotRedex defs ty) => (0 tty : So (isTyCon ty)) => (0 ns : NotRedex defs s) => (0 nt : NotRedex defs t) => m () compare0' ctx (TYPE _) s t = compareType ctx s t compare0' ctx ty@(Pi {qty, arg, res}) s t {n} = local {mode := Equal} $ case (s, t) of -- Γ, x : A ⊢ s = t : B -- ------------------------------------------- -- Γ ⊢ (λ x ⇒ s) = (λ x ⇒ t) : (π·x : A) → B (Lam b1, Lam b2) => compare0 ctx' res.term b1.term b2.term -- Γ, x : A ⊢ s = e x : B -- ----------------------------------- -- Γ ⊢ (λ x ⇒ s) = e : (π·x : A) → B (E e, Lam b) => eta e b (Lam b, E e) => eta e b (E e, E f) => Elim.compare0 ctx e f (Lam _, t) => wrongType ctx ty t (E _, t) => wrongType ctx ty t (s, _) => wrongType ctx ty s where ctx' : EqContext q (S n) ctx' = extendTy qty res.name arg ctx eta : Elim q 0 n -> ScopeTerm q 0 n -> m () eta e (S _ (Y b)) = compare0 ctx' res.term (toLamBody e) b eta e (S _ (N _)) = clashT ctx ty s t compare0' ctx ty@(Sig {fst, snd, _}) s t = local {mode := Equal} $ case (s, t) of -- Γ ⊢ s₁ = t₁ : A Γ ⊢ s₂ = t₂ : B{s₁/x} -- -------------------------------------------- -- Γ ⊢ (s₁, t₁) = (s₂,t₂) : (x : A) × B -- -- [todo] η for π ≥ 0 maybe (Pair sFst sSnd, Pair tFst tSnd) => do compare0 ctx fst sFst tFst compare0 ctx (sub1 snd (sFst :# fst)) sSnd tSnd (E e, E f) => Elim.compare0 ctx e f (Pair {}, E _) => clashT ctx ty s t (E _, Pair {}) => clashT ctx ty s t (Pair {}, t) => wrongType ctx ty t (E _, t) => wrongType ctx ty t (s, _) => wrongType ctx ty s compare0' ctx ty@(Enum tags) s t = local {mode := Equal} $ case (s, t) of -- -------------------- -- Γ ⊢ `t = `t : {ts} -- -- t ∈ ts is in the typechecker, not here, ofc (Tag t1, Tag t2) => unless (t1 == t2) $ clashT ctx ty s t (E e, E f) => Elim.compare0 ctx e f (Tag _, E _) => clashT ctx ty s t (E _, Tag _) => clashT ctx ty s t (Tag _, t) => wrongType ctx ty t (E _, t) => wrongType ctx ty t (s, _) => wrongType ctx ty s compare0' _ (Eq {}) _ _ = -- ✨ uip ✨ -- -- Γ ⊢ e = f : Eq [i ⇒ A] s t pure () compare0' ctx Nat s t = local {mode := Equal} $ case (s, t) of -- --------------- -- Γ ⊢ 0 = 0 : ℕ (Zero, Zero) => pure () -- Γ ⊢ m = n : ℕ -- ------------------------- -- Γ ⊢ succ m = succ n : ℕ (Succ m, Succ n) => compare0 ctx Nat m n (E e, E f) => Elim.compare0 ctx e f (Zero, Succ _) => clashT ctx Nat s t (Zero, E _) => clashT ctx Nat s t (Succ _, Zero) => clashT ctx Nat s t (Succ _, E _) => clashT ctx Nat s t (E _, Zero) => clashT ctx Nat s t (E _, Succ _) => clashT ctx Nat s t (Zero, t) => wrongType ctx Nat t (Succ _, t) => wrongType ctx Nat t (E _, t) => wrongType ctx Nat t (s, _) => wrongType ctx Nat s compare0' ctx ty@(E _) s t = do -- a neutral type can only be inhabited by neutral values -- e.g. an abstract value in an abstract type, bound variables, … E e <- pure s | _ => wrongType ctx ty s E f <- pure t | _ => wrongType ctx ty t Elim.compare0 ctx e f ||| compares two types, using the current variance `mode` for universes. ||| fails if they are not types, even if they would happen to be equal. export covering %inline compareType : EqContext q n -> (s, t : Term q 0 n) -> m () compareType ctx s t = do let Val n = ctx.termLen Element s ns <- whnfT defs s Element t nt <- whnfT defs t ts <- ensureTyCon ctx s tt <- ensureTyCon ctx t st <- either pure (const $ clashTy ctx s t) $ nchoose $ sameTyCon s t compareType' ctx s t private covering compareType' : EqContext q n -> (s, t : Term q 0 n) -> (0 ns : NotRedex defs s) => (0 ts : So (isTyCon s)) => (0 nt : NotRedex defs t) => (0 tt : So (isTyCon t)) => (0 st : So (sameTyCon s t)) => m () -- equality is the same as subtyping, except with the -- "≤" in the TYPE rule being replaced with "=" compareType' ctx (TYPE k) (TYPE l) = -- 𝓀 ≤ ℓ -- ---------------------- -- Γ ⊢ Type 𝓀 <: Type ℓ expectModeU !mode k l compareType' ctx (Pi {qty = sQty, arg = sArg, res = sRes, _}) (Pi {qty = tQty, arg = tArg, res = tRes, _}) = do -- Γ ⊢ A₁ :> A₂ Γ, x : A₁ ⊢ B₁ <: B₂ -- ---------------------------------------- -- Γ ⊢ (π·x : A₁) → B₁ <: (π·x : A₂) → B₂ expectEqualQ sQty tQty local {mode $= flip} $ compareType ctx sArg tArg -- contra compareType (extendTy zero sRes.name sArg ctx) sRes.term tRes.term compareType' ctx (Sig {fst = sFst, snd = sSnd, _}) (Sig {fst = tFst, snd = tSnd, _}) = do -- Γ ⊢ A₁ <: A₂ Γ, x : A₁ ⊢ B₁ <: B₂ -- -------------------------------------- -- Γ ⊢ (x : A₁) × B₁ <: (x : A₂) × B₂ compareType ctx sFst tFst compareType (extendTy zero sSnd.name sFst ctx) sSnd.term tSnd.term compareType' ctx (Eq {ty = sTy, l = sl, r = sr, _}) (Eq {ty = tTy, l = tl, r = tr, _}) = do -- Γ ⊢ A₁‹ε/i› <: A₂‹ε/i› -- Γ ⊢ l₁ = l₂ : A₁‹𝟎/i› Γ ⊢ r₁ = r₂ : A₁‹𝟏/i› -- ------------------------------------------------ -- Γ ⊢ Eq [i ⇒ A₁] l₁ r₂ <: Eq [i ⇒ A₂] l₂ r₂ compareType (extendDim sTy.name Zero ctx) sTy.zero tTy.zero compareType (extendDim sTy.name One ctx) sTy.one tTy.one local {mode := Equal} $ do Term.compare0 ctx sTy.zero sl tl Term.compare0 ctx sTy.one sr tr compareType' ctx s@(Enum tags1) t@(Enum tags2) = do -- ------------------ -- Γ ⊢ {ts} <: {ts} -- -- no subtyping based on tag subsets, since that would need -- a runtime coercion unless (tags1 == tags2) $ clashTy ctx s t compareType' ctx Nat Nat = -- ------------ -- Γ ⊢ ℕ <: ℕ pure () compareType' ctx (E e) (E f) = do -- no fanciness needed here cos anything other than a neutral -- has been inlined by whnf Elim.compare0 ctx e f ||| performs the minimum work required to recompute the type of an elim. ||| ||| ⚠ **assumes the elim is already typechecked.** ⚠ private covering computeElimType : EqContext q n -> (e : Elim q 0 n) -> (0 ne : NotRedex defs e) -> m (Term q 0 n) computeElimType ctx (F x) _ = do defs <- lookupFree' defs x pure $ injectT ctx defs.type computeElimType ctx (B i) _ = pure $ ctx.tctx !! i computeElimType ctx (f :@ s) ne = do (_, arg, res) <- expectPiE defs ctx !(computeElimType ctx f (noOr1 ne)) pure $ sub1 res (s :# arg) computeElimType ctx (CasePair {pair, ret, _}) _ = pure $ sub1 ret pair computeElimType ctx (CaseEnum {tag, ret, _}) _ = pure $ sub1 ret tag computeElimType ctx (CaseNat {nat, ret, _}) _ = pure $ sub1 ret nat computeElimType ctx (f :% p) ne = do (ty, _, _) <- expectEqE defs ctx !(computeElimType ctx f (noOr1 ne)) pure $ dsub1 ty p computeElimType ctx (_ :# ty) _ = pure ty private covering replaceEnd : EqContext q n -> (e : Elim q 0 n) -> DimConst -> (0 ne : NotRedex defs e) -> m (Elim q 0 n) replaceEnd ctx e p ne = do (ty, l, r) <- expectEqE defs ctx !(computeElimType ctx e ne) pure $ ends l r p :# dsub1 ty (K p) namespace Elim -- [fixme] the following code ends up repeating a lot of work in the -- computeElimType calls. the results should be shared better ||| compare two eliminations according to the given variance `mode`. ||| ||| ⚠ **assumes that they have both been typechecked, and have ||| equal types.** ⚠ export covering %inline compare0 : EqContext q n -> (e, f : Elim q 0 n) -> m () compare0 ctx e f = wrapErr (WhileComparingE ctx !mode e f) $ do let Val n = ctx.termLen Element e ne <- whnfT defs e Element f nf <- whnfT defs f -- [fixme] there is a better way to do this "isSubSing" stuff for sure unless !(isSubSing defs !(computeElimType ctx e ne)) $ compare0' ctx e f ne nf private covering compare0' : EqContext q n -> (e, f : Elim q 0 n) -> (0 ne : NotRedex defs e) -> (0 nf : NotRedex defs f) -> m () -- replace applied equalities with the appropriate end first -- e.g. e : Eq [i ⇒ A] s t ⊢ e 𝟎 = s : A‹𝟎/i› -- -- [todo] maybe have typed whnf and do this (and η???) there instead compare0' ctx (e :% K p) f ne nf = compare0 ctx !(replaceEnd ctx e p $ noOr1 ne) f compare0' ctx e (f :% K q) ne nf = compare0 ctx e !(replaceEnd ctx f q $ noOr1 nf) compare0' ctx e@(F x) f@(F y) _ _ = unless (x == y) $ clashE ctx e f compare0' ctx e@(F _) f _ _ = clashE ctx e f compare0' ctx e@(B i) f@(B j) _ _ = unless (i == j) $ clashE ctx e f compare0' ctx e@(B _) f _ _ = clashE ctx e f compare0' ctx (e :@ s) (f :@ t) ne nf = local {mode := Equal} $ do compare0 ctx e f (_, arg, _) <- expectPiE defs ctx !(computeElimType ctx e (noOr1 ne)) Term.compare0 ctx arg s t compare0' ctx e@(_ :@ _) f _ _ = clashE ctx e f compare0' ctx (CasePair epi e eret ebody) (CasePair fpi f fret fbody) ne nf = local {mode := Equal} $ do compare0 ctx e f ety <- computeElimType ctx e (noOr1 ne) compareType (extendTy zero eret.name ety ctx) eret.term fret.term (fst, snd) <- expectSigE defs ctx ety let [< x, y] = ebody.names Term.compare0 (extendTyN [< (epi, x, fst), (epi, y, snd.term)] ctx) (substCasePairRet ety eret) ebody.term fbody.term expectEqualQ epi fpi compare0' ctx e@(CasePair {}) f _ _ = clashE ctx e f compare0' ctx (CaseEnum epi e eret earms) (CaseEnum fpi f fret farms) ne nf = local {mode := Equal} $ do compare0 ctx e f ety <- computeElimType ctx e (noOr1 ne) compareType (extendTy zero eret.name ety ctx) eret.term fret.term for_ !(expectEnumE defs ctx ety) $ \t => compare0 ctx (sub1 eret $ Tag t :# ety) !(lookupArm t earms) !(lookupArm t farms) expectEqualQ epi fpi where lookupArm : TagVal -> CaseEnumArms q d n -> m (Term q d n) lookupArm t arms = case lookup t arms of Just arm => pure arm Nothing => throwError $ TagNotIn t (fromList $ keys arms) compare0' ctx e@(CaseEnum {}) f _ _ = clashE ctx e f compare0' ctx (CaseNat epi epi' e eret ezer esuc) (CaseNat fpi fpi' f fret fzer fsuc) ne nf = local {mode := Equal} $ do compare0 ctx e f ety <- computeElimType ctx e (noOr1 ne) compareType (extendTy zero eret.name ety ctx) eret.term fret.term compare0 ctx (sub1 eret (Zero :# Nat)) ezer fzer let [< p, ih] = esuc.names compare0 (extendTyN [< (epi, p, Nat), (epi', ih, eret.term)] ctx) (weakT eret.term) esuc.term fsuc.term expectEqualQ epi fpi expectEqualQ epi' fpi' compare0' ctx e@(CaseNat {}) f _ _ = clashE ctx e f compare0' ctx (s :# a) (t :# b) _ _ = Term.compare0 ctx !(bigger a b) s t where bigger : forall a. a -> a -> m a bigger l r = asks mode <&> \case Super => l; _ => r compare0' ctx (s :# a) f _ _ = Term.compare0 ctx a s (E f) compare0' ctx e (t :# b) _ _ = Term.compare0 ctx b (E e) t compare0' ctx e@(_ :# _) f _ _ = clashE ctx e f parameters {auto _ : (HasDefs' q _ m, HasErr q m, IsQty q)} (ctx : TyContext q d n) -- [todo] only split on the dvars that are actually used anywhere in -- the calls to `splits` parameters (mode : EqMode) namespace Term export covering compare : (ty, s, t : Term q d n) -> m () compare ty s t = do defs <- ask runReaderT {m} (MkCmpContext {mode}) $ for_ (splits ctx.dctx) $ \th => let ectx = makeEqContext ctx th in compare0 defs ectx (ty // th) (s // th) (t // th) export covering compareType : (s, t : Term q d n) -> m () compareType s t = do defs <- ask runReaderT {m} (MkCmpContext {mode}) $ for_ (splits ctx.dctx) $ \th => let ectx = makeEqContext ctx th in compareType defs ectx (s // th) (t // th) namespace Elim ||| you don't have to pass the type in but the arguments must still be ||| of the same type!! export covering %inline compare : (e, f : Elim q d n) -> m () compare e f = do defs <- ask runReaderT {m} (MkCmpContext {mode}) $ for_ (splits ctx.dctx) $ \th => let ectx = makeEqContext ctx th in compare0 defs ectx (e // th) (f // th) namespace Term export covering %inline equal, sub, super : (ty, s, t : Term q d n) -> m () equal = compare Equal sub = compare Sub super = compare Super export covering %inline equalType, subtype, supertype : (s, t : Term q d n) -> m () equalType = compareType Equal subtype = compareType Sub supertype = compareType Super namespace Elim export covering %inline equal, sub, super : (e, f : Elim q d n) -> m () equal = compare Equal sub = compare Sub super = compare Super