module Tests.Equal import Quox.Equal as Lib import Quox.Pretty import Quox.Syntax.Qty.Three import TAP export ToInfo (Error Three) where toInfo (NotInScope x) = [("type", "NotInScope"), ("name", show x)] toInfo (ExpectedTYPE t) = [("type", "ExpectedTYPE"), ("got", prettyStr True t)] toInfo (ExpectedPi t) = [("type", "ExpectedPi"), ("got", prettyStr True t)] toInfo (ExpectedSig t) = [("type", "ExpectedSig"), ("got", prettyStr True t)] toInfo (ExpectedEq t) = [("type", "ExpectedEq"), ("got", prettyStr True t)] toInfo (BadUniverse k l) = [("type", "BadUniverse"), ("low", show k), ("high", show l)] toInfo (ClashT mode ty s t) = [("type", "ClashT"), ("mode", show mode), ("ty", prettyStr True ty), ("left", prettyStr True s), ("right", prettyStr True t)] toInfo (ClashE mode e f) = [("type", "ClashE"), ("mode", show mode), ("left", prettyStr True e), ("right", prettyStr True f)] toInfo (ClashU mode k l) = [("type", "ClashU"), ("mode", show mode), ("left", prettyStr True k), ("right", prettyStr True l)] toInfo (ClashQ pi rh) = [("type", "ClashQ"), ("left", prettyStr True pi), ("right", prettyStr True rh)] toInfo (ClashD p q) = [("type", "ClashD"), ("left", prettyStr True p), ("right", prettyStr True q)] toInfo (NotType ty) = [("type", "NotType"), ("actual", prettyStr True ty)] toInfo (WrongType ty s t) = [("type", "WrongType"), ("ty", prettyStr True ty), ("left", prettyStr True s), ("right", prettyStr True t)] 0 M : Type -> Type M = ReaderT (Definitions Three) (Either (Error Three)) defGlobals : Definitions Three defGlobals = fromList [("A", mkAbstract Zero $ TYPE 0), ("B", mkAbstract Zero $ TYPE 0), ("a", mkAbstract Any $ FT "A"), ("b", mkAbstract Any $ FT "B"), ("f", mkAbstract Any $ Arr One (FT "A") (FT "A"))] parameters (label : String) (act : Lazy (M ())) {default defGlobals globals : Definitions Three} testEq : Test testEq = test label $ runReaderT globals act testNeq : Test testNeq = testThrows label (const True) $ runReaderT globals act parameters {default 0 d, n : Nat} {default new eqs : DimEq d} (ctx : TContext Three d n) subT : Term Three d n -> Term Three d n -> Term Three d n -> M () subT ty s t = Term.sub eqs ctx ty s t equalT : Term Three d n -> Term Three d n -> Term Three d n -> M () equalT ty s t = Term.equal eqs ctx ty s t subE : Elim Three d n -> Elim Three d n -> M () subE e f = Elim.sub eqs ctx e f equalE : Elim Three d n -> Elim Three d n -> M () equalE e f = Elim.equal eqs ctx e f export tests : Test tests = "equality & subtyping" :- [ note #""0=1 ⊢ 𝒥" means that 𝒥 holds in an inconsistent dim context"#, "universes" :- [ testEq "★₀ ≡ ★₀" $ equalT [<] (TYPE 1) (TYPE 0) (TYPE 0), testNeq "★₀ ≢ ★₁" $ equalT [<] (TYPE 2) (TYPE 0) (TYPE 1), testNeq "★₁ ≢ ★₀" $ equalT [<] (TYPE 2) (TYPE 1) (TYPE 0), testEq "★₀ <: ★₀" $ subT [<] (TYPE 1) (TYPE 0) (TYPE 0), testEq "★₀ <: ★₁" $ subT [<] (TYPE 2) (TYPE 0) (TYPE 1), testNeq "★₁ ≮: ★₀" $ subT [<] (TYPE 2) (TYPE 1) (TYPE 0) ], "pi" :- [ note #""A ⊸ B" for (1 _ : A) → B"#, note #""A ⇾ B" for (0 _ : A) → B"#, testEq "A ⊸ B ≡ A ⊸ B" $ let tm = Arr One (FT "A") (FT "B") in equalT [<] (TYPE 0) tm tm, testNeq "A ⇾ B ≢ A ⊸ B" $ let tm1 = Arr Zero (FT "A") (FT "B") tm2 = Arr One (FT "A") (FT "B") in equalT [<] (TYPE 0) tm1 tm2, testEq "0=1 ⊢ A ⇾ B ≢ A ⊸ B" $ let tm1 = Arr Zero (FT "A") (FT "B") tm2 = Arr One (FT "A") (FT "B") in equalT [<] (TYPE 0) tm1 tm2 {eqs = ZeroIsOne}, testEq "A ⊸ B <: A ⊸ B" $ let tm = Arr One (FT "A") (FT "B") in subT [<] (TYPE 0) tm tm, testNeq "A ⇾ B ≮: A ⊸ B" $ let tm1 = Arr Zero (FT "A") (FT "B") tm2 = Arr One (FT "A") (FT "B") in subT [<] (TYPE 0) tm1 tm2, testEq "★₀ ⇾ ★₀ ≡ ★₀ ⇾ ★₀" $ let tm = Arr Zero (TYPE 0) (TYPE 0) in equalT [<] (TYPE 1) tm tm, testEq "★₀ ⇾ ★₀ <: ★₀ ⇾ ★₀" $ let tm = Arr Zero (TYPE 0) (TYPE 0) in subT [<] (TYPE 1) tm tm, testNeq "★₁ ⊸ ★₀ ≢ ★₀ ⇾ ★₀" $ let tm1 = Arr Zero (TYPE 1) (TYPE 0) tm2 = Arr Zero (TYPE 0) (TYPE 0) in equalT [<] (TYPE 2) tm1 tm2, testEq "★₁ ⊸ ★₀ <: ★₀ ⊸ ★₀" $ let tm1 = Arr One (TYPE 1) (TYPE 0) tm2 = Arr One (TYPE 0) (TYPE 0) in subT [<] (TYPE 2) tm1 tm2, testNeq "★₀ ⊸ ★₀ ≢ ★₀ ⇾ ★₁" $ let tm1 = Arr Zero (TYPE 0) (TYPE 0) tm2 = Arr Zero (TYPE 0) (TYPE 1) in equalT [<] (TYPE 2) tm1 tm2, testEq "★₀ ⊸ ★₀ <: ★₀ ⊸ ★₁" $ let tm1 = Arr One (TYPE 0) (TYPE 0) tm2 = Arr One (TYPE 0) (TYPE 1) in subT [<] (TYPE 2) tm1 tm2, testEq "★₀ ⊸ ★₀ <: ★₀ ⊸ ★₁" $ let tm1 = Arr One (TYPE 0) (TYPE 0) tm2 = Arr One (TYPE 0) (TYPE 1) in subT [<] (TYPE 2) tm1 tm2 ], "lambda" :- [ testEq "λ x ⇒ [x] ≡ λ x ⇒ [x]" $ equalT [<] (Arr One (FT "A") (FT "A")) (Lam "x" $ TUsed $ BVT 0) (Lam "x" $ TUsed $ BVT 0), testEq "λ x ⇒ [x] <: λ x ⇒ [x]" $ subT [<] (Arr One (FT "A") (FT "A")) (Lam "x" $ TUsed $ BVT 0) (Lam "x" $ TUsed $ BVT 0), testEq "λ x ⇒ [x] ≡ λ y ⇒ [y]" $ equalT [<] (Arr One (FT "A") (FT "A")) (Lam "x" $ TUsed $ BVT 0) (Lam "y" $ TUsed $ BVT 0), testEq "λ x ⇒ [x] <: λ y ⇒ [y]" $ equalT [<] (Arr One (FT "A") (FT "A")) (Lam "x" $ TUsed $ BVT 0) (Lam "y" $ TUsed $ BVT 0), testNeq "λ x y ⇒ [x] ≢ λ x y ⇒ [y]" $ equalT [<] (Arr One (FT "A") $ Arr One (FT "A") (FT "A")) (Lam "x" $ TUsed $ Lam "y" $ TUsed $ BVT 1) (Lam "x" $ TUsed $ Lam "y" $ TUsed $ BVT 0), testEq "λ x ⇒ [a] ≡ λ x ⇒ [a] (TUsed vs TUnused)" $ equalT [<] (Arr Zero (FT "B") (FT "A")) (Lam "x" $ TUsed $ FT "a") (Lam "x" $ TUnused $ FT "a"), skipWith "(no η yet)" $ testEq "λ x ⇒ [f [x]] ≡ [f] (η)" $ equalT [<] (Arr One (FT "A") (FT "A")) (Lam "x" $ TUsed $ E $ F "f" :@ BVT 0) (FT "f") ], "eq type" :- [ testEq "(★₀ = ★₀ : ★₁) ≡ (★₀ = ★₀ : ★₁)" $ let tm = Eq0 (TYPE 1) (TYPE 0) (TYPE 0) in equalT [<] (TYPE 2) tm tm, testEq "A ≔ ★₁ ⊢ (★₀ = ★₀ : ★₁) ≡ (★₀ = ★₀ : A)" {globals = fromList [("A", mkDef zero (TYPE 2) (TYPE 1))]} $ equalT [<] (TYPE 2) (Eq0 (TYPE 1) (TYPE 0) (TYPE 0)) (Eq0 (FT "A") (TYPE 0) (TYPE 0)) ], todo "dim lambda", "term closure" :- [ note "𝑖, 𝑗 for bound variables pointing outside of the current expr", testEq "[𝑖]{} ≡ [𝑖]" $ equalT [< FT "A"] (FT "A") {n = 1} (CloT (BVT 0) id) (BVT 0), testEq "[𝑖]{a/𝑖} ≡ [a]" $ equalT [<] (FT "A") (CloT (BVT 0) (F "a" ::: id)) (FT "a"), testEq "[𝑖]{a/𝑖,b/𝑗} ≡ [a]" $ equalT [<] (FT "A") (CloT (BVT 0) (F "a" ::: F "b" ::: id)) (FT "a"), testEq "(λy. [𝑖]){y/y, a/𝑖} ≡ λy. [a] (TUnused)" $ equalT [<] (Arr Zero (FT "B") (FT "A")) (CloT (Lam "y" $ TUnused $ BVT 0) (F "a" ::: id)) (Lam "y" $ TUnused $ FT "a"), testEq "(λy. [𝑖]){y/y, a/𝑖} ≡ λy. [a] (TUsed)" $ equalT [<] (Arr Zero (FT "B") (FT "A")) (CloT (Lam "y" $ TUsed $ BVT 1) (F "a" ::: id)) (Lam "y" $ TUsed $ FT "a") ], todo "term d-closure", "free var" :- let au_bu = fromList [("A", mkDef Any (TYPE (U 1)) (TYPE (U 0))), ("B", mkDef Any (TYPE (U 1)) (TYPE (U 0)))] au_ba = fromList [("A", mkDef Any (TYPE (U 1)) (TYPE (U 0))), ("B", mkDef Any (TYPE (U 1)) (FT "A"))] in [ testEq "A ≡ A" $ equalE [<] (F "A") (F "A"), testNeq "A ≢ B" $ equalE [<] (F "A") (F "B"), testEq "0=1 ⊢ A ≡ B" $ equalE {eqs = ZeroIsOne} [<] (F "A") (F "B"), testEq "A : ★₁ ≔ ★₀ ⊢ A ≡ (★₀ ∷ ★₁)" {globals = au_bu} $ equalE [<] (F "A") (TYPE 0 :# TYPE 1), testEq "A ≔ ★₀, B ≔ ★₀ ⊢ A ≡ B" {globals = au_bu} $ equalE [<] (F "A") (F "B"), testEq "A ≔ ★₀, B ≔ A ⊢ A ≡ B" {globals = au_ba} $ equalE [<] (F "A") (F "B"), testEq "A <: A" $ subE [<] (F "A") (F "A"), testNeq "A ≮: B" $ subE [<] (F "A") (F "B"), testEq "A : ★₃ ≔ ★₀, B : ★₃ ≔ ★₂ ⊢ A <: B" {globals = fromList [("A", mkDef Any (TYPE 3) (TYPE 0)), ("B", mkDef Any (TYPE 3) (TYPE 2))]} $ subE [<] (F "A") (F "B"), testEq "A : ★₁👈 ≔ ★₀, B : ★₃ ≔ ★₂ ⊢ A <: B" {globals = fromList [("A", mkDef Any (TYPE 1) (TYPE 0)), ("B", mkDef Any (TYPE 3) (TYPE 2))]} $ subE [<] (F "A") (F "B"), testEq "0=1 ⊢ A <: B" $ subE [<] (F "A") (F "B") {eqs = ZeroIsOne} ], "bound var" :- [ note "𝑖, 𝑗 for distinct bound variables", testEq "𝑖 ≡ 𝑖" $ equalE [< TYPE 0] (BV 0) (BV 0) {n = 1}, testNeq "𝑖 ≢ 𝑗" $ equalE [< TYPE 0, TYPE 0] (BV 0) (BV 1) {n = 2}, testEq "0=1 ⊢ 𝑖 ≡ 𝑗" $ equalE [< TYPE 0, TYPE 0] (BV 0) (BV 1) {n = 2, eqs = ZeroIsOne} ], "application" :- [ testEq "f [a] ≡ f [a]" $ equalE [<] (F "f" :@ FT "a") (F "f" :@ FT "a"), testEq "f [a] <: f [a]" $ subE [<] (F "f" :@ FT "a") (F "f" :@ FT "a"), testEq "(λ x ⇒ [x] ∷ A ⊸ A) a ≡ ([a ∷ A] ∷ A) (β)" $ equalE [<] ((Lam "x" (TUsed (BVT 0)) :# (Arr One (FT "A") (FT "A"))) :@ FT "a") (E (FT "a" :# FT "A") :# FT "A"), testEq "(λ x ⇒ [x] ∷ A ⊸ A) a ≡ a (βυ)" $ equalE [<] ((Lam "x" (TUsed (BVT 0)) :# (Arr One (FT "A") (FT "A"))) :@ FT "a") (F "a"), testEq "(λ g ⇒ [g [a]] ∷ ⋯)) [f] ≡ (λ y ⇒ [f [y]] ∷ ⋯) [a] (β↘↙)" $ let a = FT "A"; a2a = (Arr One a a) in equalE [<] ((Lam "g" (TUsed (E (BV 0 :@ FT "a"))) :# Arr One a2a a) :@ FT "f") ((Lam "y" (TUsed (E (F "f" :@ BVT 0))) :# a2a) :@ FT "a"), testEq "(λ x ⇒ [x] ∷ A ⊸ A) a <: a" $ subE [<] ((Lam "x" (TUsed (BVT 0)) :# (Arr One (FT "A") (FT "A"))) :@ FT "a") (F "a"), testEq "id : A ⊸ A ≔ λ x ⇒ [x] ⊢ id [a] ≡ a" {globals = defGlobals `mergeLeft` fromList [("id", mkDef Any (Arr One (FT "A") (FT "A")) (Lam "x" (TUsed (BVT 0))))]} $ equalE [<] (F "id" :@ FT "a") (F "a") ], "dim application" :- let refl : Term q d n -> Term q d n -> Elim q d n refl a x = (DLam "_" $ DUnused x) :# (Eq0 a x x) in [ note #""refl [A] x" is an abbreviation for "(λᴰi ⇒ x) ∷ (x ≡ x : A)""#, testEq "refl [A] a ≡ refl [A] a" $ equalE [<] (refl (FT "A") (FT "a")) (refl (FT "A") (FT "a")), testEq "p : (a ≡ b : A), q : (a ≡ b : A) ⊢ p ≡ q" {globals = let def = mkAbstract Zero $ Eq0 (FT "A") (FT "a") (FT "b") in fromList [("A", mkAbstract Zero $ TYPE 0), ("a", mkAbstract Any $ FT "A"), ("b", mkAbstract Any $ FT "A"), ("p", def), ("q", def)]} $ equalE [<] (F "p") (F "q") ], todo "annotation", todo "elim closure", todo "elim d-closure", "clashes" :- [ testNeq "★₀ ≢ ★₀ ⇾ ★₀" $ equalT [<] (TYPE 1) (TYPE 0) (Arr Zero (TYPE 0) (TYPE 0)), testEq "0=1 ⊢ ★₀ ≡ ★₀ ⇾ ★₀" $ equalT [<] (TYPE 1) (TYPE 0) (Arr Zero (TYPE 0) (TYPE 0)) {eqs = ZeroIsOne}, todo "others" ] ]