module Quox.Syntax.Var import Quox.Name import Quox.Pretty import Quox.OPE import Data.Nat import Data.List import Decidable.Equality import Data.Bool.Decidable %default total public export data Var : Nat -> Type where VZ : Var (S n) VS : Var n -> Var (S n) %name Var i, j %builtin Natural Var public export (.nat) : Var n -> Nat (VZ).nat = 0 (VS i).nat = S i.nat %transform "Var.(.nat)" Var.(.nat) i = believe_me i public export %inline Cast (Var n) Nat where cast = (.nat) public export %inline Cast (Var n) Integer where cast = cast . cast {to = Nat} export %inline Eq (Var n) where i == j = i.nat == j.nat export %inline Ord (Var n) where compare i j = compare i.nat j.nat export %inline Show (Var n) where showPrec d i = showCon d "V" $ showArg i.nat public export %inline Injective VS where injective Refl = Refl parameters {auto _ : Pretty.HasEnv m} private prettyIndex : Nat -> m (Doc a) prettyIndex i = ifUnicode (pretty $ pack $ map sup $ unpack $ show i) (":" <+> pretty i) where sup : Char -> Char sup c = case c of '0' => '⁰'; '1' => '¹'; '2' => '²'; '3' => '³'; '4' => '⁴' '5' => '⁵'; '6' => '⁶'; '7' => '⁷'; '8' => '⁸'; '9' => '⁹'; _ => c ||| `prettyVar hlok hlerr names i` pretty prints the de Bruijn index `i`. ||| ||| If it is within the bounds of `names`, then it uses the name at that index, ||| highlighted as `hlok`. Otherwise it is just printed as a number highlighted ||| as `hlerr`. export prettyVar' : HL -> HL -> List Name -> Nat -> m (Doc HL) prettyVar' hlok hlerr names i = case inBounds i names of Yes _ => hlF' hlok [|prettyM (index i names) <+> prettyIndex i|] No _ => pure $ hl hlerr $ pretty i export %inline prettyVar : HL -> HL -> List Name -> Var n -> m (Doc HL) prettyVar hlok hlerr names i = prettyVar' hlok hlerr names i.nat public export fromNatWith : (i : Nat) -> (0 p : i `LT` n) -> Var n fromNatWith Z (LTESucc _) = VZ fromNatWith (S i) (LTESucc p) = VS $ fromNatWith i p %transform "Var.fromNatWith" fromNatWith i p = believe_me i public export %inline V : (i : Nat) -> {auto 0 p : i `LT` n} -> Var n V i {p} = fromNatWith i p export %inline tryFromNat : Alternative f => (n : Nat) -> Nat -> f (Var n) tryFromNat n i = case i `isLT` n of Yes p => pure $ fromNatWith i p No _ => empty export 0 toNatLT : (i : Var n) -> i.nat `LT` n toNatLT VZ = LTESucc LTEZero toNatLT (VS i) = LTESucc $ toNatLT i public export toNatInj : {i, j : Var n} -> i.nat = j.nat -> i = j toNatInj {i = VZ} {j = VZ} Refl = Refl toNatInj {i = VZ} {j = (VS i)} Refl impossible toNatInj {i = (VS i)} {j = VZ} Refl impossible toNatInj {i = (VS i)} {j = (VS j)} prf = cong VS $ toNatInj $ injective prf public export %inline Injective (.nat) where injective = toNatInj export 0 fromToNat : (i : Var n) -> (p : i.nat `LT` n) -> fromNatWith i.nat p = i fromToNat VZ (LTESucc p) = Refl fromToNat (VS i) (LTESucc p) = rewrite fromToNat i p in Refl export 0 toFromNat : (i : Nat) -> (p : i `LT` n) -> (fromNatWith i p).nat = i toFromNat 0 (LTESucc x) = Refl toFromNat (S k) (LTESucc x) = cong S $ toFromNat k x -- not using %transform like other things because weakSpec requires the proof -- to be relevant. but since only `LTESucc` is ever possible that seems -- to be an instance of ? export weak : (0 p : m `LTE` n) -> Var m -> Var n weak p i = fromNatWith i.nat $ transitive (toNatLT i) p public export 0 weakSpec : m `LTE` n -> Var m -> Var n weakSpec LTEZero _ impossible weakSpec (LTESucc p) VZ = VZ weakSpec (LTESucc p) (VS i) = VS $ weakSpec p i export 0 weakSpecCorrect : (p : m `LTE` n) -> (i : Var m) -> (weakSpec p i).nat = i.nat weakSpecCorrect LTEZero _ impossible weakSpecCorrect (LTESucc x) VZ = Refl weakSpecCorrect (LTESucc x) (VS i) = cong S $ weakSpecCorrect x i export 0 weakCorrect : (p : m `LTE` n) -> (i : Var m) -> (weak p i).nat = i.nat weakCorrect LTEZero _ impossible weakCorrect (LTESucc p) VZ = Refl weakCorrect (LTESucc p) (VS i) = cong S $ weakCorrect p i export 0 weakIsSpec : (p : m `LTE` n) -> (i : Var m) -> weak p i = weakSpec p i weakIsSpec p i = toNatInj $ trans (weakCorrect p i) (sym $ weakSpecCorrect p i) public export interface FromVar f where %inline fromVar : Var n -> f n public export FromVar Var where fromVar = id public export data LT : Var n -> Var n -> Type where LTZ : VZ `LT` VS i LTS : i `LT` j -> VS i `LT` VS j %builtin Natural Var.LT %name Var.LT lt public export %inline GT : Var n -> Var n -> Type i `GT` j = j `LT` i export Transitive (Var n) LT where transitive LTZ (LTS _) = LTZ transitive (LTS p) (LTS q) = LTS $ transitive p q export Uninhabited (i `Var.LT` i) where uninhabited (LTS p) = uninhabited p export Uninhabited (VS i `LT` VZ) where uninhabited _ impossible export isLT : (i, j : Var n) -> Dec (i `LT` j) isLT VZ VZ = No uninhabited isLT VZ (VS j) = Yes LTZ isLT (VS i) VZ = No uninhabited isLT (VS i) (VS j) with (isLT i j) _ | Yes prf = Yes (LTS prf) _ | No contra = No (\case LTS p => contra p) public export data Compare : (i, j : Var n) -> Type where IsLT : (lt : i `LT` j) -> Compare i j IsEQ : Compare i i IsGT : (gt : i `GT` j) -> Compare i j %name Compare cmp export compareS : Compare i j -> Compare (VS i) (VS j) compareS (IsLT lt) = IsLT (LTS lt) compareS IsEQ = IsEQ compareS (IsGT gt) = IsGT (LTS gt) export compareP : (i, j : Var n) -> Compare i j compareP VZ VZ = IsEQ compareP VZ (VS j) = IsLT LTZ compareP (VS i) VZ = IsGT LTZ compareP (VS i) (VS j) = compareS $ compareP i j export 0 compareSelf : (c : Compare i i) -> c = IsEQ compareSelf (IsLT lt) = absurd lt compareSelf IsEQ = Refl compareSelf (IsGT gt) = absurd gt export 0 comparePSelf : (i : Var n) -> compareP i i = IsEQ comparePSelf i = compareSelf {} public export data LTE : Var n -> Var n -> Type where LTEZ : VZ `LTE` j LTES : i `LTE` j -> VS i `LTE` VS j export Reflexive (Var n) LTE where reflexive {x = VZ} = LTEZ reflexive {x = VS i} = LTES reflexive export Transitive (Var n) LTE where transitive LTEZ q = LTEZ transitive (LTES p) (LTES q) = LTES $ transitive p q export Antisymmetric (Var n) LTE where antisymmetric LTEZ LTEZ = Refl antisymmetric (LTES p) (LTES q) = cong VS $ antisymmetric p q export splitLTE : {j : Var n} -> i `LTE` j -> Either (i = j) (i `LT` j) splitLTE {j = VZ} LTEZ = Left Refl splitLTE {j = VS _} LTEZ = Right LTZ splitLTE (LTES p) with (splitLTE p) _ | (Left eq) = Left $ cong VS eq _ | (Right lt) = Right $ LTS lt export Uninhabited (VZ = VS i) where uninhabited _ impossible export Uninhabited (VS i = VZ) where uninhabited _ impossible public export eqReflect : (i, j : Var n) -> (i = j) `Reflects` (i == j) eqReflect VZ VZ = RTrue Refl eqReflect VZ (VS i) = RFalse absurd eqReflect (VS i) VZ = RFalse absurd eqReflect (VS i) (VS j) with (eqReflect i j) eqReflect (VS i) (VS j) | r with (i == j) eqReflect (VS i) (VS j) | RTrue yes | True = RTrue $ cong VS yes eqReflect (VS i) (VS j) | RFalse no | False = RFalse $ no . injective public export reflectToDec : p `Reflects` b -> Dec p reflectToDec (RTrue y) = Yes y reflectToDec (RFalse n) = No n public export %inline varDecEq : (i, j : Var n) -> Dec (i = j) varDecEq i j = reflectToDec $ eqReflect i j -- justified by eqReflect [citation needed] private %inline decEqFromBool : (i, j : Var n) -> Dec (i = j) decEqFromBool i j = if i == j then Yes $ believe_me $ Refl {x = 0} else No $ id . believe_me %transform "Var.decEq" varDecEq = decEqFromBool public export %inline DecEq (Var n) where decEq = varDecEq parameters {auto _ : Alternative f} export tighten : OPE m n -> Var n -> f (Var m) tighten Id i = pure i tighten (Drop q) VZ = empty tighten (Drop q) (VS i) = tighten q i tighten (Keep q) VZ = pure VZ tighten (Keep q) (VS i) = VS <$> tighten q i export tightenInner : {n : Nat} -> m `LTE` n -> Var n -> f (Var m) tightenInner = tighten . dropInner export tightenN : (m : Nat) -> Var (m + n) -> f (Var n) tightenN m = tighten $ dropInnerN m export tighten1 : Var (S n) -> f (Var n) tighten1 = tightenN 1