module Tests.Typechecker import Quox.Syntax import Quox.Syntax.Qty.Three import Quox.Typechecker as Lib import public TypingImpls import TAP 0 M : Type -> Type M = ReaderT (Definitions Three) $ Either (Error Three) reflTy : IsQty q => Term q d n reflTy = Pi zero "A" (TYPE 0) $ TUsed $ Pi zero "x" (BVT 0) $ TUsed $ Eq0 (BVT 1) (BVT 0) (BVT 0) reflDef : IsQty q => Term q d n reflDef = ["A","x"] :\\ ["i"] :\\% BVT 0 defGlobals : Definitions Three defGlobals = fromList [("A", mkAbstract Zero $ TYPE 0), ("B", mkAbstract Zero $ TYPE 0), ("C", mkAbstract Zero $ TYPE 1), ("D", mkAbstract Zero $ TYPE 1), ("a", mkAbstract Any $ FT "A"), ("b", mkAbstract Any $ FT "B"), ("f", mkAbstract Any $ Arr One (FT "A") (FT "A")), ("refl", mkDef Any reflTy reflDef)] parameters (label : String) (act : Lazy (M ())) {default defGlobals globals : Definitions Three} testTC : Test testTC = test label $ runReaderT globals act testTCFail : Test testTCFail = testThrows label (const True) $ runReaderT globals act ctxWith : DContext d -> Context (\i => (Term Three d i, Three)) n -> TyContext Three d n ctxWith dctx tqctx = let (tctx, qctx) = unzip tqctx in MkTyContext {dctx, tctx, qctx} ctx : Context (\i => (Term Three 0 i, Three)) n -> TyContext Three 0 n ctx = ctxWith DNil inferAs : TyContext Three d n -> (sg : SQty Three) -> Elim Three d n -> Term Three d n -> M () inferAs ctx sg e ty = do ty' <- infer ctx sg e catchError (equalType (makeDimEq ctx.dctx) ctx.tctx ty ty'.type) (\_ : Error Three => throwError $ ClashT Equal (TYPE UAny) ty ty'.type) infer_ : TyContext Three d n -> (sg : SQty Three) -> Elim Three d n -> M () infer_ ctx sg e = ignore $ infer ctx sg e check_ : TyContext Three d n -> SQty Three -> Term Three d n -> Term Three d n -> M () check_ ctx sg s ty = ignore $ check ctx sg s ty export tests : Test tests = "typechecker" :- [ "universes" :- [ testTC "0 · ★₀ ⇐ ★₁" $ check_ (ctx [<]) szero (TYPE 0) (TYPE 1), testTC "0 · ★₀ ⇐ ★₂" $ check_ (ctx [<]) szero (TYPE 0) (TYPE 2), testTC "0 · ★₀ ⇐ ★_" $ check_ (ctx [<]) szero (TYPE 0) (TYPE UAny), testTCFail "0 · ★₁ ⇍ ★₀" $ check_ (ctx [<]) szero (TYPE 1) (TYPE 0), testTCFail "0 · ★₀ ⇍ ★₀" $ check_ (ctx [<]) szero (TYPE 0) (TYPE 0), testTCFail "0 · ★_ ⇍ ★_" $ check_ (ctx [<]) szero (TYPE UAny) (TYPE UAny), testTCFail "1 · ★₀ ⇍ ★₁" $ check_ (ctx [<]) sone (TYPE 0) (TYPE 1) ], "function types" :- [ note "A, B : ★₀; C, D : ★₁", testTC "0 · (1·A) → B ⇐ ★₀" $ check_ (ctx [<]) szero (Arr One (FT "A") (FT "B")) (TYPE 0), testTC "0 · (1·A) → B ⇐ ★₁👈" $ check_ (ctx [<]) szero (Arr One (FT "A") (FT "B")) (TYPE 1), testTC "0 · (1·C) → D ⇐ ★₁" $ check_ (ctx [<]) szero (Arr One (FT "C") (FT "D")) (TYPE 1), testTCFail "0 · (1·C) → D ⇍ ★₀" $ check_ (ctx [<]) szero (Arr One (FT "C") (FT "D")) (TYPE 0) ], "free vars" :- [ testTC "0 · A ⇒ ★₀" $ inferAs (ctx [<]) szero (F "A") (TYPE 0), testTC "0 · A ⇐👈 ★₀" $ check_ (ctx [<]) szero (FT "A") (TYPE 0), testTC "0 · A ⇐ ★₁👈" $ check_ (ctx [<]) szero (FT "A") (TYPE 1), testTCFail "1👈 · A ⇏ ★₀" $ infer_ (ctx [<]) sone (F "A"), note "refl : (0·A : ★₀) → (0·x : A) → (x ≡ x : A) ≔ (λ A x ⇒ λᴰ _ ⇒ x)", testTC "1 · refl ⇒ {type of refl}" $ inferAs (ctx [<]) sone (F "refl") reflTy, testTC "1 · refl ⇐ {type of refl}" $ check_ (ctx [<]) sone (FT "refl") reflTy ], "lambda" :- [ testTC #"1 · (λ A x ⇒ refl A x) ⇐ {type of refl, see "free vars"}"# $ check_ (ctx [<]) sone (["A", "x"] :\\ E (F "refl" :@@ [BVT 1, BVT 0])) reflTy ], "misc" :- [ testTC "funext" {globals = fromList [("A", mkAbstract Zero $ TYPE 0), ("B", mkAbstract Zero $ Arr Any (FT "A") (TYPE 0)), ("f", mkAbstract Any $ Pi Any "x" (FT "A") $ TUsed $ E $ F "B" :@ BVT 0), ("g", mkAbstract Any $ Pi Any "x" (FT "A") $ TUsed $ E $ F "B" :@ BVT 0)]} $ -- 0·A : Type, 0·B : ω·A → Type, -- ω·f, g : (ω·x : A) → B x -- ⊢ -- 0·funext : (ω·eq : (0·x : A) → f x ≡ g x) → f ≡ g -- = λ eq ⇒ λᴰ i ⇒ λ x ⇒ eq x i check_ (ctx [<]) szero (["eq"] :\\ ["i"] :\\% ["x"] :\\ E (BV 1 :@ BVT 0 :% BV 0)) (Pi Any "eq" (Pi Zero "x" (FT "A") $ TUsed $ Eq0 (E $ F "B" :@ BVT 0) (E $ F "f" :@ BVT 0) (E $ F "g" :@ BVT 0)) $ TUsed $ Eq0 (Pi Any "x" (FT "A") $ TUsed $ E $ F "B" :@ BVT 0) (FT "f") (FT "g")) ] ]