module Tests.Typechecker import Quox.Syntax import Quox.Typechecker as Lib import public TypingImpls import TAP import Quox.EffExtra import AstExtra import PrettyExtra %hide Prelude.App %hide Pretty.App data Error' = TCError Typing.Error | WrongInfer (BContext d) (BContext n) (Term d n) (Term d n) | WrongQOut (QOutput n) (QOutput n) export ToInfo Error' where toInfo (TCError e) = toInfo e toInfo (WrongInfer dnames tnames good bad) = [("type", "WrongInfer"), ("wanted", prettyStr $ prettyTerm dnames tnames good), ("got", prettyStr $ prettyTerm dnames tnames bad)] toInfo (WrongQOut good bad) = [("type", "WrongQOut"), ("wanted", show good), ("wanted", show bad)] 0 M : Type -> Type M = Eff [Except Error', DefsReader] inj : TC a -> M a inj act = rethrow $ mapFst TCError $ runTC !defs act reflTy : Term d n reflTy = ^PiY Zero "A" (^TYPE 0) (^PiY One "x" (^BVT 0) (^Eq0 (^BVT 1) (^BVT 0) (^BVT 0))) reflDef : Term d n reflDef = ^LamY "A" (^LamY "x" (^DLamY "i" (^BVT 0))) fstTy : Term d n fstTy = ^PiY Zero "A" (^TYPE 1) (^PiY Zero "B" (^Arr Any (^BVT 0) (^TYPE 1)) (^Arr Any (^SigY "x" (^BVT 1) (E $ ^App (^BV 1) (^BVT 0))) (^BVT 1))) fstDef : Term d n fstDef = ^LamY "A" (^LamY "B" (^LamY "p" (E $ ^CasePair Any (^BV 0) (SN $ ^BVT 2) (SY [< "x", "y"] $ ^BVT 1)))) sndTy : Term d n sndTy = ^PiY Zero "A" (^TYPE 1) (^PiY Zero "B" (^Arr Any (^BVT 0) (^TYPE 1)) (^PiY Any "p" (^SigY "x" (^BVT 1) (E $ ^App (^BV 1) (^BVT 0))) (E $ ^App (^BV 1) (E $ ^App (^App (^App (^F "fst") (^BVT 2)) (^BVT 1)) (^BVT 0))))) sndDef : Term d n sndDef = -- λ A B p ⇒ caseω p return p' ⇒ B (fst A B p') of { (x, y) ⇒ y } ^LamY "A" (^LamY "B" (^LamY "p" (E $ ^CasePair Any (^BV 0) (SY [< "p"] $ E $ ^App (^BV 2) (E $ ^App (^App (^App (^F "fst") (^BVT 3)) (^BVT 2)) (^BVT 0))) (SY [< "x", "y"] $ ^BVT 0)))) nat : Term d n nat = ^Nat defGlobals : Definitions defGlobals = fromList [("A", ^mkPostulate gzero (^TYPE 0)), ("B", ^mkPostulate gzero (^TYPE 0)), ("C", ^mkPostulate gzero (^TYPE 1)), ("D", ^mkPostulate gzero (^TYPE 1)), ("P", ^mkPostulate gzero (^Arr Any (^FT "A") (^TYPE 0))), ("a", ^mkPostulate gany (^FT "A")), ("a'", ^mkPostulate gany (^FT "A")), ("b", ^mkPostulate gany (^FT "B")), ("f", ^mkPostulate gany (^Arr One (^FT "A") (^FT "A"))), ("fω", ^mkPostulate gany (^Arr Any (^FT "A") (^FT "A"))), ("g", ^mkPostulate gany (^Arr One (^FT "A") (^FT "B"))), ("f2", ^mkPostulate gany (^Arr One (^FT "A") (^Arr One (^FT "A") (^FT "B")))), ("p", ^mkPostulate gany (^PiY One "x" (^FT "A") (E $ ^App (^F "P") (^BVT 0)))), ("q", ^mkPostulate gany (^PiY One "x" (^FT "A") (E $ ^App (^F "P") (^BVT 0)))), ("refl", ^mkDef gany reflTy reflDef), ("fst", ^mkDef gany fstTy fstDef), ("snd", ^mkDef gany sndTy sndDef)] parameters (label : String) (act : Lazy (M ())) {default defGlobals globals : Definitions} testTC : Test testTC = test label {e = Error', a = ()} $ extract $ runExcept $ runReaderAt DEFS globals act testTCFail : Test testTCFail = testThrows label (const True) $ (extract $ runExcept $ runReaderAt DEFS globals act) $> "()" inferredTypeEq : TyContext d n -> (exp, got : Term d n) -> M () inferredTypeEq ctx exp got = wrapErr (const $ WrongInfer ctx.dnames ctx.tnames exp got) $ inj $ lift $ equalType noLoc ctx exp got qoutEq : (exp, got : QOutput n) -> M () qoutEq qout res = unless (qout == res) $ throw $ WrongQOut qout res inferAs : TyContext d n -> (sg : SQty) -> Elim d n -> Term d n -> M () inferAs ctx@(MkTyContext {dctx, _}) sg e ty = do case !(inj $ infer ctx sg e) of Just res => inferredTypeEq ctx ty res.type Nothing => pure () inferAsQ : TyContext d n -> (sg : SQty) -> Elim d n -> Term d n -> QOutput n -> M () inferAsQ ctx@(MkTyContext {dctx, _}) sg e ty qout = do case !(inj $ infer ctx sg e) of Just res => do inferredTypeEq ctx ty res.type qoutEq qout res.qout Nothing => pure () infer_ : TyContext d n -> (sg : SQty) -> Elim d n -> M () infer_ ctx sg e = ignore $ inj $ infer ctx sg e checkQ : TyContext d n -> SQty -> Term d n -> Term d n -> QOutput n -> M () checkQ ctx@(MkTyContext {dctx, _}) sg s ty qout = do case !(inj $ check ctx sg s ty) of Just res => qoutEq qout res Nothing => pure () check_ : TyContext d n -> SQty -> Term d n -> Term d n -> M () check_ ctx sg s ty = ignore $ inj $ check ctx sg s ty checkType_ : TyContext d n -> Term d n -> Maybe Universe -> M () checkType_ ctx s u = inj $ checkType ctx s u export tests : Test tests = "typechecker" :- [ "universes" :- [ testTC "0 · ★₀ ⇐ ★₁ # by checkType" $ checkType_ empty (^TYPE 0) (Just 1), testTC "0 · ★₀ ⇐ ★₁ # by check" $ check_ empty szero (^TYPE 0) (^TYPE 1), testTC "0 · ★₀ ⇐ ★₂" $ checkType_ empty (^TYPE 0) (Just 2), testTC "0 · ★₀ ⇐ ★_" $ checkType_ empty (^TYPE 0) Nothing, testTCFail "0 · ★₁ ⇍ ★₀" $ checkType_ empty (^TYPE 1) (Just 0), testTCFail "0 · ★₀ ⇍ ★₀" $ checkType_ empty (^TYPE 0) (Just 0), testTC "0=1 ⊢ 0 · ★₁ ⇐ ★₀" $ checkType_ empty01 (^TYPE 1) (Just 0), testTCFail "1 · ★₀ ⇍ ★₁ # by check" $ check_ empty sone (^TYPE 0) (^TYPE 1) ], "function types" :- [ note "A, B : ★₀; C, D : ★₁; P : 0.A → ★₀", testTC "0 · 1.A → B ⇐ ★₀" $ check_ empty szero (^Arr One (^FT "A") (^FT "B")) (^TYPE 0), note "subtyping", testTC "0 · 1.A → B ⇐ ★₁" $ check_ empty szero (^Arr One (^FT "A") (^FT "B")) (^TYPE 1), testTC "0 · 1.C → D ⇐ ★₁" $ check_ empty szero (^Arr One (^FT "C") (^FT "D")) (^TYPE 1), testTCFail "0 · 1.C → D ⇍ ★₀" $ check_ empty szero (^Arr One (^FT "C") (^FT "D")) (^TYPE 0), testTC "0 · 1.(x : A) → P x ⇐ ★₀" $ check_ empty szero (^PiY One "x" (^FT "A") (E $ ^App (^F "P") (^BVT 0))) (^TYPE 0), testTCFail "0 · 1.A → P ⇍ ★₀" $ check_ empty szero (^Arr One (^FT "A") (^FT "P")) (^TYPE 0), testTC "0=1 ⊢ 0 · 1.A → P ⇐ ★₀" $ check_ empty01 szero (^Arr One (^FT "A") (^FT "P")) (^TYPE 0) ], "pair types" :- [ testTC "0 · A × A ⇐ ★₀" $ check_ empty szero (^And (^FT "A") (^FT "A")) (^TYPE 0), testTCFail "0 · A × P ⇍ ★₀" $ check_ empty szero (^And (^FT "A") (^FT "P")) (^TYPE 0), testTC "0 · (x : A) × P x ⇐ ★₀" $ check_ empty szero (^SigY "x" (^FT "A") (E $ ^App (^F "P") (^BVT 0))) (^TYPE 0), testTC "0 · (x : A) × P x ⇐ ★₁" $ check_ empty szero (^SigY "x" (^FT "A") (E $ ^App (^F "P") (^BVT 0))) (^TYPE 1), testTC "0 · (A : ★₀) × A ⇐ ★₁" $ check_ empty szero (^SigY "A" (^TYPE 0) (^BVT 0)) (^TYPE 1), testTCFail "0 · (A : ★₀) × A ⇍ ★₀" $ check_ empty szero (^SigY "A" (^TYPE 0) (^BVT 0)) (^TYPE 0), testTCFail "1 · A × A ⇍ ★₀" $ check_ empty sone (^And (^FT "A") (^FT "A")) (^TYPE 0) ], "enum types" :- [ testTC "0 · {} ⇐ ★₀" $ check_ empty szero (^enum []) (^TYPE 0), testTC "0 · {} ⇐ ★₃" $ check_ empty szero (^enum []) (^TYPE 3), testTC "0 · {a,b,c} ⇐ ★₀" $ check_ empty szero (^enum ["a", "b", "c"]) (^TYPE 0), testTC "0 · {a,b,c} ⇐ ★₃" $ check_ empty szero (^enum ["a", "b", "c"]) (^TYPE 3), testTCFail "1 · {} ⇍ ★₀" $ check_ empty sone (^enum []) (^TYPE 0), testTC "0=1 ⊢ 1 · {} ⇐ ★₀" $ check_ empty01 sone (^enum []) (^TYPE 0) ], "free vars" :- [ note "A : ★₀", testTC "0 · A ⇒ ★₀" $ inferAs empty szero (^F "A") (^TYPE 0), testTC "0 · [A] ⇐ ★₀" $ check_ empty szero (^FT "A") (^TYPE 0), note "subtyping", testTC "0 · [A] ⇐ ★₁" $ check_ empty szero (^FT "A") (^TYPE 1), note "(fail) runtime-relevant type", testTCFail "1 · A ⇏ ★₀" $ infer_ empty sone (^F "A"), testTC "1 . f ⇒ 1.A → A" $ inferAs empty sone (^F "f") (^Arr One (^FT "A") (^FT "A")), testTC "1 . f ⇐ 1.A → A" $ check_ empty sone (^FT "f") (^Arr One (^FT "A") (^FT "A")), testTCFail "1 . f ⇍ 0.A → A" $ check_ empty sone (^FT "f") (^Arr Zero (^FT "A") (^FT "A")), testTCFail "1 . f ⇍ ω.A → A" $ check_ empty sone (^FT "f") (^Arr Any (^FT "A") (^FT "A")), testTC "1 . (λ x ⇒ f x) ⇐ 1.A → A" $ check_ empty sone (^LamY "x" (E $ ^App (^F "f") (^BVT 0))) (^Arr One (^FT "A") (^FT "A")), testTC "1 . (λ x ⇒ f x) ⇐ ω.A → A" $ check_ empty sone (^LamY "x" (E $ ^App (^F "f") (^BVT 0))) (^Arr Any (^FT "A") (^FT "A")), testTCFail "1 . (λ x ⇒ f x) ⇍ 0.A → A" $ check_ empty sone (^LamY "x" (E $ ^App (^F "f") (^BVT 0))) (^Arr Zero (^FT "A") (^FT "A")), testTC "1 . fω ⇒ ω.A → A" $ inferAs empty sone (^F "fω") (^Arr Any (^FT "A") (^FT "A")), testTC "1 . (λ x ⇒ fω x) ⇐ ω.A → A" $ check_ empty sone (^LamY "x" (E $ ^App (^F "fω") (^BVT 0))) (^Arr Any (^FT "A") (^FT "A")), testTCFail "1 . (λ x ⇒ fω x) ⇍ 0.A → A" $ check_ empty sone (^LamY "x" (E $ ^App (^F "fω") (^BVT 0))) (^Arr Zero (^FT "A") (^FT "A")), testTCFail "1 . (λ x ⇒ fω x) ⇍ 1.A → A" $ check_ empty sone (^LamY "x" (E $ ^App (^F "fω") (^BVT 0))) (^Arr One (^FT "A") (^FT "A")), note "refl : (0·A : ★₀) → (1·x : A) → (x ≡ x : A) ≔ (λ A x ⇒ δ _ ⇒ x)", testTC "1 · refl ⇒ ⋯" $ inferAs empty sone (^F "refl") reflTy, testTC "1 · [refl] ⇐ ⋯" $ check_ empty sone (^FT "refl") reflTy ], "bound vars" :- [ testTC "x : A ⊢ 1 · x ⇒ A ⊳ 1·x" $ inferAsQ (ctx [< ("x", ^FT "A")]) sone (^BV 0) (^FT "A") [< One], testTC "x : A ⊢ 1 · x ⇐ A ⊳ 1·x" $ checkQ (ctx [< ("x", ^FT "A")]) sone (^BVT 0) (^FT "A") [< One], note "f2 : 1.A → 1.A → B", testTC "x : A ⊢ 1 · f2 x x ⇒ B ⊳ ω·x" $ inferAsQ (ctx [< ("x", ^FT "A")]) sone (^App (^App (^F "f2") (^BVT 0)) (^BVT 0)) (^FT "B") [< Any] ], "lambda" :- [ note "linear & unrestricted identity", testTC "1 · (λ x ⇒ x) ⇐ A → A" $ check_ empty sone (^LamY "x" (^BVT 0)) (^Arr One (^FT "A") (^FT "A")), testTC "1 · (λ x ⇒ x) ⇐ ω.A → A" $ check_ empty sone (^LamY "x" (^BVT 0)) (^Arr Any (^FT "A") (^FT "A")), note "(fail) zero binding used relevantly", testTCFail "1 · (λ x ⇒ x) ⇍ 0.A → A" $ check_ empty sone (^LamY "x" (^BVT 0)) (^Arr Zero (^FT "A") (^FT "A")), note "(but ok in overall erased context)", testTC "0 · (λ x ⇒ x) ⇐ A ⇾ A" $ check_ empty szero (^LamY "x" (^BVT 0)) (^Arr Zero (^FT "A") (^FT "A")), testTC "1 · (λ A x ⇒ refl A x) ⇐ ⋯ # (type of refl)" $ check_ empty sone (^LamY "A" (^LamY "x" (E $ ^App (^App (^F "refl") (^BVT 1)) (^BVT 0)))) reflTy, testTC "1 · (λ A x ⇒ δ i ⇒ x) ⇐ ⋯ # (def. and type of refl)" $ check_ empty sone reflDef reflTy ], "pairs" :- [ testTC "1 · (a, a) ⇐ A × A" $ check_ empty sone (^Pair (^FT "a") (^FT "a")) (^And (^FT "A") (^FT "A")), testTC "x : A ⊢ 1 · (x, x) ⇐ A × A ⊳ ω·x" $ checkQ (ctx [< ("x", ^FT "A")]) sone (^Pair (^BVT 0) (^BVT 0)) (^And (^FT "A") (^FT "A")) [< Any], testTC "1 · (a, δ i ⇒ a) ⇐ (x : A) × (x ≡ a)" $ check_ empty sone (^Pair (^FT "a") (^DLamN (^FT "a"))) (^SigY "x" (^FT "A") (^Eq0 (^FT "A") (^BVT 0) (^FT "a"))) ], "unpairing" :- [ testTC "x : A × A ⊢ 1 · (case1 x return B of (l,r) ⇒ f2 l r) ⇒ B ⊳ 1·x" $ inferAsQ (ctx [< ("x", ^And (^FT "A") (^FT "A"))]) sone (^CasePair One (^BV 0) (SN $ ^FT "B") (SY [< "l", "r"] $ E $ ^App (^App (^F "f2") (^BVT 1)) (^BVT 0))) (^FT "B") [< One], testTC "x : A × A ⊢ 1 · (caseω x return B of (l,r) ⇒ f2 l r) ⇒ B ⊳ ω·x" $ inferAsQ (ctx [< ("x", ^And (^FT "A") (^FT "A"))]) sone (^CasePair Any (^BV 0) (SN $ ^FT "B") (SY [< "l", "r"] $ E $ ^App (^App (^F "f2") (^BVT 1)) (^BVT 0))) (^FT "B") [< Any], testTC "x : A × A ⊢ 0 · (caseω x return B of (l,r) ⇒ f2 l r) ⇒ B ⊳ 0·x" $ inferAsQ (ctx [< ("x", ^And (^FT "A") (^FT "A"))]) szero (^CasePair Any (^BV 0) (SN $ ^FT "B") (SY [< "l", "r"] $ E $ ^App (^App (^F "f2") (^BVT 1)) (^BVT 0))) (^FT "B") [< Zero], testTCFail "x : A × A ⊢ 1 · (case0 x return B of (l,r) ⇒ f2 l r) ⇏" $ infer_ (ctx [< ("x", ^And (^FT "A") (^FT "A"))]) sone (^CasePair Zero (^BV 0) (SN $ ^FT "B") (SY [< "l", "r"] $ E $ ^App (^App (^F "f2") (^BVT 1)) (^BVT 0))), testTC "x : A × B ⊢ 1 · (caseω x return A of (l,r) ⇒ l) ⇒ A ⊳ ω·x" $ inferAsQ (ctx [< ("x", ^And (^FT "A") (^FT "B"))]) sone (^CasePair Any (^BV 0) (SN $ ^FT "A") (SY [< "l", "r"] $ ^BVT 1)) (^FT "A") [< Any], testTC "x : A × B ⊢ 0 · (case1 x return A of (l,r) ⇒ l) ⇒ A ⊳ 0·x" $ inferAsQ (ctx [< ("x", ^And (^FT "A") (^FT "B"))]) szero (^CasePair One (^BV 0) (SN $ ^FT "A") (SY [< "l", "r"] $ ^BVT 1)) (^FT "A") [< Zero], testTCFail "x : A × B ⊢ 1 · (case1 x return A of (l,r) ⇒ l) ⇏" $ infer_ (ctx [< ("x", ^And (^FT "A") (^FT "B"))]) sone (^CasePair One (^BV 0) (SN $ ^FT "A") (SY [< "l", "r"] $ ^BVT 1)), note "fst : (0·A : ★₁) → (0·B : A ↠ ★₁) → ((x : A) × B x) ↠ A", note " ≔ (λ A B p ⇒ caseω p return A of (x, y) ⇒ x)", testTC "0 · ‹type of fst› ⇐ ★₂" $ check_ empty szero fstTy (^TYPE 2), testTC "1 · ‹def of fst› ⇐ ‹type of fst›" $ check_ empty sone fstDef fstTy, note "snd : (0·A : ★₁) → (0·B : A ↠ ★₁) → (ω·p : (x : A) × B x) → B (fst A B p)", note " ≔ (λ A B p ⇒ caseω p return p ⇒ B (fst A B p) of (x, y) ⇒ y)", testTC "0 · ‹type of snd› ⇐ ★₂" $ check_ empty szero sndTy (^TYPE 2), testTC "1 · ‹def of snd› ⇐ ‹type of snd›" $ check_ empty sone sndDef sndTy, testTC "0 · snd ★₀ (λ x ⇒ x) ⇒ (ω·p : (A : ★₀) × A) → fst ★₀ (λ x ⇒ x) p" $ inferAs empty szero (^App (^App (^F "snd") (^TYPE 0)) (^LamY "x" (^BVT 0))) (^PiY Any "p" (^SigY "A" (^TYPE 0) (^BVT 0)) (E $ ^App (^App (^App (^F "fst") (^TYPE 0)) (^LamY "x" (^BVT 0))) (^BVT 0))) ], "enums" :- [ testTC "1 · 'a ⇐ {a}" $ check_ empty sone (^Tag "a") (^enum ["a"]), testTC "1 · 'a ⇐ {a, b, c}" $ check_ empty sone (^Tag "a") (^enum ["a", "b", "c"]), testTCFail "1 · 'a ⇍ {b, c}" $ check_ empty sone (^Tag "a") (^enum ["b", "c"]), testTC "0=1 ⊢ 1 · 'a ⇐ {b, c}" $ check_ empty01 sone (^Tag "a") (^enum ["b", "c"]) ], "enum matching" :- [ testTC "ω.x : {tt} ⊢ 1 · case1 x return {tt} of { 'tt ⇒ 'tt } ⇒ {tt}" $ inferAs (ctx [< ("x", ^enum ["tt"])]) sone (^CaseEnum One (^BV 0) (SN (^enum ["tt"])) (singleton "tt" (^Tag "tt"))) (^enum ["tt"]), testTCFail "ω.x : {tt} ⊢ 1 · case1 x return {tt} of { 'ff ⇒ 'tt } ⇏" $ infer_ (ctx [< ("x", ^enum ["tt"])]) sone (^CaseEnum One (^BV 0) (SN (^enum ["tt"])) (singleton "ff" (^Tag "tt"))) ], "equality types" :- [ testTC "0 · ℕ ≡ ℕ : ★₀ ⇐ Type" $ checkType_ empty (^Eq0 (^TYPE 0) nat nat) Nothing, testTC "0 · ℕ ≡ ℕ : ★₀ ⇐ ★₁" $ check_ empty szero (^Eq0 (^TYPE 0) nat nat) (^TYPE 1), testTCFail "1 · ℕ ≡ ℕ : ★₀ ⇍ ★₁" $ check_ empty sone (^Eq0 (^TYPE 0) nat nat) (^TYPE 1), testTC "0 · ℕ ≡ ℕ : ★₀ ⇐ ★₂" $ check_ empty szero (^Eq0 (^TYPE 0) nat nat) (^TYPE 2), testTC "0 · ℕ ≡ ℕ : ★₁ ⇐ ★₂" $ check_ empty szero (^Eq0 (^TYPE 1) nat nat) (^TYPE 2), testTCFail "0 · ℕ ≡ ℕ : ★₁ ⇍ ★₁" $ check_ empty szero (^Eq0 (^TYPE 1) nat nat) (^TYPE 1), testTCFail "0 ≡ 'beep : {beep} ⇍ Type" $ checkType_ empty (^Eq0 (^enum ["beep"]) (^Zero) (^Tag "beep")) Nothing, testTC "ab : A ≡ B : ★₀, x : A, y : B ⊢ 0 · Eq [i ⇒ ab i] x y ⇐ ★₀" $ check_ (ctx [< ("ab", ^Eq0 (^TYPE 0) (^FT "A") (^FT "B")), ("x", ^FT "A"), ("y", ^FT "B")]) szero (^EqY "i" (E $ ^DApp (^BV 2) (^BV 0)) (^BVT 1) (^BVT 0)) (^TYPE 0), testTCFail "ab : A ≡ B : ★₀, x : A, y : B ⊢ Eq [i ⇒ ab i] y x ⇍ Type" $ check_ (ctx [< ("ab", ^Eq0 (^TYPE 0) (^FT "A") (^FT "B")), ("x", ^FT "A"), ("y", ^FT "B")]) szero (^EqY "i" (E $ ^DApp (^BV 2) (^BV 0)) (^BVT 0) (^BVT 1)) (^TYPE 0) ], "equalities" :- [ testTC "1 · (δ i ⇒ a) ⇐ a ≡ a" $ check_ empty sone (^DLamN (^FT "a")) (^Eq0 (^FT "A") (^FT "a") (^FT "a")), testTC "0 · (λ p q ⇒ δ i ⇒ p) ⇐ (ω·p q : a ≡ a') → p ≡ q # uip" $ check_ empty szero (^LamY "p" (^LamY "q" (^DLamN (^BVT 1)))) (^PiY Any "p" (^Eq0 (^FT "A") (^FT "a") (^FT "a")) (^PiY Any "q" (^Eq0 (^FT "A") (^FT "a") (^FT "a")) (^Eq0 (^Eq0 (^FT "A") (^FT "a") (^FT "a")) (^BVT 1) (^BVT 0)))), testTC "0 · (λ p q ⇒ δ i ⇒ q) ⇐ (ω·p q : a ≡ a') → p ≡ q # uip(2)" $ check_ empty szero (^LamY "p" (^LamY "q" (^DLamN (^BVT 0)))) (^PiY Any "p" (^Eq0 (^FT "A") (^FT "a") (^FT "a")) (^PiY Any "q" (^Eq0 (^FT "A") (^FT "a") (^FT "a")) (^Eq0 (^Eq0 (^FT "A") (^FT "a") (^FT "a")) (^BVT 1) (^BVT 0)))) ], "natural numbers" :- [ testTC "0 · ℕ ⇐ ★₀" $ check_ empty szero nat (^TYPE 0), testTC "0 · ℕ ⇐ ★₇" $ check_ empty szero nat (^TYPE 7), testTCFail "1 · ℕ ⇍ ★₀" $ check_ empty sone nat (^TYPE 0), testTC "1 · zero ⇐ ℕ" $ check_ empty sone (^Zero) nat, testTCFail "1 · zero ⇍ ℕ×ℕ" $ check_ empty sone (^Zero) (^And nat nat), testTC "ω·n : ℕ ⊢ 1 · succ n ⇐ ℕ" $ check_ (ctx [< ("n", nat)]) sone (^Succ (^BVT 0)) nat, testTC "1 · λ n ⇒ succ n ⇐ 1.ℕ → ℕ" $ check_ empty sone (^LamY "n" (^Succ (^BVT 0))) (^Arr One nat nat) ], "natural elim" :- [ note "1 · λ n ⇒ case1 n return ℕ of { zero ⇒ 0; succ n ⇒ n }", note " ⇐ 1.ℕ → ℕ", testTC "pred" $ check_ empty sone (^LamY "n" (E $ ^CaseNat One Zero (^BV 0) (SN nat) (^Zero) (SY [< "n", ^BN Unused] $ ^BVT 1))) (^Arr One nat nat), note "1 · λ m n ⇒ case1 m return ℕ of { zero ⇒ n; succ _, 1.p ⇒ succ p }", note " ⇐ 1.ℕ → 1.ℕ → 1.ℕ", testTC "plus" $ check_ empty sone (^LamY "m" (^LamY "n" (E $ ^CaseNat One One (^BV 1) (SN nat) (^BVT 0) (SY [< ^BN Unused, "p"] $ ^Succ (^BVT 0))))) (^Arr One nat (^Arr One nat nat)) ], "box types" :- [ testTC "0 · [0.ℕ] ⇐ ★₀" $ check_ empty szero (^BOX Zero nat) (^TYPE 0), testTC "0 · [0.★₀] ⇐ ★₁" $ check_ empty szero (^BOX Zero (^TYPE 0)) (^TYPE 1), testTCFail "0 · [0.★₀] ⇍ ★₀" $ check_ empty szero (^BOX Zero (^TYPE 0)) (^TYPE 0) ], todo "box values", todo "box elim", "type-case" :- [ testTC "0 · type-case ℕ ∷ ★₀ return ★₀ of { _ ⇒ ℕ } ⇒ ★₀" $ inferAs empty szero (^TypeCase (^Ann nat (^TYPE 0)) (^TYPE 0) empty nat) (^TYPE 0) ], todo "add the examples dir to the tests" ] {- "misc" :- [ note "0·A : Type, 0·P : A → Type, ω·p : (1·x : A) → P x", note "⊢", note "1 · λ x y xy ⇒ δ i ⇒ p (xy i)", note " ⇐ (0·x y : A) → (1·xy : x ≡ y) → Eq [i ⇒ P (xy i)] (p x) (p y)", testTC "cong" $ check_ empty sone ([< "x", "y", "xy"] :\\ [< "i"] :\\% E (F "p" :@ E (BV 0 :% BV 0))) (PiY Zero "x" (FT "A") $ PiY Zero "y" (FT "A") $ PiY One "xy" (Eq0 (FT "A") (BVT 1) (BVT 0)) $ EqY "i" (E $ F "P" :@ E (BV 0 :% BV 0)) (E $ F "p" :@ BVT 2) (E $ F "p" :@ BVT 1)), note "0·A : Type, 0·P : ω·A → Type,", note "ω·p q : (1·x : A) → P x", note "⊢", note "1 · λ eq ⇒ δ i ⇒ λ x ⇒ eq x i", note " ⇐ (1·eq : (1·x : A) → p x ≡ q x) → p ≡ q", testTC "funext" $ check_ empty sone ([< "eq"] :\\ [< "i"] :\\% [< "x"] :\\ E (BV 1 :@ BVT 0 :% BV 0)) (PiY One "eq" (PiY One "x" (FT "A") (Eq0 (E $ F "P" :@ BVT 0) (E $ F "p" :@ BVT 0) (E $ F "q" :@ BVT 0))) (Eq0 (PiY Any "x" (FT "A") $ E $ F "P" :@ BVT 0) (FT "p") (FT "q"))), todo "absurd (when coerce is in)" -- absurd : (`true ≡ `false : {true, false}) ⇾ (0·A : ★₀) → A ≔ -- λ e ⇒ -- case coerce [i ⇒ case e @i return ★₀ of {`true ⇒ {tt}; `false ⇒ {}}] -- @0 @1 `tt -- return A -- of { } ] -}