load "misc.quox" load "nat.quox" load "maybe.quox" load "bool.quox" load "qty.quox" namespace vec { def0 Vec : ℕ → ★ → ★ = λ n A ⇒ caseω n return ★ of { zero ⇒ {nil}; succ _, 0.Tail ⇒ A × Tail } def drop-nil-dep : 0.(A : ★) → 0.(P : Vec 0 A → ★) → (xs : Vec 0 A) → P 'nil → P xs = λ A P xs p ⇒ case xs return xs' ⇒ P xs' of { 'nil ⇒ p } def drop-nil : 0.(A B : ★) → Vec 0 A → B → B = λ A B ⇒ drop-nil-dep A (λ _ ⇒ B) def match-dep : 0.(A : ★) → 0.(P : (n : ℕ) → Vec n A → ★) → ω.(P 0 'nil) → ω.((n : ℕ) → (x : A) → (xs : Vec n A) → P (succ n) (x, xs)) → (n : ℕ) → (xs : Vec n A) → P n xs = λ A P pn pc n ⇒ case n return n' ⇒ (xs : Vec n' A) → P n' xs of { 0 ⇒ λ nil ⇒ drop-nil-dep A (P 0) nil pn; succ len ⇒ λ cons ⇒ case cons return cons' ⇒ P (succ len) cons' of { (first, rest) ⇒ pc len first rest } } def match-depω : 0.(A : ★) → 0.(P : (n : ℕ) → Vec n A → ★) → ω.(P 0 'nil) → ω.(ω.(n : ℕ) → ω.(x : A) → ω.(xs : Vec n A) → P (succ n) (x, xs)) → ω.(n : ℕ) → ω.(xs : Vec n A) → P n xs = λ A P pn pc n ⇒ caseω n return n' ⇒ ω.(xs : Vec n' A) → P n' xs of { 0 ⇒ λ nil ⇒ drop-nil-dep A (P 0) nil pn; succ len ⇒ λ cons ⇒ caseω cons return cons' ⇒ P (succ len) cons' of { (first, rest) ⇒ pc len first rest } } def match-dep# = match-depω def elim : 0.(A : ★) → 0.(P : (n : ℕ) → Vec n A → ★) → P 0 'nil → ω.((x : A) → 0.(n : ℕ) → 0.(xs : Vec n A) → P n xs → P (succ n) (x, xs)) → (n : ℕ) → (xs : Vec n A) → P n xs = λ A P pn pc n ⇒ case n return n' ⇒ (xs' : Vec n' A) → P n' xs' of { zero ⇒ λ nil ⇒ case nil return nil' ⇒ P 0 nil' of { 'nil ⇒ pn }; succ n, IH ⇒ λ cons ⇒ case cons return cons' ⇒ P (succ n) cons' of { (first, rest) ⇒ pc first n rest (IH rest) } } def elim2 : 0.(A B : ★) → 0.(P : (n : ℕ) → Vec n A → Vec n B → ★) → P 0 'nil 'nil → ω.((x : A) → (y : B) → 0.(n : ℕ) → 0.(xs : Vec n A) → 0.(ys : Vec n B) → P n xs ys → P (succ n) (x, xs) (y, ys)) → (n : ℕ) → (xs : Vec n A) → (ys : Vec n B) → P n xs ys = λ A B P pn pc n ⇒ case n return n' ⇒ (xs : Vec n' A) → (ys : Vec n' B) → P n' xs ys of { zero ⇒ λ nila nilb ⇒ drop-nil-dep A (λ n ⇒ P 0 n nilb) nila (drop-nil-dep B (λ n ⇒ P 0 'nil n) nilb pn); succ n, IH ⇒ λ consa consb ⇒ case consa return consa' ⇒ P (succ n) consa' consb of { (a, as) ⇒ case consb return consb' ⇒ P (succ n) (a, as) consb' of { (b, bs) ⇒ pc a b n as bs (IH as bs) } } } def elim2-uneven : 0.(A B : ★) → 0.(P : (m n : ℕ) → Vec m A → Vec n B → ★) → -- both nil ω.(P 0 0 'nil 'nil) → -- first nil ω.((y : B) → 0.(n : ℕ) → 0.(ys : Vec n B) → P 0 n 'nil ys → P 0 (succ n) 'nil (y, ys)) → -- second nil ω.((x : A) → 0.(m : ℕ) → 0.(xs : Vec m A) → P m 0 xs 'nil → P (succ m) 0 (x, xs) 'nil) → -- both cons ω.((x : A) → (y : B) → 0.(m n : ℕ) → 0.(xs : Vec m A) → 0.(ys : Vec n B) → P m n xs ys → P (succ m) (succ n) (x, xs) (y, ys)) → (m n : ℕ) → (xs : Vec m A) → (ys : Vec n B) → P m n xs ys = λ A B P pnn pnc pcn pcc ⇒ nat.elim-pair (λ m n ⇒ (xs : Vec m A) → (ys : Vec n B) → P m n xs ys) (λ xnil ynil ⇒ let0 Ret = P 0 0 'nil 'nil in drop-nil A Ret xnil (drop-nil B Ret ynil pnn)) (λ n IH xnil yys ⇒ case yys return yys' ⇒ P 0 (succ n) 'nil yys' of { (y, ys) ⇒ pnc y n ys (IH xnil ys) }) (λ m IH xxs ynil ⇒ case xxs return xxs' ⇒ P (succ m) 0 xxs' 'nil of { (x, xs) ⇒ pcn x m xs (IH xs ynil) }) (λ m n IH xxs yys ⇒ case xxs return xxs' ⇒ P (succ m) (succ n) xxs' yys of { (x, xs) ⇒ case yys return yys' ⇒ P (succ m) (succ n) (x, xs) yys' of { (y, ys) ⇒ pcc x y m n xs ys (IH xs ys) }}) -- haha gross def elimω : 0.(A : ★) → 0.(P : (n : ℕ) → Vec n A → ★) → ω.(P 0 'nil) → ω.(ω.(x : A) → ω.(n : ℕ) → ω.(xs : Vec n A) → ω.(P n xs) → P (succ n) (x, xs)) → ω.(n : ℕ) → ω.(xs : Vec n A) → P n xs = λ A P pn pc n ⇒ caseω n return n' ⇒ ω.(xs' : Vec n' A) → P n' xs' of { zero ⇒ λ _ ⇒ pn; succ n, ω.IH ⇒ λ xxs ⇒ letω x = fst xxs; xs = snd xxs in pc x n xs (IH xs) } def elimω2 : 0.(A B : ★) → 0.(P : (n : ℕ) → Vec n A → Vec n B → ★) → ω.(P 0 'nil 'nil) → ω.(ω.(x : A) → ω.(y : B) → ω.(n : ℕ) → ω.(xs : Vec n A) → ω.(ys : Vec n B) → ω.(P n xs ys) → P (succ n) (x, xs) (y, ys)) → ω.(n : ℕ) → ω.(xs : Vec n A) → ω.(ys : Vec n B) → P n xs ys = λ A B P pn pc n ⇒ caseω n return n' ⇒ ω.(xs : Vec n' A) → ω.(ys : Vec n' B) → P n' xs ys of { zero ⇒ λ _ _ ⇒ pn; succ n, ω.IH ⇒ λ xxs yys ⇒ letω x = fst xxs; xs = snd xxs; y = fst yys; ys = snd yys in pc x y n xs ys (IH xs ys) } {- postulate elimP : ω.(π : NzQty) → ω.(ρₙ ρₗ : Qty) → 0.(A : ★) → 0.(P : (n : ℕ) → Vec n A → ★) → FunNz π (P 0 'nil) (Fun 'any (FUN-NZ π A (λ x ⇒ FUN ρₙ ℕ (λ n ⇒ FUN ρₗ (Vec n A) (λ xs ⇒ FunNz π (P n xs) (P (succ n) (x, xs)))))) (FUN-NZ π ℕ (λ n ⇒ FUN-NZ π (Vec n A) (λ xs ⇒ P n xs)))) {- = λ π ρₙ ρₗ A P ⇒ uhhhhhhhhhhhhhhhhhhh -} -} def elimω2-uneven : 0.(A B : ★) → 0.(P : (m n : ℕ) → Vec m A → Vec n B → ★) → -- both nil ω.(P 0 0 'nil 'nil) → -- first nil ω.(ω.(y : B) → ω.(n : ℕ) → ω.(ys : Vec n B) → ω.(P 0 n 'nil ys) → P 0 (succ n) 'nil (y, ys)) → -- second nil ω.(ω.(x : A) → ω.(m : ℕ) → ω.(xs : Vec m A) → ω.(P m 0 xs 'nil) → P (succ m) 0 (x, xs) 'nil) → -- both cons ω.(ω.(x : A) → ω.(y : B) → ω.(m n : ℕ) → ω.(xs : Vec m A) → ω.(ys : Vec n B) → ω.(P m n xs ys) → P (succ m) (succ n) (x, xs) (y, ys)) → ω.(m n : ℕ) → ω.(xs : Vec m A) → ω.(ys : Vec n B) → P m n xs ys = λ A B P pnn pnc pcn pcc ⇒ nat.elim-pairω (λ m n ⇒ ω.(xs : Vec m A) → ω.(ys : Vec n B) → P m n xs ys) (λ _ _ ⇒ pnn) (λ n IH xnil yys ⇒ letω y = fst yys; ys = snd yys in pnc y n ys (IH xnil ys)) (λ m IH xxs ynil ⇒ letω x = fst xxs; xs = snd xxs in pcn x m xs (IH xs ynil)) (λ m n IH xxs yys ⇒ letω x = fst xxs; xs = snd xxs; y = fst yys; ys = snd yys in pcc x y m n xs ys (IH xs ys)) def zip-with : 0.(A B C : ★) → ω.(A → B → C) → (n : ℕ) → Vec n A → Vec n B → Vec n C = λ A B C f ⇒ elim2 A B (λ n _ _ ⇒ Vec n C) 'nil (λ a b _ _ _ abs ⇒ (f a b, abs)) def zip-withω : 0.(A B C : ★) → ω.(ω.A → ω.B → C) → ω.(n : ℕ) → ω.(Vec n A) → ω.(Vec n B) → Vec n C = λ A B C f ⇒ elimω2 A B (λ n _ _ ⇒ Vec n C) 'nil (λ a b _ _ _ abs ⇒ (f a b, abs)) namespace zip-with { def0 Failure : (A B : ★) → (m n : ℕ) → Vec m A → Vec n B → ★ = λ A B m n xs ys ⇒ Sing (Vec m A) xs × Sing (Vec n B) ys × [0. Not (m ≡ n : ℕ)] def0 Success : (C : ★) → (m n : ℕ) → ★ = λ C m n ⇒ Vec n C × [0. m ≡ n : ℕ] def0 Result : (A B C : ★) → (m n : ℕ) → Vec m A → Vec n B → ★ = λ A B C m n xs ys ⇒ Either (Failure A B m n xs ys) (Success C m n) def zip-with-hetω : 0.(A B C : ★) → ω.(A → B → C) → ω.(m n : ℕ) → (xs : Vec m A) → (ys : Vec n B) → Result A B C m n xs ys = λ A B C f m n xs ys ⇒ let0 TNo : Vec m A → Vec n B → ★ = Failure A B m n; TYes : ★ = Success C m n; TRes : Vec m A → Vec n B → ★ = λ xs ys ⇒ Either (TNo xs ys) TYes in dec.elim (m ≡ n : ℕ) (λ _ ⇒ (xs : Vec m A) → (ys : Vec n B) → TRes xs ys) (λ eq xs ys ⇒ let zs : Vec n C = zip-with A B C f n (coe (𝑖 ⇒ Vec (eq @𝑖) A) xs) ys in Right (TNo xs ys) TYes (zs, [eq])) (λ neq xs ys ⇒ Left (TNo xs ys) TYes (sing (Vec m A) xs, sing (Vec n B) ys, [neq])) (nat.eq? m n) xs ys def zip-with-het : 0.(A B C : ★) → ω.(A → B → C) → (m n : ℕ) → (xs : Vec m A) → (ys : Vec n B) → Result A B C m n xs ys = λ A B C f m n ⇒ let0 Ret : ℕ → ℕ → ★ = λ m n ⇒ (xs : Vec m A) → (ys : Vec n B) → Result A B C m n xs ys in dup.elim ℕ m (λ m' ⇒ Ret m' n) (λ m ⇒ dup.elim ℕ n (λ n' ⇒ Ret m n') (λ n ⇒ zip-with-hetω A B C f m n) (nat.dup! n)) (nat.dup! m) } def0 ZipWith = zip-with.Result def zip-with-het = zip-with.zip-with-het def zip-with-hetω = zip-with.zip-with-hetω #[compile-scheme "(lambda% (n xs) xs)"] def up : 0.(A : ★) → (n : ℕ) → Vec n A → Vec¹ n A = λ A n ⇒ case n return n' ⇒ Vec n' A → Vec¹ n' A of { zero ⇒ λ xs ⇒ case xs return Vec¹ 0 A of { 'nil ⇒ 'nil }; succ n', f' ⇒ λ xs ⇒ case xs return Vec¹ (succ n') A of { (first, rest) ⇒ (first, f' rest) } } def append : 0.(A : ★) → (m : ℕ) → 0.(n : ℕ) → Vec m A → Vec n A → Vec (nat.plus m n) A = λ A m n xs ys ⇒ elim A (λ m _ ⇒ Vec (nat.plus m n) A) ys (λ x _ _ xsys ⇒ (x, xsys)) m xs } def0 Vec = vec.Vec namespace list { def0 List : ★ → ★ = λ A ⇒ (len : ℕ) × Vec len A def Nil : 0.(A : ★) → List A = λ A ⇒ (0, 'nil) def Cons : 0.(A : ★) → A → List A → List A = λ A x xs ⇒ case xs return List A of { (len, elems) ⇒ (succ len, x, elems) } def single : 0.(A : ★) → A → List A = λ A x ⇒ Cons A x (Nil A) def elim : 0.(A : ★) → 0.(P : List A → ★) → P (Nil A) → ω.((x : A) → 0.(xs : List A) → P xs → P (Cons A x xs)) → (xs : List A) → P xs = λ A P pn pc xs ⇒ case xs return xs' ⇒ P xs' of { (len, elems) ⇒ vec.elim A (λ n xs ⇒ P (n, xs)) pn (λ x n xs IH ⇒ pc x (n, xs) IH) len elems } def elimω : 0.(A : ★) → 0.(P : List A → ★) → ω.(P (Nil A)) → ω.(ω.(x : A) → ω.(xs : List A) → ω.(P xs) → P (Cons A x xs)) → ω.(xs : List A) → P xs = λ A P pn pc xs ⇒ caseω xs return xs' ⇒ P xs' of { (len, elems) ⇒ vec.elimω A (λ n xs ⇒ P (n, xs)) pn (λ x n xs IH ⇒ pc x (n, xs) IH) len elems } def elim2 : 0.(A B : ★) → 0.(P : List A → List B → ★) → ω.(P (Nil A) (Nil B)) → ω.((y : B) → 0.(ys : List B) → P (Nil A) ys → P (Nil A) (Cons B y ys)) → ω.((x : A) → 0.(xs : List A) → P xs (Nil B) → P (Cons A x xs) (Nil B)) → ω.((x : A) → 0.(xs : List A) → (y : B) → 0.(ys : List B) → P xs ys → P (Cons A x xs) (Cons B y ys)) → (xs : List A) → (ys : List B) → P xs ys = λ A B P pnn pnc pcn pcc xs ys ⇒ case xs return xs' ⇒ P xs' ys of { (m, xs) ⇒ case ys return ys' ⇒ P (m, xs) ys' of { (n, ys) ⇒ vec.elim2-uneven A B (λ m n xs ys ⇒ P (m, xs) (n, ys)) pnn (λ y n ys IH ⇒ pnc y (n, ys) IH) (λ x m xs IH ⇒ pcn x (m, xs) IH) (λ x y m n xs ys IH ⇒ pcc x (m, xs) y (n, ys) IH) m n xs ys }} def elimω2 : 0.(A B : ★) → 0.(P : List A → List B → ★) → ω.(P (Nil A) (Nil B)) → ω.(ω.(y : B) → ω.(ys : List B) → ω.(P (Nil A) ys) → P (Nil A) (Cons B y ys)) → ω.(ω.(x : A) → ω.(xs : List A) → ω.(P xs (Nil B)) → P (Cons A x xs) (Nil B)) → ω.(ω.(x : A) → ω.(xs : List A) → ω.(y : B) → ω.(ys : List B) → ω.(P xs ys) → P (Cons A x xs) (Cons B y ys)) → ω.(xs : List A) → ω.(ys : List B) → P xs ys = λ A B P pnn pnc pcn pcc xs ys ⇒ caseω xs return xs' ⇒ P xs' ys of { (m, xs) ⇒ caseω ys return ys' ⇒ P (m, xs) ys' of { (n, ys) ⇒ vec.elimω2-uneven A B (λ m n xs ys ⇒ P (m, xs) (n, ys)) pnn (λ y n ys IH ⇒ pnc y (n, ys) IH) (λ x m xs IH ⇒ pcn x (m, xs) IH) (λ x y m n xs ys IH ⇒ pcc x (m, xs) y (n, ys) IH) m n xs ys }} def as-vec : 0.(A : ★) → 0.(P : List A → ★) → (xs : List A) → (ω.(n : ℕ) → (xs : Vec n A) → P (n, xs)) → P xs = λ A P xs f ⇒ case xs return xs' ⇒ P xs' of { (n, xs) ⇒ dup.elim ℕ n (λ n' ⇒ (xs : Vec n' A) → P (n', xs)) f (nat.dup! n) xs } def match-dep : 0.(A : ★) → 0.(P : List A → ★) → ω.(P (Nil A)) → ω.((x : A) → (xs : List A) → P (Cons A x xs)) → (xs : List A) → P xs = λ A P pn pc xs ⇒ case xs return xs' ⇒ P xs' of { (len, elems) ⇒ vec.match-dep A (λ n xs ⇒ P (n, xs)) pn (λ n x xs ⇒ pc x (n, xs)) len elems } def match-depω : 0.(A : ★) → 0.(P : List A → ★) → ω.(P (Nil A)) → ω.(ω.(x : A) → ω.(xs : List A) → P (Cons A x xs)) → ω.(xs : List A) → P xs = λ A P pn pc xs ⇒ vec.match-depω A (λ n xs ⇒ P (n, xs)) pn (λ n x xs ⇒ pc x (n, xs)) (fst xs) (snd xs) def match-dep# = match-depω def match : 0.(A B : ★) → ω.B → ω.(A → List A → B) → List A → B = λ A B ⇒ match-dep A (λ _ ⇒ B) def matchω : 0.(A B : ★) → ω.B → ω.(ω.A → ω.(List A) → B) → ω.(List A) → B = λ A B ⇒ match-depω A (λ _ ⇒ B) def match# = matchω def up : 0.(A : ★) → List A → List¹ A = λ A xs ⇒ case xs return List¹ A of { (len, elems) ⇒ dup.elim'¹ ℕ len (λ _ ⇒ List¹ A) (λ len eq ⇒ (len, vec.up A len (coe (𝑖 ⇒ Vec (eq @𝑖) A) @1 @0 elems))) (nat.dup! len) } def foldr : 0.(A B : ★) → B → ω.(A → B → B) → List A → B = λ A B z f xs ⇒ elim A (λ _ ⇒ B) z (λ x _ y ⇒ f x y) xs def foldl : 0.(A B : ★) → B → ω.(B → A → B) → List A → B = λ A B z f xs ⇒ foldr A (B → B) (λ b ⇒ b) (λ a g b ⇒ g (f b a)) xs z def map : 0.(A B : ★) → ω.(A → B) → List A → List B = λ A B f ⇒ foldr A (List B) (Nil B) (λ x ys ⇒ Cons B (f x) ys) -- ugh def foldrω : 0.(A B : ★) → ω.B → ω.(ω.A → ω.B → B) → ω.(List A) → B = λ A B z f xs ⇒ elimω A (λ _ ⇒ B) z (λ x _ y ⇒ f x y) xs def foldlω : 0.(A B : ★) → ω.B → ω.(ω.B → ω.A → B) → ω.(List A) → B = λ A B z f xs ⇒ foldrω A (ω.B → B) (λ b ⇒ b) (λ a g b ⇒ g (f b a)) xs z def mapω : 0.(A B : ★) → ω.(ω.A → B) → ω.(List A) → List B = λ A B f ⇒ foldrω A (List B) (Nil B) (λ x ys ⇒ Cons B (f x) ys) def0 All : (A : ★) → (P : A → ★) → List A → ★ = λ A P xs ⇒ foldr¹ A ★ True (λ x ps ⇒ P x × ps) (up A xs) def append : 0.(A : ★) → List A → List A → List A = λ A xs ys ⇒ foldr A (List A) ys (Cons A) xs def reverse : 0.(A : ★) → List A → List A = λ A ⇒ foldl A (List A) (Nil A) (λ xs x ⇒ Cons A x xs) def find : 0.(A : ★) → ω.(ω.A → Bool) → ω.(List A) → Maybe A = λ A p ⇒ foldlω A (Maybe A) (Nothing A) (λ m x ⇒ maybe.or A m (maybe.check A p x)) def cons-first : 0.(A : ★) → ω.A → List (List A) → List (List A) = λ A x ⇒ match (List A) (List (List A)) (single (List A) (single A x)) (λ xs xss ⇒ Cons (List A) (Cons A x xs) xss) def split : 0.(A : ★) → ω.(ω.A → Bool) → ω.(List A) → List (List A) = λ A p ⇒ foldrω A (List (List A)) (Nil (List A)) (λ x xss ⇒ bool.if (List (List A)) (p x) (Cons (List A) (Nil A) xss) (cons-first A x xss)) def break : 0.(A : ★) → ω.(ω.A → Bool) → ω.(List A) → List A × List A = λ A p xs ⇒ let0 Lst = List A; Lst2 = (Lst × Lst) ∷ ★; State = Either Lst Lst2 in letω LeftS = Left Lst Lst2; RightS = Right Lst Lst2 in letω res = foldlω A State (LeftS (Nil A)) (λ acc x ⇒ either.foldω Lst Lst2 State (λ xs ⇒ bool.if State (p x) (RightS (xs, list.single A x)) (LeftS (Cons A x xs))) (λ xsys ⇒ RightS (fst xsys, Cons A x (snd xsys))) acc) xs ∷ State in letω res = either.fold Lst Lst2 Lst2 (λ xs ⇒ (Nil A, xs)) (λ xsys ⇒ xsys) res in (reverse A (fst res), reverse A (snd res)) def uncons : 0.(A : ★) → List A → Maybe (A × List A) = λ A ⇒ match A (Maybe (A × List A)) (Nothing (A × List A)) (λ x xs ⇒ Just (A × List A) (x, xs)) def head : 0.(A : ★) → ω.(List A) → Maybe A = λ A ⇒ matchω A (Maybe A) (Nothing A) (λ x _ ⇒ Just A x) def tail : 0.(A : ★) → ω.(List A) → Maybe (List A) = λ A ⇒ matchω A (Maybe (List A)) (Nothing (List A)) (λ _ xs ⇒ Just (List A) xs) def tail-or-nil : 0.(A : ★) → ω.(List A) → List A = λ A ⇒ matchω A (List A) (Nil A) (λ _ xs ⇒ xs) -- slip (xs, []) = (xs, []) -- slip (xs, y :: ys) = (y :: xs, ys) def slip : 0.(A : ★) → List A × List A → List A × List A = λ A xsys ⇒ case xsys return List A × List A of { (xs, ys) ⇒ match A (List A → List A × List A) (λ xs ⇒ (xs, Nil A)) (λ y ys xs ⇒ (Cons A y xs, ys)) ys xs } def split-at' : 0.(A : ★) → ℕ → List A → List A × List A = λ A n xs ⇒ (case n return List A × List A → List A × List A of { 0 ⇒ λ xsys ⇒ xsys; succ _, f ⇒ λ xsys ⇒ f (slip A xsys) }) (Nil A, xs) def split-at : 0.(A : ★) → ℕ → List A → List A × List A = λ A n xs ⇒ case split-at' A n xs return List A × List A of { (xs', ys) ⇒ (reverse A xs', ys) } def filter : 0.(A : ★) → ω.(ω.A → Bool) → ω.(List A) → List A = λ A p ⇒ foldrω A (List A) (Nil A) (λ x xs ⇒ bool.if (List A) (p x) (Cons A x xs) xs) def length : 0.(A : ★) → ω.(List A) → ℕ = λ A xs ⇒ fst xs namespace zip-with { def0 VFailure = vec.zip-with.Failure def0 VSuccess = vec.zip-with.Success def0 Failure : (A B : ★) → List A → List B → ★ = λ A B xs ys ⇒ VFailure A B (fst xs) (fst ys) (snd xs) (snd ys) def0 Result : (A B C : ★) → List A → List B → ★ = λ A B C xs ys ⇒ Either (Failure A B xs ys) (List C) def zip-with : 0.(A B C : ★) → ω.(A → B → C) → (xs : List A) → (ys : List B) → Result A B C xs ys = λ A B C f xs ys ⇒ let0 Ret = Result A B C in as-vec A (λ xs' ⇒ Ret xs' ys) xs (λ m xs ⇒ as-vec B (λ ys' ⇒ Ret (m, xs) ys') ys (λ n ys ⇒ let0 Err = Failure A B (m, xs) (n, ys) in either.fold Err (VSuccess C m n) (Ret (m, xs) (n, ys)) (λ no ⇒ Left Err (List C) no) (λ yes ⇒ case yes return Ret (m, xs) (n, ys) of { (vec, prf) ⇒ Right Err (List C) (drop0 (m ≡ n : ℕ) (List C) prf (n, vec)) }) (vec.zip-with-hetω A B C f m n xs ys))) } def0 ZipWith = zip-with.Result def zip-with = zip-with.zip-with def zip-withω : 0.(A B C : ★) → ω.(ω.A → ω.B → C) → ω.(xs : List A) → ω.(ys : List B) → Either [0. Not (fst xs ≡ fst ys : ℕ)] (List C) = λ A B C f xs ys ⇒ letω m = fst xs; xs = snd xs; n = fst ys; ys = snd ys in let0 Err : ★ = [0. Not (m ≡ n : ℕ)] in dec.elim (m ≡ n : ℕ) (λ _ ⇒ Either Err (List C)) (λ mn ⇒ letω xs = coe (𝑖 ⇒ Vec (mn @𝑖) A) xs in Right Err (List C) (n, vec.zip-withω A B C f n xs ys)) (λ nmn ⇒ Left Err (List C) [nmn]) (nat.eq? m n) def zip-with# = zip-withω def zip-with-uneven : 0.(A B C : ★) → ω.(ω.A → ω.B → C) → ω.(List A) → ω.(List B) → List C = λ A B C f xs ys ⇒ caseω nat.min (fst xs) (fst ys) return ω.(List A) → ω.(List B) → List C of { 0 ⇒ λ _ _ ⇒ Nil C; succ _, ω.fih ⇒ λ xs ys ⇒ maybe.foldω (A × List A) (List C) (Nil C) (λ xxs ⇒ maybe.foldω (B × List B) (List C) (Nil C) (λ yys ⇒ Cons C (f (fst xxs) (fst yys)) (fih (snd xxs) (snd yys))) (list.uncons B ys)) (list.uncons A xs) } xs ys def sum : List ℕ → ℕ = foldl ℕ ℕ 0 nat.plus def product : List ℕ → ℕ = foldl ℕ ℕ 1 nat.times namespace mergesort { def deal : 0.(A : ★) → List A → List A × List A = λ A ⇒ let0 One = List A; Pair : ★ = One × One in foldl A Pair (Nil A, Nil A) (pair.uncurry' One One (A → Pair) (λ ys zs x ⇒ (Cons A x zs, ys))) } postulate0 SchemeList : ★ → ★ #[compile-scheme "(lambda (list) (cons (length list) (fold-right cons 'nil list)))"] postulate from-scheme : 0.(A : ★) → SchemeList A → List A #[compile-scheme "(lambda (lst) (do [(lst (cdr lst) (cdr lst)) (acc '() (cons (car lst) acc))] [(equal? lst 'nil) (reverse acc)]))"] postulate to-scheme : 0.(A : ★) → List A → SchemeList A } def0 List = list.List