module Quox.Syntax.Shift import public Quox.Syntax.Var import public Quox.Thin import Data.Nat import Data.So import Data.DPair %default total ||| represents the difference between a smaller scope and a larger one. public export data Shift : (from, to : Nat) -> Type where SZ : Shift from from SS : Shift from to -> Shift from (S to) %name Shift by, bz %builtin Natural Shift public export (.nat) : Shift from to -> Nat (SZ).nat = Z (SS by).nat = S by.nat %transform "Shift.(.nat)" Shift.(.nat) = believe_me public export Cast (Shift from to) Nat where cast = (.nat) public export Cast (Shift from to) Integer where cast = cast . cast {to = Nat} export Eq (Shift from to) where (==) = (==) `on` (.nat) export Ord (Shift from to) where compare = compare `on` (.nat) ||| shift equivalence, ignoring indices public export data Eqv : Shift from1 to1 -> Shift from2 to2 -> Type where EqSZ : SZ `Eqv` SZ EqSS : by `Eqv` bz -> SS by `Eqv` SS bz %name Shift.Eqv e using (by : Shift from to, bz : Shift from to) ||| two equivalent shifts are equal if they have the same indices. export 0 fromEqv : by `Eqv` bz -> by = bz fromEqv EqSZ = Refl fromEqv (EqSS e) = cong SS $ fromEqv e ||| two equal shifts are equivalent. export 0 toEqv : by = bz -> by `Eqv` bz toEqv Refl {by = SZ} = EqSZ toEqv Refl {by = (SS by)} = EqSS $ toEqv Refl export cmpLen : Shift from1 to -> Shift from2 to -> Either Ordering (from1 = from2) cmpLen SZ SZ = Right Refl cmpLen SZ (SS by) = Left LT cmpLen (SS by) SZ = Left GT cmpLen (SS by) (SS bz) = cmpLen by bz export 0 shiftDiff : (by : Shift from to) -> to = by.nat + from shiftDiff SZ = Refl shiftDiff (SS by) = cong S $ shiftDiff by export 0 shiftVarLT : (by : Shift from to) -> (i : Var from) -> by.nat + i.nat `LT` to shiftVarLT by i = rewrite plusSuccRightSucc by.nat i.nat in transitive (plusLteMonotoneLeft by.nat (S i.nat) from (toNatLT i)) (replace {p=(`LTE` to)} (shiftDiff by) reflexive) public export fromNat : (by : Nat) -> Shift from (by + from) fromNat Z = SZ fromNat (S by) = SS $ fromNat by %transform "Shift.fromNat" Shift.fromNat x = believe_me x public export fromNat0 : (by : Nat) -> Shift 0 by fromNat0 by = rewrite sym $ plusZeroRightNeutral by in fromNat by export 0 fromToNat : (by : Shift from to) -> by `Eqv` fromNat by.nat {from} fromToNat SZ = EqSZ fromToNat (SS by) = EqSS $ fromToNat by export 0 toFromNat : (from, by : Nat) -> by = (fromNat by {from}).nat toFromNat from 0 = Refl toFromNat from (S k) = cong S $ toFromNat from k export 0 toNatInj' : (by : Shift from1 to1) -> (bz : Shift from2 to2) -> by.nat = bz.nat -> by `Eqv` bz toNatInj' SZ SZ prf = EqSZ toNatInj' (SS by) (SS bz) prf = EqSS $ toNatInj' by bz $ injective prf toNatInj' (SS by) SZ Refl impossible export 0 toNatInj : {by, bz : Shift from to} -> by.nat = bz.nat -> by = bz toNatInj {by, bz} e = fromEqv $ toNatInj' by bz e export %inline Injective Shift.(.nat) where injective eq = irrelevantEq $ toNatInj eq public export ssDown : Shift (S from) to -> Shift from to ssDown SZ = SS SZ ssDown (SS by) = SS (ssDown by) export 0 ssDownEqv : (by : Shift (S from) to) -> ssDown by `Eqv` SS by ssDownEqv SZ = EqSS EqSZ ssDownEqv (SS by) = EqSS $ ssDownEqv by private %inline ssDownViaNat : Shift (S from) to -> Shift from to ssDownViaNat by = rewrite shiftDiff by in rewrite sym $ plusSuccRightSucc by.nat from in fromNat $ S by.nat %transform "Shift.ssDown" ssDown = ssDownViaNat public export weak : (s : Nat) -> Shift from to -> Shift (s + from) (s + to) weak s SZ = SZ weak s (SS by) {to = S to} = rewrite sym $ plusSuccRightSucc s to in SS $ weak s by private weakViaNat : (s : Nat) -> Shift from to -> Shift (s + from) (s + to) weakViaNat s by = rewrite shiftDiff by in rewrite plusAssociative s by.nat from in rewrite plusCommutative s by.nat in rewrite sym $ plusAssociative by.nat s from in fromNat by.nat %transform "Shift.weak" Shift.weak = weakViaNat public export shift : Shift from to -> Var from -> Var to shift SZ i = i shift (SS by) i = VS $ shift by i private %inline shiftViaNat' : (by : Shift from to) -> (i : Var from) -> (0 p : by.nat + i.nat `LT` to) -> Var to shiftViaNat' by i p = V $ by.nat + i.nat private %inline shiftViaNat : Shift from to -> Var from -> Var to shiftViaNat by i = shiftViaNat' by i $ shiftVarLT by i private 0 shiftViaNatCorrect : (by : Shift from to) -> (i : Var from) -> (0 p : by.nat + i.nat `LT` to) -> shiftViaNat' by i p = shift by i shiftViaNatCorrect SZ i (LTESucc p) = fromToNat i _ shiftViaNatCorrect (SS by) i (LTESucc p) = cong VS $ shiftViaNatCorrect by i p %transform "Shift.shift" shift = shiftViaNat public export (.) : Shift from mid -> Shift mid to -> Shift from to by . SZ = by by . SS bz = SS $ by . bz private 0 compNatProof : (by : Shift from mid) -> (bz : Shift mid to) -> to = by.nat + bz.nat + from compNatProof by bz = trans (shiftDiff bz) $ trans (cong (bz.nat +) (shiftDiff by)) $ trans (plusAssociative bz.nat by.nat from) $ cong (+ from) (plusCommutative bz.nat by.nat) private %inline compViaNat' : (by : Shift from mid) -> (bz : Shift mid to) -> Shift from (by.nat + bz.nat + from) compViaNat' by bz = fromNat $ by.nat + bz.nat private %inline compViaNat : (by : Shift from mid) -> (bz : Shift mid to) -> Shift from to compViaNat by bz = rewrite compNatProof by bz in compViaNat' by bz private 0 compViaNatCorrect : (by : Shift from mid) -> (bz : Shift mid to) -> by . bz `Eqv` compViaNat' by bz compViaNatCorrect by SZ = rewrite plusZeroRightNeutral by.nat in fromToNat by compViaNatCorrect by (SS bz) = rewrite sym $ plusSuccRightSucc by.nat bz.nat in EqSS $ compViaNatCorrect by bz %transform "Shift.(.)" Shift.(.) = compViaNat infixl 8 // public export interface CanShift f where (//) : f from -> Shift from to -> f to export %inline CanShift Var where i // by = shift by i namespace CanShift public export %inline [Map] (Functor f, CanShift tm) => CanShift (f . tm) where x // by = map (// by) x public export %inline [Const] CanShift (\_ => a) where x // _ = x export shiftOPE : {mask : Nat} -> (0 ope : OPE m n mask) -> Shift n n' -> Subset Nat (OPE m n') shiftOPE ope SZ = Element _ ope shiftOPE ope (SS by) = let Element _ ope = shiftOPE ope by in Element _ $ drop ope export CanShift (Thinned f) where Th ope tm // by = Th (shiftOPE ope by).snd tm