module Quox.Syntax.Term.Reduce import Quox.No import Quox.Syntax.Term.Base import Quox.Syntax.Term.Subst import Data.Maybe %default total namespace Elim public export %inline isClo : Elim {} -> Bool isClo (CloE {}) = True isClo (DCloE {}) = True isClo _ = False public export 0 NotClo : Pred $ Elim {} NotClo = No . isClo namespace Term public export %inline isClo : Term {} -> Bool isClo (CloT {}) = True isClo (DCloT {}) = True isClo (E e) = isClo e isClo _ = False public export 0 NotClo : Pred $ Term {} NotClo = No . isClo public export 0 NonCloElim : TermLike NonCloElim q d n = Subset (Elim q d n) NotClo public export 0 NonCloTerm : TermLike NonCloTerm q d n = Subset (Term q d n) NotClo public export %inline ncloT : (t : Term q d n) -> (0 nc : NotClo t) => NonCloTerm q d n ncloT t = Element t nc public export %inline ncloE : (e : Elim q d n) -> (0 nc : NotClo e) => NonCloElim q d n ncloE e = Element e nc mutual namespace Term ||| if the input term has any top-level closures, push them under one layer of ||| syntax export %inline pushSubsts : Term q d n -> NonCloTerm q d n pushSubsts s = pushSubstsWith id id s export pushSubstsWith : DSubst dfrom dto -> TSubst q dto from to -> Term q dfrom from -> NonCloTerm q dto to pushSubstsWith th ph (TYPE l) = ncloT $ TYPE l pushSubstsWith th ph (Pi qty x a body) = ncloT $ Pi qty x (subs a th ph) (subs body th ph) pushSubstsWith th ph (Lam x body) = ncloT $ Lam x $ subs body th ph pushSubstsWith th ph (Eq i ty l r) = ncloT $ Eq i (subs ty th ph) (subs l th ph) (subs r th ph) pushSubstsWith th ph (DLam i body) = ncloT $ DLam i $ subs body th ph pushSubstsWith th ph (E e) = let Element e nc = pushSubstsWith th ph e in ncloT $ E e pushSubstsWith th ph (CloT s ps) = pushSubstsWith th (comp th ps ph) s pushSubstsWith th ph (DCloT s ps) = pushSubstsWith (ps . th) ph s namespace Elim ||| if the input elimination has any top-level closures, push them under one ||| layer of syntax export %inline pushSubsts : Elim q d n -> NonCloElim q d n pushSubsts e = pushSubstsWith id id e export pushSubstsWith : DSubst dfrom dto -> TSubst q dto from to -> Elim q dfrom from -> NonCloElim q dto to pushSubstsWith th ph (F x) = ncloE $ F x pushSubstsWith th ph (B i) = let res = ph !! i in case nchoose $ isClo res of Left yes => assert_total pushSubsts res Right no => Element res no pushSubstsWith th ph (f :@ s) = ncloE $ subs f th ph :@ subs s th ph pushSubstsWith th ph (f :% d) = ncloE $ subs f th ph :% (d // th) pushSubstsWith th ph (s :# a) = ncloE $ subs s th ph :# subs a th ph pushSubstsWith th ph (CloE e ps) = pushSubstsWith th (comp th ps ph) e pushSubstsWith th ph (DCloE e ps) = pushSubstsWith (ps . th) ph e parameters (th : DSubst dfrom dto) (ph : TSubst q dto from to) namespace Term public export %inline pushSubstsWith' : Term q dfrom from -> Term q dto to pushSubstsWith' s = (pushSubstsWith th ph s).fst namespace Elim public export %inline pushSubstsWith' : Elim q dfrom from -> Elim q dto to pushSubstsWith' e = (pushSubstsWith th ph e).fst public export %inline weakT : Term q d n -> Term q d (S n) weakT t = t //. shift 1 public export %inline weakE : Elim q d n -> Elim q d (S n) weakE t = t //. shift 1 public export 0 Lookup : TermLike Lookup q d n = Name -> Maybe $ Elim q d n public export %inline isLamHead : Elim {} -> Bool isLamHead (Lam {} :# Pi {}) = True isLamHead _ = False public export %inline isDLamHead : Elim {} -> Bool isDLamHead (DLam {} :# Eq {}) = True isDLamHead _ = False public export %inline isE : Term {} -> Bool isE (E _) = True isE _ = False public export %inline isAnn : Elim {} -> Bool isAnn (_ :# _) = True isAnn _ = False parameters (g : Lookup q d n) mutual namespace Elim public export isRedex : Elim q d n -> Bool isRedex (F x) = isJust $ g x isRedex (B _) = False isRedex (f :@ _) = isRedex f || isLamHead f isRedex (f :% _) = isRedex f || isDLamHead f isRedex (t :# a) = isE t || isRedex t || isRedex a isRedex (CloE {}) = True isRedex (DCloE {}) = True namespace Term public export isRedex : Term q d n -> Bool isRedex (CloT {}) = True isRedex (DCloT {}) = True isRedex (E e) = isAnn e || isRedex e isRedex _ = False namespace Elim public export 0 IsRedex, NotRedex : Pred $ Elim q d n IsRedex = So . isRedex NotRedex = No . isRedex namespace Term public export 0 IsRedex, NotRedex : Pred $ Term q d n IsRedex = So . isRedex NotRedex = No . isRedex public export 0 NonRedexElim, NonRedexTerm : (q, d, n : _) -> Lookup q d n -> Type NonRedexElim q d n g = Subset (Elim q d n) (NotRedex g) NonRedexTerm q d n g = Subset (Term q d n) (NotRedex g) parameters (g : Lookup q d n) mutual namespace Elim export covering whnf : Elim q d n -> NonRedexElim q d n g whnf (F x) with (g x) proof eq _ | Just y = whnf y _ | Nothing = Element (F x) $ rewrite eq in Ah whnf (B i) = Element (B i) Ah whnf (f :@ s) = let Element f fnf = whnf f in case nchoose $ isLamHead f of Left _ => let Lam {body, _} :# Pi {arg, res, _} = f s = s :# arg in whnf $ sub1 body s :# sub1 res s Right nlh => Element (f :@ s) $ fnf `orNo` nlh whnf (f :% p) = let Element f fnf = whnf f in case nchoose $ isDLamHead f of Left _ => let DLam {body, _} :# Eq {ty, l, r, _} = f body = case p of K e => pick l r e; _ => dsub1 body p in whnf $ body :# dsub1 ty p Right ndlh => Element (f :% p) $ fnf `orNo` ndlh whnf (s :# a) = let Element s snf = whnf s Element a anf = whnf a in case nchoose $ isE s of Left _ => let E e = s in Element e $ noOr2 snf Right ne => Element (s :# a) $ ne `orNo` snf `orNo` anf whnf (CloE el th) = whnf $ pushSubstsWith' id th el whnf (DCloE el th) = whnf $ pushSubstsWith' th id el namespace Term export covering whnf : Term q d n -> NonRedexTerm q d n g whnf (TYPE l) = Element (TYPE l) Ah whnf (Pi qty x arg res) = Element (Pi qty x arg res) Ah whnf (Lam x body) = Element (Lam x body) Ah whnf (Eq i ty l r) = Element (Eq i ty l r) Ah whnf (DLam i body) = Element (DLam i body) Ah whnf (E e) = let Element e enf = whnf e in case nchoose $ isAnn e of Left _ => let tm :# _ = e in Element tm $ noOr1 $ noOr2 enf Right na => Element (E e) $ na `orNo` enf whnf (CloT tm th) = whnf $ pushSubstsWith' id th tm whnf (DCloT tm th) = whnf $ pushSubstsWith' th id tm