diff --git a/.gitignore b/.gitignore index 221f1d8..0b7a7aa 100644 --- a/.gitignore +++ b/.gitignore @@ -5,3 +5,5 @@ result *~ quox quox-tests +golden-tests/tests/*/output +golden-tests/tests/*/*.ss diff --git a/CREDITS.md b/CREDITS.md new file mode 100644 index 0000000..b5a33cf --- /dev/null +++ b/CREDITS.md @@ -0,0 +1,4 @@ +the "logo" is an edit of [an emoji] made by [khr]. + +[an emoji]: https://github.com/chr-1x/dragn-emoji +[khr]: https://dragon.monster diff --git a/examples/all.quox b/examples/all.quox index b24ebcf..925429c 100644 --- a/examples/all.quox +++ b/examples/all.quox @@ -5,3 +5,6 @@ load "maybe.quox" load "nat.quox" load "pair.quox" load "list.quox" +load "eta.quox" +load "fail.quox" +load "qty.quox" diff --git a/examples/bool.quox b/examples/bool.quox index 98d5429..a6f8140 100644 --- a/examples/bool.quox +++ b/examples/bool.quox @@ -4,24 +4,35 @@ namespace bool { def0 Bool : ★ = {true, false}; -def boolω : 1.Bool → [ω.Bool] = - λ b ⇒ case1 b return [ω.Bool] of { 'true ⇒ ['true]; 'false ⇒ ['false] }; +def if-dep : 0.(P : Bool → ★) → (b : Bool) → ω.(P 'true) → ω.(P 'false) → P b = + λ P b t f ⇒ case b return b' ⇒ P b' of { 'true ⇒ t; 'false ⇒ f }; -def if : 0.(A : ★) → 1.Bool → ω.A → ω.A → A = - λ A b t f ⇒ case1 b return A of { 'true ⇒ t; 'false ⇒ f }; +def if : 0.(A : ★) → (b : Bool) → ω.A → ω.A → A = + λ A ⇒ if-dep (λ _ ⇒ A); -def0 If : 1.Bool → 0.★ → 0.★ → ★ = - λ b T F ⇒ case1 b return ★ of { 'true ⇒ T; 'false ⇒ F }; +def0 if-same : (A : ★) → (b : Bool) → (x : A) → if A b x x ≡ x : A = + λ A b x ⇒ if-dep (λ b' ⇒ if A b' x x ≡ x : A) b (δ _ ⇒ x) (δ _ ⇒ x); -def0 T : ω.Bool → ★ = λ b ⇒ If b True False; +def if2 : 0.(A B : ★) → (b : Bool) → ω.A → ω.B → if¹ ★ b A B = + λ A B ⇒ if-dep (λ b ⇒ if-dep¹ (λ _ ⇒ ★) b A B); + +def0 T : Bool → ★ = λ b ⇒ if¹ ★ b True False; + +def dup! : (b : Bool) → [ω. Sing Bool b] = + λ b ⇒ if-dep (λ b ⇒ [ω. Sing Bool b]) b + [('true, [δ _ ⇒ 'true])] + [('false, [δ _ ⇒ 'false])]; + +def dup : Bool → [ω. Bool] = + λ b ⇒ appω (Sing Bool b) Bool (sing.val Bool b) (dup! b); def true-not-false : Not ('true ≡ 'false : Bool) = - λ eq ⇒ coe (i ⇒ T (eq @i)) 'true; + λ eq ⇒ coe (𝑖 ⇒ T (eq @𝑖)) 'true; -- [todo] infix -def and : 1.Bool → ω.Bool → Bool = λ a b ⇒ if Bool a b 'false; -def or : 1.Bool → ω.Bool → Bool = λ a b ⇒ if Bool a 'true b; +def and : Bool → ω.Bool → Bool = λ a b ⇒ if Bool a b 'false; +def or : Bool → ω.Bool → Bool = λ a b ⇒ if Bool a 'true b; } diff --git a/examples/either.quox b/examples/either.quox index df93527..bc222fa 100644 --- a/examples/either.quox +++ b/examples/either.quox @@ -5,35 +5,35 @@ namespace either { def0 Tag : ★ = {left, right}; -def0 Payload : 0.★ → 0.★ → 1.Tag → ★ = - λ A B tag ⇒ case1 tag return ★ of { 'left ⇒ A; 'right ⇒ B }; +def0 Payload : ★ → ★ → Tag → ★ = + λ A B tag ⇒ case tag return ★ of { 'left ⇒ A; 'right ⇒ B }; -def0 Either : 0.★ → 0.★ → ★ = +def0 Either : ★ → ★ → ★ = λ A B ⇒ (tag : Tag) × Payload A B tag; -def Left : 0.(A B : ★) → 1.A → Either A B = +def Left : 0.(A B : ★) → A → Either A B = λ A B x ⇒ ('left, x); -def Right : 0.(A B : ★) → 1.B → Either A B = +def Right : 0.(A B : ★) → B → Either A B = λ A B x ⇒ ('right, x); def elim' : 0.(A B : ★) → 0.(P : 0.(Either A B) → ★) → - ω.(1.(x : A) → P (Left A B x)) → - ω.(1.(x : B) → P (Right A B x)) → - 1.(t : Tag) → 1.(a : Payload A B t) → P (t, a) = + ω.((x : A) → P (Left A B x)) → + ω.((x : B) → P (Right A B x)) → + (t : Tag) → (a : Payload A B t) → P (t, a) = λ A B P f g t ⇒ - case1 t - return t' ⇒ 1.(a : Payload A B t') → P (t', a) + case t + return t' ⇒ (a : Payload A B t') → P (t', a) of { 'left ⇒ f; 'right ⇒ g }; def elim : 0.(A B : ★) → 0.(P : 0.(Either A B) → ★) → - ω.(1.(x : A) → P (Left A B x)) → - ω.(1.(x : B) → P (Right A B x)) → - 1.(x : Either A B) → P x = + ω.((x : A) → P (Left A B x)) → + ω.((x : B) → P (Right A B x)) → + (x : Either A B) → P x = λ A B P f g e ⇒ - case1 e return e' ⇒ P e' of { (t, a) ⇒ elim' A B P f g t a }; + case e return e' ⇒ P e' of { (t, a) ⇒ elim' A B P f g t a }; } @@ -45,25 +45,25 @@ def Right = either.Right; namespace dec { -def0 Dec : 0.★ → ★ = λ A ⇒ Either [0.A] [0.Not A]; +def0 Dec : ★ → ★ = λ A ⇒ Either [0.A] [0.Not A]; def Yes : 0.(A : ★) → 0.A → Dec A = λ A y ⇒ Left [0.A] [0.Not A] [y]; def No : 0.(A : ★) → 0.(Not A) → Dec A = λ A n ⇒ Right [0.A] [0.Not A] [n]; -def0 DecEq : 0.★ → ★ = +def0 DecEq : ★ → ★ = λ A ⇒ ω.(x : A) → ω.(y : A) → Dec (x ≡ y : A); def elim : 0.(A : ★) → 0.(P : 0.(Dec A) → ★) → ω.(0.(y : A) → P (Yes A y)) → ω.(0.(n : Not A) → P (No A n)) → - 1.(x : Dec A) → P x = + (x : Dec A) → P x = λ A P f g ⇒ either.elim [0.A] [0.Not A] P (λ y ⇒ case0 y return y' ⇒ P (Left [0.A] [0.Not A] y') of {[y'] ⇒ f y'}) (λ n ⇒ case0 n return n' ⇒ P (Right [0.A] [0.Not A] n') of {[n'] ⇒ g n'}); -def bool : 0.(A : ★) → 1.(Dec A) → Bool = +def bool : 0.(A : ★) → Dec A → Bool = λ A ⇒ elim A (λ _ ⇒ Bool) (λ _ ⇒ 'true) (λ _ ⇒ 'false); } diff --git a/examples/eta.quox b/examples/eta.quox new file mode 100644 index 0000000..67d1a8b --- /dev/null +++ b/examples/eta.quox @@ -0,0 +1,25 @@ +load "misc.quox" + +namespace eta { + +def0 Π : (A : ★) → (A → ★) → ★ = λ A B ⇒ (x : A) → B x +def0 Σ : (A : ★) → (A → ★) → ★ = λ A B ⇒ (x : A) × B x + +def0 function : (A : ★) → (B : A → Type) → (P : Π A B → ★) → (f : Π A B) → + P (λ x ⇒ f x) → P f = + λ A B P f p ⇒ p + +def0 box : (A : ★) → (P : [ω.A] → ★) → (e : [ω.A]) → + P [case1 e return A of {[x] ⇒ x}] → P e = + λ A P e p ⇒ p + +def0 pair : (A : ★) → (B : A → ★) → (P : Σ A B → ★) → (e : Σ A B) → + P (fst e, snd e) → P e = + λ A B P e p ⇒ p + +-- not exactly η, but kinda related +def0 from-false : (A : ★) → (P : (0.False → A) → ★) → (f : 0.False → A) → + P (void A) → P f = + λ A P f p ⇒ p + +} diff --git a/examples/fail.quox b/examples/fail.quox new file mode 100644 index 0000000..daf5c05 --- /dev/null +++ b/examples/fail.quox @@ -0,0 +1,16 @@ +#[fail "but cases for"] +def missing-b : {a, b} → {a} = + λ x ⇒ case x return {a} of { 'a ⇒ 'a } + +#[fail "duplicate arms"] +def repeat-enum-case : {a} → {a} = + λ x ⇒ case x return {a} of { 'a ⇒ 'a; 'a ⇒ 'a } + +#[fail "duplicate tags"] +def repeat-enum-type : {a, a} = 'a + +#[fail "double-def.X has already been defined"] +namespace double-def { + def0 X : ★ = {a} + def0 X : ★ = {a} +} diff --git a/examples/hello.quox b/examples/hello.quox new file mode 100644 index 0000000..db220cf --- /dev/null +++ b/examples/hello.quox @@ -0,0 +1,26 @@ +def0 Unit : ★ = {tt} + +def drop-unit : 0.(A : ★) → Unit → A → A = + λ A u x ⇒ case u return A of {'tt ⇒ x} + +def0 IO : ★ → ★ = λ A ⇒ IOState → A × IOState + +def bind : 0.(A B : ★) → IO A → (A → IO B) → IO B = + λ A B m k s0 ⇒ + case m s0 return B × IOState of { (x, s1) ⇒ k x s1 } + +def seq : IO Unit → IO Unit → IO Unit = + λ a b ⇒ bind Unit Unit a (λ u ⇒ drop-unit (IO Unit) u b) + +#[compile-scheme "(lambda (n) (builtin-io (printf \"~d~n\" n) 'tt))"] +postulate print-ℕ : ℕ → IO Unit + +#[compile-scheme "(lambda (s) (builtin-io (printf \"~s~n\" s) 'tt))"] +postulate print : String → IO Unit + +load "nat.quox" + +#[main] +def main : IO Unit = + let1 sixty-nine = nat.plus 60 9 in + seq (print-ℕ sixty-nine) (print "(nice)") diff --git a/examples/io.quox b/examples/io.quox new file mode 100644 index 0000000..2b6ed66 --- /dev/null +++ b/examples/io.quox @@ -0,0 +1,31 @@ +load "misc.quox" + +namespace io { + +def0 IORes : ★ → ★ = λ A ⇒ A × IOState + +def0 IO : ★ → ★ = λ A ⇒ IOState → IORes A + +def pure : 0.(A : ★) → A → IO A = λ A x s ⇒ (x, s) + +def bind : 0.(A B : ★) → IO A → (A → IO B) → IO B = + λ A B m k s0 ⇒ + case m s0 return IORes B of { (x, s1) ⇒ k x s1 } + +def seq : 0.(B : ★) → IO True → IO B → IO B = + λ B x y ⇒ bind True B x (λ u ⇒ case u return IO B of { 'true ⇒ y }) + +def seq' : IO True → IO True → IO True = seq True + +#[compile-scheme "(lambda (str) (builtin-io (display str) 'true))"] +postulate print : String → IO True + +def newline = print "\n" + +def println : String → IO True = + λ str ⇒ seq' (print str) newline + +#[compile-scheme "(builtin-io (get-line (current-input-port)))"] +postulate readln : IO String + +} diff --git a/examples/list.quox b/examples/list.quox index 870ae6b..ac45ba4 100644 --- a/examples/list.quox +++ b/examples/list.quox @@ -1,41 +1,91 @@ load "nat.quox"; -namespace list { +namespace vec { -def0 Vec : 0.ℕ → 0.★ → ★ = +def0 Vec : ℕ → ★ → ★ = λ n A ⇒ caseω n return ★ of { zero ⇒ {nil}; succ _, 0.Tail ⇒ A × Tail }; -def0 List : 0.★ → ★ = - λ A ⇒ (len : ℕ) × Vec len A; +def elim : 0.(A : ★) → 0.(P : (n : ℕ) → Vec n A → ★) → + P 0 'nil → + ω.((x : A) → 0.(n : ℕ) → 0.(xs : Vec n A) → + P n xs → P (succ n) (x, xs)) → + (n : ℕ) → (xs : Vec n A) → P n xs = + λ A P pn pc n ⇒ + case n return n' ⇒ (xs' : Vec n' A) → P n' xs' of { + zero ⇒ λ n ⇒ + case n return n' ⇒ P 0 n' of { 'nil ⇒ pn }; + succ n, ih ⇒ λ c ⇒ + case c return c' ⇒ P (succ n) c' of { + (first, rest) ⇒ pc first n rest (ih rest) + } + }; -def nil : 0.(A : ★) → List A = - λ A ⇒ (0, 'nil); - -def cons : 0.(A : ★) → 1.A → 1.(List A) → List A = - λ A x xs ⇒ case1 xs return List A of { (len, elems) ⇒ (succ len, x, elems) }; - -def foldr' : 0.(A B : ★) → - 1.B → ω.(1.A → 1.B → B) → 1.(n : ℕ) → 1.(Vec n A) → B = - λ A B z c n ⇒ - case1 n return n' ⇒ 1.(Vec n' A) → B of { - zero ⇒ - λ nil ⇒ case1 nil return B of { 'nil ⇒ z }; - succ n, 1.ih ⇒ - λ cons ⇒ case1 cons return B of { (first, rest) ⇒ c first (ih rest) } - }; - -def foldr : 0.(A B : ★) → 1.B → ω.(1.A → 1.B → B) → 1.(List A) → B = - λ A B z c xs ⇒ - case1 xs return B of { (len, elems) ⇒ foldr' A B z c len elems }; - -def sum : 1.(List ℕ) → ℕ = foldr ℕ ℕ 0 nat.plus; - -def numbers : List ℕ = (5, (0, 1, 2, 3, 4, 'nil)); - -def number-sum : sum numbers ≡ 10 : ℕ = δ _ ⇒ 10; +#[compile-scheme "(lambda% (n xs) xs)"] +def up : 0.(A : ★) → (n : ℕ) → Vec n A → Vec¹ n A = + λ A n ⇒ + case n return n' ⇒ Vec n' A → Vec¹ n' A of { + zero ⇒ λ xs ⇒ + case xs return Vec¹ 0 A of { 'nil ⇒ 'nil }; + succ n', f' ⇒ λ xs ⇒ + case xs return Vec¹ (succ n') A of { + (first, rest) ⇒ (first, f' rest) + } + } } + +def0 Vec = vec.Vec; + + +namespace list { + +def0 List : ★ → ★ = + λ A ⇒ (len : ℕ) × Vec len A; + +def Nil : 0.(A : ★) → List A = + λ A ⇒ (0, 'nil); + +def Cons : 0.(A : ★) → A → List A → List A = + λ A x xs ⇒ case xs return List A of { (len, elems) ⇒ (succ len, x, elems) }; + +def elim : 0.(A : ★) → 0.(P : List A → ★) → + P (Nil A) → + ω.((x : A) → 0.(xs : List A) → P xs → P (Cons A x xs)) → + (xs : List A) → P xs = + λ A P pn pc xs ⇒ + case xs return xs' ⇒ P xs' of { (len, elems) ⇒ + vec.elim A (λ n xs ⇒ P (n, xs)) + pn (λ x n xs ih ⇒ pc x (n, xs) ih) + len elems + }; + +-- [fixme] List A <: List¹ A should be automatic, imo +#[compile-scheme "(lambda (xs) xs)"] +def up : 0.(A : ★) → List A → List¹ A = + λ A xs ⇒ + case xs return List¹ A of { (len, elems) ⇒ + case nat.dup! len return List¹ A of { [p] ⇒ + caseω p return List¹ A of { (lenω, eq0) ⇒ + case eq0 return List¹ A of { [eq] ⇒ + (lenω, vec.up A lenω (coe (𝑖 ⇒ Vec (eq @𝑖) A) @1 @0 elems)) + } + } + } + }; + +def foldr : 0.(A B : ★) → B → ω.(A → B → B) → List A → B = + λ A B z f xs ⇒ elim A (λ _ ⇒ B) z (λ x _ y ⇒ f x y) xs; + +def map : 0.(A B : ★) → ω.(A → B) → List A → List B = + λ A B f ⇒ foldr A (List B) (Nil B) (λ x ys ⇒ Cons B (f x) ys); + +def0 All : (A : ★) → (P : A → ★) → List A → ★ = + λ A P xs ⇒ foldr¹ A ★ True (λ x ps ⇒ P x × ps) (up A xs); + +} + +def0 List = list.List; diff --git a/examples/maybe.quox b/examples/maybe.quox index ae1c12f..90ed222 100644 --- a/examples/maybe.quox +++ b/examples/maybe.quox @@ -5,10 +5,10 @@ namespace maybe { def0 Tag : ★ = {nothing, just} -def0 Payload : ω.Tag → ω.★ → ★ = - λ tag A ⇒ caseω tag return ★ of { 'nothing ⇒ True; 'just ⇒ A } +def0 Payload : Tag → ★ → ★ = + λ tag A ⇒ case tag return ★ of { 'nothing ⇒ True; 'just ⇒ A } -def0 Maybe : ω.★ → ★ = +def0 Maybe : ★ → ★ = λ A ⇒ (t : Tag) × Payload t A def tag : 0.(A : ★) → ω.(Maybe A) → Tag = @@ -17,13 +17,13 @@ def tag : 0.(A : ★) → ω.(Maybe A) → Tag = def Nothing : 0.(A : ★) → Maybe A = λ _ ⇒ ('nothing, 'true) -def Just : 0.(A : ★) → 1.A → Maybe A = +def Just : 0.(A : ★) → A → Maybe A = λ _ x ⇒ ('just, x) -def0 IsJustTag : ω.Tag → ★ = - λ t ⇒ caseω t return ★ of { 'just ⇒ True; 'nothing ⇒ False } +def0 IsJustTag : Tag → ★ = + λ t ⇒ case t return ★ of { 'just ⇒ True; 'nothing ⇒ False } -def0 IsJust : 0.(A : ★) → ω.(Maybe A) → ★ = +def0 IsJust : (A : ★) → Maybe A → ★ = λ A x ⇒ IsJustTag (tag A x) def is-just? : 0.(A : ★) → ω.(x : Maybe A) → Dec (IsJust A x) = @@ -34,32 +34,31 @@ def is-just? : 0.(A : ★) → ω.(x : Maybe A) → Dec (IsJust A x) = } def0 nothing-unique : - 0.(A : ★) → ω.(x : True) → ('nothing, x) ≡ Nothing A : Maybe A = + (A : ★) → (x : True) → ('nothing, x) ≡ Nothing A : Maybe A = λ A x ⇒ - caseω x return x' ⇒ ('nothing, x') ≡ Nothing A : Maybe A of { + case x return x' ⇒ ('nothing, x') ≡ Nothing A : Maybe A of { 'true ⇒ δ _ ⇒ ('nothing, 'true) } def elim : 0.(A : ★) → - 0.(P : 0.(Maybe A) → ★) → + 0.(P : Maybe A → ★) → ω.(P (Nothing A)) → - ω.(ω.(x : A) → P (Just A x)) → - 1.(x : Maybe A) → P x = + ω.((x : A) → P (Just A x)) → + (x : Maybe A) → P x = λ A P n j x ⇒ - caseω x return x' ⇒ P x' of { - (tag, payload) ⇒ - (caseω tag - return t ⇒ - 0.(eq : tag ≡ t : Tag) → P (t, coe (i ⇒ Payload (eq @i) A) payload) - of { - 'nothing ⇒ - λ eq ⇒ - caseω coe (i ⇒ Payload (eq @i) A) payload - return p ⇒ P ('nothing, p) - of { 'true ⇒ n }; - 'just ⇒ λ eq ⇒ j (coe (i ⇒ Payload (eq @i) A) payload) - }) (δ _ ⇒ tag) + case x return x' ⇒ P x' of { (tag, payload) ⇒ + (case tag + return t ⇒ + 0.(eq : tag ≡ t : Tag) → P (t, coe (i ⇒ Payload (eq @i) A) payload) + of { + 'nothing ⇒ + λ eq ⇒ + case coe (i ⇒ Payload (eq @i) A) payload + return p ⇒ P ('nothing, p) + of { 'true ⇒ n }; + 'just ⇒ λ eq ⇒ j (coe (i ⇒ Payload (eq @i) A) payload) + }) (δ _ ⇒ tag) } } diff --git a/examples/misc.quox b/examples/misc.quox index 8c6a8c1..8afbde9 100644 --- a/examples/misc.quox +++ b/examples/misc.quox @@ -1,36 +1,83 @@ -def0 True : ★ = {true}; +def0 True : ★ = {true} -def0 False : ★ = {}; -def0 Not : 0.★ → ★ = λ A ⇒ ω.A → False; +def0 False : ★ = {} +def0 Not : ★ → ★ = λ A ⇒ ω.A → False def void : 0.(A : ★) → 0.False → A = - λ A v ⇒ case0 v return A of { }; + λ A v ⇒ case0 v return A of { } -def0 Pred : 0.★ → ★¹ = λ A ⇒ 0.A → ★; +def0 All : (A : ★) → (0.A → ★) → ★ = + λ A P ⇒ (x : A) → P x -def0 All : 0.(A : ★) → 0.(Pred A) → ★¹ = - λ A P ⇒ 1.(x : A) → P x; +def0 cong : + (A : ★) → (P : 0.A → ★) → (p : All A P) → + (x y : A) → (xy : x ≡ y : A) → Eq (𝑖 ⇒ P (xy @𝑖)) (p x) (p y) = + λ A P p x y xy ⇒ δ 𝑖 ⇒ p (xy @𝑖) + +def0 cong' : + (A B : ★) → (f : A → B) → + (x y : A) → (xy : x ≡ y : A) → f x ≡ f y : B = + λ A B ⇒ cong A (λ _ ⇒ B) + +def0 coherence : + (A B : ★) → (AB : A ≡ B : ★) → (x : A) → + Eq (𝑖 ⇒ AB @𝑖) x (coe (𝑖 ⇒ AB @𝑖) x) = + λ A B AB x ⇒ + δ 𝑗 ⇒ coe (𝑖 ⇒ AB @𝑖) @0 @𝑗 x -def cong : - 0.(A : ★) → 0.(P : Pred A) → 1.(p : All A P) → - 0.(x y : A) → 1.(xy : x ≡ y : A) → Eq (𝑖 ⇒ P (xy @𝑖)) (p x) (p y) = - λ A P p x y xy ⇒ δ 𝑖 ⇒ p (xy @𝑖); def0 eq-f : - 0.(A : ★) → 0.(P : Pred A) → + 0.(A : ★) → 0.(P : 0.A → ★) → 0.(p : All A P) → 0.(q : All A P) → 0.A → ★ = - λ A P p q x ⇒ p x ≡ q x : P x; + λ A P p q x ⇒ p x ≡ q x : P x def funext : - 0.(A : ★) → 0.(P : Pred A) → 0.(p q : All A P) → - 1.(All A (eq-f A P p q)) → p ≡ q : All A P = - λ A P p q eq ⇒ δ 𝑖 ⇒ λ x ⇒ eq x @𝑖; + 0.(A : ★) → 0.(P : 0.A → ★) → 0.(p q : All A P) → + (All A (eq-f A P p q)) → p ≡ q : All A P = + λ A P p q eq ⇒ δ 𝑖 ⇒ λ x ⇒ eq x @𝑖 -def sym : 0.(A : ★) → 0.(x y : A) → 1.(x ≡ y : A) → y ≡ x : A = - λ A x y eq ⇒ δ 𝑖 ⇒ comp A (eq @0) @𝑖 { 0 𝑗 ⇒ eq @𝑗; 1 _ ⇒ eq @0 }; +def refl : 0.(A : ★) → (x : A) → x ≡ x : A = λ A x ⇒ δ _ ⇒ x + +def sym : 0.(A : ★) → 0.(x y : A) → (x ≡ y : A) → y ≡ x : A = + λ A x y eq ⇒ δ 𝑖 ⇒ comp A (eq @0) @𝑖 { 0 𝑗 ⇒ eq @𝑗; 1 _ ⇒ eq @0 } def trans : 0.(A : ★) → 0.(x y z : A) → ω.(x ≡ y : A) → ω.(y ≡ z : A) → x ≡ z : A = λ A x y z eq1 eq2 ⇒ δ 𝑖 ⇒ - comp A (eq1 @𝑖) @𝑖 { 0 _ ⇒ eq1 @0; 1 𝑗 ⇒ eq2 @𝑗 }; + comp A (eq1 @𝑖) @𝑖 { 0 _ ⇒ eq1 @0; 1 𝑗 ⇒ eq2 @𝑗 } + +def appω : 0.(A B : ★) → ω.(f : A → B) → [ω.A] → [ω.B] = + λ A B f x ⇒ + case x return [ω.B] of { [x'] ⇒ [f x'] } + +def0 HEq : (A B : ★) → A → B → ★¹ = + λ A B x y ⇒ (AB : A ≡ B : ★) × Eq (𝑖 ⇒ AB @𝑖) x y + + +def0 Sing : (A : ★) → A → ★ = + λ A x ⇒ (val : A) × [0. val ≡ x : A] + +def sing : 0.(A : ★) → (x : A) → Sing A x = + λ A x ⇒ (x, [δ _ ⇒ x]) + +namespace sing { + +def val : 0.(A : ★) → 0.(x : A) → Sing A x → A = + λ A _ sg ⇒ + case sg return A of { (x, eq) ⇒ case eq return A of { [_] ⇒ x } } + +def0 proof : (A : ★) → (x : A) → (sg : Sing A x) → val A x sg ≡ x : A = + λ A x sg ⇒ + case sg return sg' ⇒ val A x sg' ≡ x : A of { (x', eq) ⇒ + case eq return eq' ⇒ val A x (x', eq') ≡ x : A of { [eq'] ⇒ eq' } + } + +def app : 0.(A B : ★) → 0.(x : A) → + (f : A → B) → Sing A x → Sing B (f x) = + λ A B x f sg ⇒ + case sg return Sing B (f x) of { (x_, eq) ⇒ + case eq return Sing B (f x) of { [eq] ⇒ (f x_, [δ 𝑖 ⇒ f (eq @𝑖)]) } + } + +} diff --git a/examples/nat.quox b/examples/nat.quox index 9ac818b..efc834d 100644 --- a/examples/nat.quox +++ b/examples/nat.quox @@ -4,41 +4,72 @@ load "either.quox"; namespace nat { -def dup : 1.ℕ → [ω.ℕ] = +def elim-0-1 : + 0.(P : ℕ → ★) → + ω.(P 0) → ω.(P 1) → + ω.(0.(n : ℕ) → P n → P (succ n)) → + (n : ℕ) → P n = + λ P p0 p1 ps n ⇒ + case n return n' ⇒ P n' of { + zero ⇒ p0; + succ n' ⇒ + case n' return n'' ⇒ P (succ n'') of { + zero ⇒ p1; + succ n'', IH ⇒ ps (succ n'') IH + } + } + +#[compile-scheme "(lambda (n) (cons n 'erased))"] +def dup! : (n : ℕ) → [ω. Sing ℕ n] = λ n ⇒ - case1 n return [ω.ℕ] of { - zero ⇒ [zero]; - succ _, 1.d ⇒ case1 d return [ω.ℕ] of { [d] ⇒ [succ d] } + case n return n' ⇒ [ω. Sing ℕ n'] of { + zero ⇒ [(zero, [δ _ ⇒ zero])]; + succ n, d ⇒ + appω (Sing ℕ n) (Sing ℕ (succ n)) + (sing.app ℕ ℕ n (λ n ⇒ succ n)) d }; -def plus : 1.ℕ → 1.ℕ → ℕ = +def dup : ℕ → [ω.ℕ] = + λ n ⇒ appω (Sing ℕ n) ℕ (sing.val ℕ n) (dup! n); + +#[compile-scheme "(lambda% (m n) (+ m n))"] +def plus : ℕ → ℕ → ℕ = λ m n ⇒ - case1 m return ℕ of { - zero ⇒ n; - succ _, 1.p ⇒ succ p + case m return ℕ of { + zero ⇒ n; + succ _, p ⇒ succ p }; -def timesω : 1.ℕ → ω.ℕ → ℕ = +#[compile-scheme "(lambda% (m n) (* m n))"] +def timesω : ℕ → ω.ℕ → ℕ = λ m n ⇒ - case1 m return ℕ of { - zero ⇒ zero; - succ _, 1.t ⇒ plus n t + case m return ℕ of { + zero ⇒ zero; + succ _, t ⇒ plus n t }; -def times : 1.ℕ → 1.ℕ → ℕ = - λ m n ⇒ case1 dup n return ℕ of { [n] ⇒ timesω m n }; +def times : ℕ → ℕ → ℕ = + λ m n ⇒ case dup n return ℕ of { [n] ⇒ timesω m n }; -def pred : 1.ℕ → ℕ = λ n ⇒ case1 n return ℕ of { zero ⇒ zero; succ n ⇒ n }; +def pred : ℕ → ℕ = λ n ⇒ case n return ℕ of { zero ⇒ zero; succ n ⇒ n }; def pred-succ : ω.(n : ℕ) → pred (succ n) ≡ n : ℕ = λ n ⇒ δ 𝑖 ⇒ n; -def0 succ-inj : 0.(m n : ℕ) → 0.(succ m ≡ succ n : ℕ) → m ≡ n : ℕ = +def0 succ-inj : (m n : ℕ) → succ m ≡ succ n : ℕ → m ≡ n : ℕ = λ m n eq ⇒ δ 𝑖 ⇒ pred (eq @𝑖); +#[compile-scheme "(lambda% (m n) (max 0 (- m n)))"] +def minus : ℕ → ℕ → ℕ = + λ m n ⇒ + (case n return ℕ → ℕ of { + zero ⇒ λ m ⇒ m; + succ _, f ⇒ λ m ⇒ f (pred m) + }) m; -def0 IsSucc : 0.ℕ → ★ = - λ n ⇒ caseω n return ★ of { zero ⇒ False; succ _ ⇒ True }; + +def0 IsSucc : ℕ → ★ = + λ n ⇒ case n return ★ of { zero ⇒ False; succ _ ⇒ True }; def isSucc? : ω.(n : ℕ) → Dec (IsSucc n) = λ n ⇒ @@ -54,14 +85,15 @@ def succ-not-zero : 0.(m : ℕ) → Not (succ m ≡ zero : ℕ) = λ m eq ⇒ coe (𝑖 ⇒ IsSucc (eq @𝑖)) 'true; -def0 not-succ-self : 0.(m : ℕ) → Not (m ≡ succ m : ℕ) = +def0 not-succ-self : (m : ℕ) → Not (m ≡ succ m : ℕ) = λ m ⇒ - caseω m return m' ⇒ Not (m' ≡ succ m' : ℕ) of { + case m return m' ⇒ Not (m' ≡ succ m' : ℕ) of { zero ⇒ zero-not-succ 0; succ n, ω.ih ⇒ λ eq ⇒ ih (succ-inj n (succ n) eq) } +#[compile-scheme "(lambda% (m n) (if (= m n) Yes No))"] def eq? : DecEq ℕ = λ m ⇒ caseω m @@ -86,28 +118,48 @@ def eq? : DecEq ℕ = def eqb : ω.ℕ → ω.ℕ → Bool = λ m n ⇒ dec.bool (m ≡ n : ℕ) (eq? m n); -def0 plus-zero : 0.(m : ℕ) → m ≡ plus m 0 : ℕ = +def0 plus-zero : (m : ℕ) → m ≡ plus m 0 : ℕ = λ m ⇒ - caseω m return m' ⇒ m' ≡ plus m' 0 : ℕ of { - zero ⇒ δ _ ⇒ zero; - succ _, ω.ih ⇒ δ 𝑖 ⇒ succ (ih @𝑖) + case m return m' ⇒ m' ≡ plus m' 0 : ℕ of { + zero ⇒ δ _ ⇒ 0; + succ m', ih ⇒ δ 𝑖 ⇒ succ (ih @𝑖) }; -def0 plus-succ : 0.(m n : ℕ) → succ (plus m n) ≡ plus m (succ n) : ℕ = +def0 plus-succ : (m n : ℕ) → succ (plus m n) ≡ plus m (succ n) : ℕ = λ m n ⇒ - caseω m return m' ⇒ succ (plus m' n) ≡ plus m' (succ n) : ℕ of { - zero ⇒ δ _ ⇒ succ n; - succ _, ω.ih ⇒ δ 𝑖 ⇒ succ (ih @𝑖) + case m return m' ⇒ succ (plus m' n) ≡ plus m' (succ n) : ℕ of { + zero ⇒ δ _ ⇒ succ n; + succ _, ih ⇒ δ 𝑖 ⇒ succ (ih @𝑖) }; -def0 plus-comm : 0.(m n : ℕ) → plus m n ≡ plus n m : ℕ = +def0 plus-comm : (m n : ℕ) → plus m n ≡ plus n m : ℕ = λ m n ⇒ - caseω m return m' ⇒ plus m' n ≡ plus n m' : ℕ of { + case m return m' ⇒ plus m' n ≡ plus n m' : ℕ of { zero ⇒ plus-zero n; - succ m', ω.ih ⇒ + succ m', ih ⇒ trans ℕ (succ (plus m' n)) (succ (plus n m')) (plus n (succ m')) (δ 𝑖 ⇒ succ (ih @𝑖)) (plus-succ n m') }; +def0 times-zero : (m : ℕ) → 0 ≡ timesω m 0 : ℕ = + λ m ⇒ + case m return m' ⇒ 0 ≡ timesω m' 0 : ℕ of { + zero ⇒ δ _ ⇒ zero; + succ m', ih ⇒ ih + }; + +{- +-- unfinished +def0 times-succ : (m n : ℕ) → plus m (timesω m n) ≡ timesω m (succ n) : ℕ = + λ m n ⇒ + case m + return m' ⇒ plus m' (timesω m' n) ≡ timesω m' (succ n) : ℕ + of { + zero ⇒ δ _ ⇒ 0; + succ m', ih ⇒ + δ 𝑖 ⇒ plus (succ n) (ih @𝑖) + }; +-} + } diff --git a/examples/pair.quox b/examples/pair.quox index 790df56..4bf33c6 100644 --- a/examples/pair.quox +++ b/examples/pair.quox @@ -1,55 +1,74 @@ namespace pair { -def0 Σ : 0.(A : ★) → 0.(0.A → ★) → ★ = λ A B ⇒ (x : A) × B x; +def0 Σ : (A : ★) → (A → ★) → ★ = λ A B ⇒ (x : A) × B x; -def fst : 0.(A : ★) → 0.(B : 0.A → ★) → ω.(Σ A B) → A = +{- +-- now builtins +def fst : 0.(A : ★) → 0.(B : A → ★) → ω.(Σ A B) → A = λ A B p ⇒ caseω p return A of { (x, _) ⇒ x }; -def snd : 0.(A : ★) → 0.(B : 0.A → ★) → ω.(p : Σ A B) → B (fst A B p) = +def snd : 0.(A : ★) → 0.(B : A → ★) → ω.(p : Σ A B) → B (fst A B p) = λ A B p ⇒ caseω p return p' ⇒ B (fst A B p') of { (_, y) ⇒ y }; +-} def uncurry : - 0.(A : ★) → 0.(B : 0.A → ★) → 0.(C : 0.(x : A) → 0.(B x) → ★) → - 1.(f : 1.(x : A) → 1.(y : B x) → C x y) → - 1.(p : Σ A B) → C (fst A B p) (snd A B p) = + 0.(A : ★) → 0.(B : A → ★) → 0.(C : (x : A) → (B x) → ★) → + (f : (x : A) → (y : B x) → C x y) → + (p : Σ A B) → C (fst p) (snd p) = λ A B C f p ⇒ - case1 p return p' ⇒ C (fst A B p') (snd A B p') of { (x, y) ⇒ f x y }; + case p return p' ⇒ C (fst p') (snd p') of { (x, y) ⇒ f x y }; def uncurry' : - 0.(A B C : ★) → 1.(1.A → 1.B → C) → 1.(A × B) → C = + 0.(A B C : ★) → (A → B → C) → (A × B) → C = λ A B C ⇒ uncurry A (λ _ ⇒ B) (λ _ _ ⇒ C); def curry : - 0.(A : ★) → 0.(B : 0.A → ★) → 0.(C : 0.(Σ A B) → ★) → - 1.(f : 1.(p : Σ A B) → C p) → 1.(x : A) → 1.(y : B x) → C (x, y) = + 0.(A : ★) → 0.(B : A → ★) → 0.(C : (Σ A B) → ★) → + (f : (p : Σ A B) → C p) → (x : A) → (y : B x) → C (x, y) = λ A B C f x y ⇒ f (x, y); def curry' : - 0.(A B C : ★) → 1.(1.(A × B) → C) → 1.A → 1.B → C = + 0.(A B C : ★) → (A × B → C) → A → B → C = λ A B C ⇒ curry A (λ _ ⇒ B) (λ _ ⇒ C); def0 fst-snd : - 0.(A : ★) → 0.(B : 0.A → ★) → - 1.(p : Σ A B) → p ≡ (fst A B p, snd A B p) : Σ A B = + (A : ★) → (B : A → ★) → + (p : Σ A B) → p ≡ (fst p, snd p) : Σ A B = λ A B p ⇒ - case1 p - return p' ⇒ p' ≡ (fst A B p', snd A B p') : Σ A B + case p + return p' ⇒ p' ≡ (fst p', snd p') : Σ A B of { (x, y) ⇒ δ 𝑖 ⇒ (x, y) }; +def0 fst-eq : + (A : ★) → (B : A → ★) → + (p q : Σ A B) → p ≡ q : Σ A B → fst p ≡ fst q : A = + λ A B p q eq ⇒ δ 𝑖 ⇒ fst (eq @𝑖); + +def0 snd-eq : + (A : ★) → (B : A → ★) → + (p q : Σ A B) → (eq : p ≡ q : Σ A B) → + Eq (𝑖 ⇒ B (fst-eq A B p q eq @𝑖)) (snd p) (snd q) = + λ A B p q eq ⇒ δ 𝑖 ⇒ snd (eq @𝑖); + def map : 0.(A A' : ★) → - 0.(B : 0.A → ★) → 0.(B' : 0.A' → ★) → - 1.(f : 1.A → A') → 1.(g : 0.(x : A) → 1.(B x) → B' (f x)) → - 1.(Σ A B) → Σ A' B' = + 0.(B : A → ★) → 0.(B' : A' → ★) → + (f : A → A') → (g : 0.(x : A) → (B x) → B' (f x)) → + Σ A B → Σ A' B' = λ A A' B B' f g p ⇒ - case1 p return Σ A' B' of { (x, y) ⇒ (f x, g x y) }; + case p return Σ A' B' of { (x, y) ⇒ (f x, g x y) }; -def map' : 0.(A A' B B' : ★) → - 1.(1.A → A') → 1.(1.B → B') → 1.(A × B) → A' × B' = +def map' : 0.(A A' B B' : ★) → (A → A') → (B → B') → (A × B) → A' × B' = λ A A' B B' f g ⇒ map A A' (λ _ ⇒ B) (λ _ ⇒ B') f (λ _ ⇒ g); +def map-fst : 0.(A A' B : ★) → (A → A') → A × B → A' × B = + λ A A' B f ⇒ map' A A' B B f (λ x ⇒ x); + +def map-snd : 0.(A B B' : ★) → (B → B') → A × B → A × B' = + λ A B B' f ⇒ map' A A B B' (λ x ⇒ x) f; + } def0 Σ = pair.Σ; -def fst = pair.fst; -def snd = pair.snd; +-- def fst = pair.fst; +-- def snd = pair.snd; diff --git a/examples/qty.quox b/examples/qty.quox new file mode 100644 index 0000000..9f5e529 --- /dev/null +++ b/examples/qty.quox @@ -0,0 +1,77 @@ +def0 Qty : ★ = {"zero", one, any} + +def dup : Qty → [ω.Qty] = + λ π ⇒ case π return [ω.Qty] of { + 'zero ⇒ ['zero]; + 'one ⇒ ['one]; + 'any ⇒ ['any]; + } + +def drop : 0.(A : ★) → Qty → A → A = + λ A π x ⇒ case π return A of { + 'zero ⇒ x; + 'one ⇒ x; + 'any ⇒ x; + } + +def if-zero : 0.(A : ★) → Qty → ω.A → ω.A → A = + λ A π z nz ⇒ + case π return A of { 'zero ⇒ z; 'one ⇒ nz; 'any ⇒ nz } + +def plus : Qty → Qty → Qty = + λ π ρ ⇒ + case π return Qty of { + 'zero ⇒ ρ; + 'one ⇒ if-zero Qty ρ 'one 'any; + 'any ⇒ drop Qty ρ 'any; + } + +def times : Qty → Qty → Qty = + λ π ρ ⇒ + case π return Qty of { + 'zero ⇒ drop Qty ρ 'zero; + 'one ⇒ ρ; + 'any ⇒ if-zero Qty ρ 'zero 'any; + } + +def0 FUN : Qty → (A : ★) → (A → ★) → ★ = + λ π A B ⇒ + case π return ★ of { + 'zero ⇒ 0.(x : A) → B x; + 'one ⇒ 1.(x : A) → B x; + 'any ⇒ ω.(x : A) → B x; + } + +def0 Fun : Qty → ★ → ★ → ★ = + λ π A B ⇒ FUN π A (λ _ ⇒ B) + +def0 Box : Qty → ★ → ★ = + λ π A ⇒ + case π return ★ of { + 'zero ⇒ [0.A]; + 'one ⇒ [1.A]; + 'any ⇒ [ω.A]; + } + +def0 unbox : (π : Qty) → (A : ★) → Box π A → A = + λ π A ⇒ + case π return π' ⇒ Box π' A → A of { + 'zero ⇒ λ x ⇒ case x return A of { [x] ⇒ x }; + 'one ⇒ λ x ⇒ case x return A of { [x] ⇒ x }; + 'any ⇒ λ x ⇒ case x return A of { [x] ⇒ x }; + } + +def0 unbox0 = unbox 'zero +def0 unbox1 = unbox 'one +def0 unboxω = unbox 'any + +def apply : (π : Qty) → 0.(A : ★) → 0.(B : A → ★) → + FUN π A B → (x : Box π A) → B (unbox π A x) = + λ π A B ⇒ + case π + return π' ⇒ FUN π' A B → (x : Box π' A) → B (unbox π' A x) + of { + 'zero ⇒ λ f x ⇒ case x return x' ⇒ B (unbox0 A x') of { [x] ⇒ f x }; + 'one ⇒ λ f x ⇒ case x return x' ⇒ B (unbox1 A x') of { [x] ⇒ f x }; + 'any ⇒ λ f x ⇒ case x return x' ⇒ B (unboxω A x') of { [x] ⇒ f x }; + } diff --git a/exe/CompileMonad.idr b/exe/CompileMonad.idr new file mode 100644 index 0000000..bc0b3e5 --- /dev/null +++ b/exe/CompileMonad.idr @@ -0,0 +1,164 @@ +module CompileMonad + +import Quox.Syntax as Q +import Quox.Definition as Q +import Quox.Untyped.Syntax as U +import Quox.Parser +import Quox.Untyped.Erase +import Quox.Untyped.Scheme +import Quox.Pretty +import Quox.Log +import Options +import Output +import Error + +import System.File +import Data.IORef +import Data.Maybe +import Control.Eff + +%default total + +%hide Doc.(>>=) +%hide Core.(>>=) + +%hide FromParser.Error +%hide Erase.Error +%hide Lexer.Error +%hide Parser.Error + + + +public export +record State where + constructor MkState + seen : IORef SeenSet + defs : IORef Q.Definitions + ns : IORef Mods + suf : IORef NameSuf +%name CompileMonad.State state + +export %inline +newState : HasIO io => io State +newState = pure $ MkState { + seen = !(newIORef empty), + defs = !(newIORef empty), + ns = !(newIORef [<]), + suf = !(newIORef 0) +} + + +public export +data CompileTag = OPTS | STATE + +public export +Compile : List (Type -> Type) +Compile = + [Except Error, + ReaderL STATE State, ReaderL OPTS Options, Log, + LoadFile, IO] + + +export %inline +handleLog : IORef LevelStack -> OpenFile -> LogL x a -> IOErr Error a +handleLog ref f l = case f of + OConsole ch => handleLogIO (const $ pure ()) ref (consoleHandle ch) l + OFile _ h => handleLogIO (const $ pure ()) ref h l + ONone => do + lvls <- readIORef ref + lenRef <- newIORef (length lvls) + res <- handleLogDiscardIO lenRef l + writeIORef ref $ fixupDiscardedLog !(readIORef lenRef) lvls + pure res + +private %inline +withLogFile : Options -> + (IORef LevelStack -> OpenFile -> IO (Either Error a)) -> + IO (Either Error a) +withLogFile opts act = do + lvlStack <- newIORef $ singleton opts.logLevels + withOutFile CErr opts.logFile fromError $ act lvlStack +where + fromError : String -> FileError -> IO (Either Error a) + fromError file err = pure $ Left $ WriteError file err + +export covering %inline +runCompile : Options -> State -> Eff Compile a -> IO (Either Error a) +runCompile opts state act = do + withLogFile opts $ \lvls, logFile => + fromIOErr $ runEff act $ with Union.(::) + [handleExcept (\e => ioLeft e), + handleReaderConst state, + handleReaderConst opts, + handleLog lvls logFile, + handleLoadFileIOE loadError ParseError state.seen opts.include, + liftIO] + +private %inline +rethrowFileC : String -> Either FileError a -> Eff Compile a +rethrowFileC f = rethrow . mapFst (WriteError f) + + +export %inline +outputStr : OpenFile -> Lazy String -> Eff Compile () +outputStr ONone _ = pure () +outputStr (OConsole COut) str = putStr str +outputStr (OConsole CErr) str = fPutStr stderr str >>= rethrowFileC "" +outputStr (OFile f h) str = fPutStr h str >>= rethrowFileC f + +export %inline +outputDocs : OpenFile -> + ({opts : LayoutOpts} -> Eff Pretty (List (Doc opts))) -> + Eff Compile () +outputDocs file docs = do + opts <- askAt OPTS + for_ (runPretty opts (toOutFile file) docs) $ \x => + outputStr file $ render (Opts opts.width) x + +export %inline +outputDoc : OpenFile -> + ({opts : LayoutOpts} -> Eff Pretty (Doc opts)) -> Eff Compile () +outputDoc file doc = outputDocs file $ singleton <$> doc + + +public export +data StopTag = STOP + +public export +CompileStop : List (Type -> Type) +CompileStop = FailL STOP :: Compile + +export %inline +withEarlyStop : Eff CompileStop () -> Eff Compile () +withEarlyStop = ignore . runFailAt STOP + +export %inline +stopHere : Has (FailL STOP) fs => Eff fs () +stopHere = failAt STOP + + +export %inline +liftFromParser : Eff FromParserIO a -> Eff Compile a +liftFromParser act = + runEff act $ with Union.(::) + [handleExcept $ \err => throw $ FromParserError err, + handleStateIORef !(asksAt STATE defs), + handleStateIORef !(asksAt STATE ns), + handleStateIORef !(asksAt STATE suf), + \g => send g, + \g => send g] + +export %inline +liftErase : Q.Definitions -> Eff Erase a -> Eff Compile a +liftErase defs act = + runEff act + [handleExcept $ \err => throw $ EraseError err, + handleStateIORef !(asksAt STATE suf), + \g => send g] + +export %inline +liftScheme : Eff Scheme a -> Eff Compile (a, List Id) +liftScheme act = do + runEff [|MkPair act (getAt MAIN)|] + [handleStateIORef !(newIORef empty), + handleStateIORef !(newIORef [])] diff --git a/exe/Error.idr b/exe/Error.idr new file mode 100644 index 0000000..03d716c --- /dev/null +++ b/exe/Error.idr @@ -0,0 +1,49 @@ +module Error + +import Quox.Pretty +import Quox.Parser +import Quox.Untyped.Erase +import Quox.Untyped.Scheme +import Options +import Output + +import System.File + + +public export +data Error = + ParseError String Parser.Error +| FromParserError FromParser.Error +| EraseError Erase.Error +| WriteError FilePath FileError +| NoMain +| MultipleMains (List Scheme.Id) + +%hide FromParser.Error +%hide Erase.Error +%hide Lexer.Error +%hide Parser.Error + + +export +loadError : Loc -> FilePath -> FileError -> Error +loadError loc file err = FromParserError $ LoadError loc file err + +export +prettyError : {opts : LayoutOpts} -> Error -> Eff Pretty (Doc opts) +prettyError (ParseError file e) = prettyParseError file e +prettyError (FromParserError e) = FromParser.prettyError True e +prettyError (EraseError e) = Erase.prettyError True e +prettyError NoMain = pure "no #[main] function given" +prettyError (MultipleMains xs) = + pure $ sep ["multiple #[main] functions given:", + separateLoose "," !(traverse prettyId xs)] +prettyError (WriteError file e) = pure $ + hangSingle 2 (text "couldn't write file \{file}:") (pshow e) + +export +dieError : Options -> Error -> IO a +dieError opts e = + die (Opts opts.width) $ + runPretty ({outFile := Console} opts) Console $ + prettyError e diff --git a/exe/Main.idr b/exe/Main.idr index 2329980..c9e7f0b 100644 --- a/exe/Main.idr +++ b/exe/Main.idr @@ -1,46 +1,118 @@ module Main -import Quox.Syntax +import Quox.Syntax as Q +import Quox.Definition as Q +import Quox.Untyped.Syntax as U import Quox.Parser -import Quox.Definition +import Quox.Untyped.Erase +import Quox.Untyped.Scheme import Quox.Pretty +import Quox.Log +import Options +import Output +import Error +import CompileMonad import System +import System.File import Data.IORef -import Data.SortedSet import Control.Eff -private -Opts : LayoutOpts -Opts = Opts 80 +%default total + +%hide Doc.(>>=) +%hide Core.(>>=) + +%hide FromParser.Error +%hide Erase.Error +%hide Lexer.Error +%hide Parser.Error + private -putDoc : Doc Opts -> IO () -putDoc = putStr . render Opts +Step : Type -> Type -> Type +Step a b = OpenFile -> a -> Eff Compile b private -die : Doc Opts -> IO a -die err = do putDoc err; exitFailure +step : ConsoleChannel -> Phase -> OutFile -> Step a b -> a -> Eff CompileStop b +step console phase file act x = do + opts <- askAt OPTS + res <- withOutFile console file fromError $ \h => lift $ act h x + when (opts.until == Just phase) stopHere + pure res +where + fromError : String -> FileError -> Eff CompileStop c + fromError file err = throw $ WriteError file err -private -prettySig : {opts : _} -> Name -> Definition -> Eff Pretty (Doc opts) -prettySig name def = do - qty <- prettyQty def.qty.fst - name <- prettyFree name - type <- prettyTerm [<] [<] def.type - hangDSingle (hsep [hcat [qty, !dotD, name], !colonD]) type -export +private covering +parse : Step String PFile +parse h file = do + Just ast <- loadFile noLoc file + | Nothing => pure [] + outputStr h $ show ast + pure ast + +private covering +check : Step PFile (List Q.NDefinition) +check h decls = + map concat $ for decls $ \decl => do + defs <- liftFromParser $ fromPTopLevel decl + outputDocs h $ traverse (\(x, d) => prettyDef x d) defs + pure defs + +private covering +erase : Step (List Q.NDefinition) (List U.NDefinition) +erase h defList = + for defList $ \(x, def) => do + def <- liftErase defs $ eraseDef defs x def + outputDoc h $ U.prettyDef x def + pure (x, def) +where defs = SortedMap.fromList defList + +private covering +scheme : Step (List U.NDefinition) (List Sexp, List Id) +scheme h defs = do + sexps' <- for defs $ \(x, d) => do + (msexp, mains) <- liftScheme $ defToScheme x d + outputDoc h $ case msexp of + Just s => prettySexp s + Nothing => pure $ hsep [";;", prettyName x, "erased"] + pure (msexp, mains) + pure $ bimap catMaybes concat $ unzip sexps' + +private covering +output : Step (List Sexp, List Id) () +output h (sexps, mains) = do + main <- case mains of + [m] => pure m + [] => throw NoMain + _ => throw $ MultipleMains mains + lift $ outputDocs h $ do + res <- traverse prettySexp sexps + runner <- makeRunMain main + pure $ text Scheme.prelude :: res ++ [runner] + +private covering +processFile : String -> Eff Compile () +processFile file = withEarlyStop $ pipeline !(askAt OPTS) file where + pipeline : Options -> String -> Eff CompileStop () + pipeline opts = + step CErr Parse opts.dump.parse Main.parse >=> + step CErr Check opts.dump.check Main.check >=> + step CErr Erase opts.dump.erase Main.erase >=> + step CErr Scheme opts.dump.scheme Main.scheme >=> + step COut End opts.outFile Main.output + + +export covering main : IO () main = do - seen <- newIORef SortedSet.empty - defs <- newIORef SortedMap.empty - suf <- newIORef $ the Nat 0 - for_ (drop 1 !getArgs) $ \file => do - putStrLn "checking \{file}" - Right res <- fromParserIO ["."] seen suf defs $ loadProcessFile noLoc file - | Left err => die $ runPrettyColor $ prettyError True err - for_ res $ \(name, def) => putDoc $ runPrettyColor $ prettySig name def + (_, opts, files) <- options + case !(runCompile opts !newState $ traverse_ processFile files) of + Right () => pure () + Left e => dieError opts e + ----------------------------------- {- @@ -55,6 +127,13 @@ text _ = #" /_/"#, ""] +-- ["", +-- #" __ _ _ _ _____ __"#, +-- #"/ _` | || / _ \ \ /"#, +-- #"\__, |\_,_\___/_\_\"#, +-- #" |_|"#, +-- ""] + private qtuwu : PrettyOpts -> List String qtuwu opts = diff --git a/exe/Options.idr b/exe/Options.idr new file mode 100644 index 0000000..f1788df --- /dev/null +++ b/exe/Options.idr @@ -0,0 +1,258 @@ +module Options + +import Quox.Pretty +import Quox.Log +import Data.DPair +import Data.SortedMap +import System +import System.Console.GetOpt +import System.File +import System.Term +import Derive.Prelude + +%default total +%language ElabReflection + +public export +data OutFile = File String | Console | NoOut +%name OutFile f +%runElab derive "OutFile" [Eq, Show] + +public export +data Phase = Parse | Check | Erase | Scheme | End +%name Phase p +%runElab derive "Phase" [Eq, Show] + +||| a list of all intermediate `Phase`s (excluding `End`) +public export %inline +allPhases : List Phase +allPhases = %runElab do + cs <- getCons $ fst !(lookupName "Phase") + traverse (check . var) $ fromMaybe [] $ init' cs + +||| `Guess` is `Term` for a terminal and `NoHL` for a file +public export +data HLType = Guess | NoHL | Term | Html +%runElab derive "HLType" [Eq, Show] + +public export +record Dump where + constructor MkDump + parse, check, erase, scheme : OutFile +%name Dump dump +%runElab derive "Dump" [Show] + +public export +record Options where + constructor MkOpts + include : List String + dump : Dump + outFile : OutFile + until : Maybe Phase + hlType : HLType + flavor : Pretty.Flavor + width : Nat + logLevels : LogLevels + logFile : OutFile +%name Options opts +%runElab derive "Options" [Show] + +export +defaultWidth : IO Nat +defaultWidth = do + w <- cast {to = Nat} <$> getTermCols + pure $ if w == 0 then 80 else w + +export +defaultOpts : IO Options +defaultOpts = pure $ MkOpts { + include = ["."], + dump = MkDump NoOut NoOut NoOut NoOut, + outFile = Console, + until = Nothing, + hlType = Guess, + flavor = Unicode, + width = !defaultWidth, + logLevels = defaultLogLevels, + logFile = Console +} + +private +data HelpType = Common | All + +private +data OptAction = ShowHelp HelpType | Err String | Ok (Options -> Options) +%name OptAction act + +private +toOutFile : String -> OutFile +toOutFile "" = NoOut +toOutFile "-" = Console +toOutFile f = File f + +private +toPhase : String -> OptAction +toPhase str = + let lstr = toLower str in + case find (\p => toLower (show p) == lstr) allPhases of + Just p => Ok $ setPhase p + Nothing => Err "unknown phase name \{show str}\nphases: \{phaseNames}" +where + phaseNames = joinBy ", " $ map (toLower . show) allPhases + + defConsole : OutFile -> OutFile + defConsole NoOut = Console + defConsole f = f + + setPhase : Phase -> Options -> Options + setPhase Parse = {until := Just Parse, dump.parse $= defConsole} + setPhase Check = {until := Just Check, dump.check $= defConsole} + setPhase Erase = {until := Just Erase, dump.erase $= defConsole} + setPhase Scheme = {until := Just Scheme, dump.scheme $= defConsole} + setPhase End = id + +private +toWidth : String -> OptAction +toWidth s = case parsePositive s of + Just n => Ok {width := n} + Nothing => Err "invalid width: \{show s}" + +private +toHLType : String -> OptAction +toHLType str = case toLower str of + "none" => Ok {hlType := NoHL} + "term" => Ok {hlType := Term} + "html" => Ok {hlType := Html} + _ => Err "unknown highlighting type \{show str}\ntypes: term, html, none" + +||| like ghc, `-i ""` clears the search path; +||| `-i a:b:c` adds `a`, `b`, `c` to the end +private +dirListFlag : String -> List String -> List String +dirListFlag "" val = [] +dirListFlag dirs val = val ++ toList (split (== ':') dirs) + +private +splitLogFlag : String -> Either String (List (Maybe LogCategory, LogLevel)) +splitLogFlag = traverse flag1 . toList . split (== ':') where + parseLogCategory : String -> Either String LogCategory + parseLogCategory cat = do + let Just cat = toLogCategory cat + | _ => let catList = joinBy ", " logCategories in + Left "unknown log category. categories are:\n\{catList}" + pure cat + + parseLogLevel : String -> Either String LogLevel + parseLogLevel lvl = do + let Just lvl = parsePositive lvl + | _ => Left "log level \{lvl} not a number" + let Just lvl = toLogLevel lvl + | _ => Left "log level \{show lvl} out of range 0–\{show maxLogLevel}" + pure lvl + + flag1 : String -> Either String (Maybe LogCategory, LogLevel) + flag1 str = do + let (first, second) = break (== '=') str + case strM second of + StrCons '=' lvl => do + cat <- parseLogCategory first + lvl <- parseLogLevel lvl + pure (Just cat, lvl) + StrNil => (Nothing,) <$> parseLogLevel first + _ => Left "invalid log flag \{str}" + +private +setLogFlag : LogLevels -> (Maybe LogCategory, LogLevel) -> LogLevels +setLogFlag lvls (Nothing, lvl) = {defLevel := lvl} lvls +setLogFlag lvls (Just name, lvl) = {levels $= ((name, lvl) ::)} lvls + +private +logFlag : String -> OptAction +logFlag str = case splitLogFlag str of + Left err => Err err + Right flags => Ok $ \o => {logLevels := foldl setLogFlag o.logLevels flags} o + +private +commonOptDescrs' : List (OptDescr OptAction) +commonOptDescrs' = [ + MkOpt ['i'] ["include"] + (ReqArg (\is => Ok {include $= dirListFlag is}) ":...") + "add directories to look for source files", + MkOpt ['o'] ["output"] (ReqArg (\s => Ok {outFile := toOutFile s}) "") + "output file (\"-\" for stdout, \"\" for no output)", + MkOpt ['P'] ["phase"] (ReqArg toPhase "") + "stop after the given phase", + MkOpt ['l'] ["log"] (ReqArg logFlag "[=]:...") + "set log level", + MkOpt ['L'] ["log-file"] (ReqArg (\s => Ok {logFile := toOutFile s}) "") + "set log output file" +] + +private +extraOptDescrs : List (OptDescr OptAction) +extraOptDescrs = [ + MkOpt [] ["unicode"] (NoArg $ Ok {flavor := Unicode}) + "use unicode syntax when printing (default)", + MkOpt [] ["ascii"] (NoArg $ Ok {flavor := Ascii}) + "use ascii syntax when printing", + MkOpt [] ["width"] (ReqArg toWidth "") + "max output width (defaults to terminal width)", + MkOpt [] ["color", "colour"] (ReqArg toHLType "") + "select highlighting type", + + MkOpt [] ["dump-parse"] + (ReqArg (\s => Ok {dump.parse := toOutFile s}) "") + "dump AST", + MkOpt [] ["dump-check"] + (ReqArg (\s => Ok {dump.check := toOutFile s}) "") + "dump typechecker output", + MkOpt [] ["dump-erase"] + (ReqArg (\s => Ok {dump.erase := toOutFile s}) "") + "dump erasure output", + MkOpt [] ["dump-scheme"] + (ReqArg (\s => Ok {dump.scheme := toOutFile s}) "") + "dump scheme output (without prelude)" +] + +private +helpOptDescrs : List (OptDescr OptAction) +helpOptDescrs = [ + MkOpt ['h'] ["help"] (NoArg $ ShowHelp Common) "show common options", + MkOpt [] ["help-all"] (NoArg $ ShowHelp All) "show all options" +] + +commonOptDescrs = commonOptDescrs' ++ helpOptDescrs +allOptDescrs = commonOptDescrs' ++ extraOptDescrs ++ helpOptDescrs + +export +usageHeader : String +usageHeader = trim """ +quox [options] [file.quox ...] +rawr +""" + +export +usage : List (OptDescr _) -> IO a +usage ds = do + ignore $ fPutStr stderr $ usageInfo usageHeader ds + exitSuccess + +private +applyAction : Options -> OptAction -> IO Options +applyAction opts (ShowHelp Common) = usage commonOptDescrs +applyAction opts (ShowHelp All) = usage allOptDescrs +applyAction opts (Err err) = die err +applyAction opts (Ok f) = pure $ f opts + +export +options : IO (String, Options, List String) +options = do + app :: args <- getArgs + | [] => die "couldn't get command line arguments" + let res = getOpt Permute allOptDescrs args + unless (null res.errors) $ + die $ trim $ concat res.errors + unless (null res.unrecognized) $ + die "unrecognised options: \{joinBy ", " res.unrecognized}" + opts <- foldlM applyAction !defaultOpts res.options + pure (app, opts, res.nonOptions) diff --git a/exe/Output.idr b/exe/Output.idr new file mode 100644 index 0000000..77eed61 --- /dev/null +++ b/exe/Output.idr @@ -0,0 +1,59 @@ +module Output + +import Quox.Pretty +import Options + +import System.File +import System + +public export +data ConsoleChannel = COut | CErr + +export +consoleHandle : ConsoleChannel -> File +consoleHandle COut = stdout +consoleHandle CErr = stderr + +public export +data OpenFile = OConsole ConsoleChannel | OFile String File | ONone + +export +toOutFile : OpenFile -> OutFile +toOutFile (OConsole _) = Console +toOutFile (OFile f _) = File f +toOutFile ONone = NoOut + +export +withFile : HasIO m => String -> (String -> FileError -> m a) -> + (OpenFile -> m a) -> m a +withFile f catch act = Prelude.do + res <- withFile f WriteTruncate pure (Prelude.map Right . act . OFile f) + either (catch f) pure res + +export +withOutFile : HasIO m => ConsoleChannel -> OutFile -> + (String -> FileError -> m a) -> (OpenFile -> m a) -> m a +withOutFile _ (File f) catch act = withFile f catch act +withOutFile ch Console catch act = act $ OConsole ch +withOutFile _ NoOut catch act = act ONone + + + +private +hlFor : HLType -> OutFile -> HL -> Highlight +hlFor Guess Console = highlightSGR +hlFor Guess _ = noHighlight +hlFor NoHL _ = noHighlight +hlFor Term _ = highlightSGR +hlFor Html _ = highlightHtml + +export +runPretty : Options -> OutFile -> Eff Pretty a -> a +runPretty opts file act = + runPrettyWith Outer opts.flavor (hlFor opts.hlType file) 2 act + +export +die : HasIO io => (opts : LayoutOpts) -> Doc opts -> io a +die opts err = do + ignore $ fPutStr stderr $ render opts err + exitFailure diff --git a/exe/quox.ipkg b/exe/quox.ipkg index e20197a..fed30f4 100644 --- a/exe/quox.ipkg +++ b/exe/quox.ipkg @@ -1,7 +1,7 @@ package quox version = 0 -depends = base, contrib, elab-util, sop, quox-lib +depends = base, contrib, elab-util, pretty-show, quox-lib executable = quox main = Main diff --git a/golden-tests/Tests.idr b/golden-tests/Tests.idr new file mode 100644 index 0000000..60c7895 --- /dev/null +++ b/golden-tests/Tests.idr @@ -0,0 +1,15 @@ +module Tests + +import Test.Golden +import Language.Reflection +import System +import System.Path + +%language ElabReflection + +projDir = %runElab idrisDir ProjectDir +testDir = projDir "tests" + +tests = testsInDir { poolName = "quox golden tests", dirName = testDir } + +main = runner [!tests] diff --git a/golden-tests/quox-golden-tests.ipkg b/golden-tests/quox-golden-tests.ipkg new file mode 100644 index 0000000..cd89728 --- /dev/null +++ b/golden-tests/quox-golden-tests.ipkg @@ -0,0 +1,4 @@ +package quox-golden-tests +depends = quox, contrib, test +executable = quox-golden-tests +main = Tests diff --git a/golden-tests/run-tests.sh b/golden-tests/run-tests.sh new file mode 100755 index 0000000..67d86a1 --- /dev/null +++ b/golden-tests/run-tests.sh @@ -0,0 +1,10 @@ +#!/bin/bash + +set -e + +quox="$PWD/../exe/build/exec/quox" +run_tests="$PWD/build/exec/quox-golden-tests" +test -f "$quox" || pack build quox +test -f "$run_tests" || pack build quox-golden-tests + +"$run_tests" "$quox" "$@" diff --git a/golden-tests/tests/empty/empty.quox b/golden-tests/tests/empty/empty.quox new file mode 100644 index 0000000..e69de29 diff --git a/golden-tests/tests/empty/expected b/golden-tests/tests/empty/expected new file mode 100644 index 0000000..e69de29 diff --git a/golden-tests/tests/empty/run b/golden-tests/tests/empty/run new file mode 100644 index 0000000..195c208 --- /dev/null +++ b/golden-tests/tests/empty/run @@ -0,0 +1,2 @@ +. ../lib.sh +scheme "$1" empty.quox diff --git a/golden-tests/tests/eta-singleton/eta-sing.quox b/golden-tests/tests/eta-singleton/eta-sing.quox new file mode 100644 index 0000000..5ae2daf --- /dev/null +++ b/golden-tests/tests/eta-singleton/eta-sing.quox @@ -0,0 +1,33 @@ +-- inspired by https://github.com/agda/agda/issues/2556 + +postulate0 A : ★ + +def0 ZZ : ★ = 0 ≡ 0 : ℕ + +def reflZ : ZZ = δ _ ⇒ 0 + + +namespace erased { + def0 ZZA : ★ = 0.ZZ → A + + def propeq : (x : ZZA) → x ≡ (λ _ ⇒ x reflZ) : ZZA = + λ x ⇒ δ _ ⇒ x + + def defeq : 0.(P : ZZA → ★) → 0.(x : ZZA) → P (λ _ ⇒ x reflZ) → P x = + λ P x p ⇒ p +} + +namespace unrestricted { + def0 ZZA : ★ = ω.ZZ → A + + def defeq : 0.(P : ZZA → ★) → 0.(x : ZZA) → P (λ _ ⇒ x reflZ) → P x = + λ P x p ⇒ p +} + +namespace linear { + def0 ZZA : ★ = 1.ZZ → A + + #[fail "λ _ ⇒ x reflZ is not equal to x"] + def defeq : 0.(P : ZZA → ★) → 0.(x : ZZA) → P (λ _ ⇒ x reflZ) → P x = + λ P x p ⇒ p +} diff --git a/golden-tests/tests/eta-singleton/expected b/golden-tests/tests/eta-singleton/expected new file mode 100644 index 0000000..271242e --- /dev/null +++ b/golden-tests/tests/eta-singleton/expected @@ -0,0 +1,9 @@ +0.A : ★ +0.ZZ : ★ +ω.reflZ : ZZ +0.erased.ZZA : ★ +ω.erased.propeq : 1.(x : erased.ZZA) → x ≡ (λ _ ⇒ x reflZ) : erased.ZZA +ω.erased.defeq : 0.(P : 1.erased.ZZA → ★) → 0.(x : erased.ZZA) → 1.(P (λ _ ⇒ (x reflZ))) → P x +0.unrestricted.ZZA : ★ +ω.unrestricted.defeq : 0.(P : 1.unrestricted.ZZA → ★) → 0.(x : unrestricted.ZZA) → 1.(P (λ _ ⇒ (x reflZ))) → P x +0.linear.ZZA : ★ diff --git a/golden-tests/tests/eta-singleton/run b/golden-tests/tests/eta-singleton/run new file mode 100644 index 0000000..710aa1c --- /dev/null +++ b/golden-tests/tests/eta-singleton/run @@ -0,0 +1,2 @@ +. ../lib.sh +check "$1" eta-sing.quox diff --git a/golden-tests/tests/file-not-found/expected b/golden-tests/tests/file-not-found/expected new file mode 100644 index 0000000..33ee368 --- /dev/null +++ b/golden-tests/tests/file-not-found/expected @@ -0,0 +1,3 @@ +no location: +couldn't load file nonexistent.quox +File Not Found diff --git a/golden-tests/tests/file-not-found/run b/golden-tests/tests/file-not-found/run new file mode 100644 index 0000000..b164730 --- /dev/null +++ b/golden-tests/tests/file-not-found/run @@ -0,0 +1,2 @@ +. ../lib.sh +check "$1" nonexistent.quox diff --git a/golden-tests/tests/hello/expected b/golden-tests/tests/hello/expected new file mode 100644 index 0000000..7aea232 --- /dev/null +++ b/golden-tests/tests/hello/expected @@ -0,0 +1,12 @@ +0.IO : 1.★ → ★ +ω.print : 1.String → IO {ok} +ω.main : IO {ok} +IO = □ +print = scheme:(lambda (str) (builtin-io (display str) (newline))) +#[main] main = print "hello 🐉" +;; IO erased +(define print + (lambda (str) (builtin-io (display str) (newline)))) +(define main + (print "hello \x1f409;")) +hello 🐉 diff --git a/golden-tests/tests/hello/hello.quox b/golden-tests/tests/hello/hello.quox new file mode 100644 index 0000000..3b45067 --- /dev/null +++ b/golden-tests/tests/hello/hello.quox @@ -0,0 +1,7 @@ +def0 IO : ★ → ★ = λ A ⇒ IOState → A × IOState + +#[compile-scheme "(lambda (str) (builtin-io (display str) (newline)))"] +postulate print : String → IO {ok} + +#[main] +def main = print "hello 🐉" diff --git a/golden-tests/tests/hello/run b/golden-tests/tests/hello/run new file mode 100644 index 0000000..db7f834 --- /dev/null +++ b/golden-tests/tests/hello/run @@ -0,0 +1,2 @@ +. ../lib.sh +compile_run "$1" hello.quox hello.ss diff --git a/golden-tests/tests/ill-typed-main/expected b/golden-tests/tests/ill-typed-main/expected new file mode 100644 index 0000000..25498fb --- /dev/null +++ b/golden-tests/tests/ill-typed-main/expected @@ -0,0 +1,3 @@ +ill-typed-main.quox:1:11-1:12: + when checking a function declared as #[main] has type 1.IOState → {𝑎} × IOState + expected a function type, but got ℕ diff --git a/golden-tests/tests/ill-typed-main/ill-typed-main.quox b/golden-tests/tests/ill-typed-main/ill-typed-main.quox new file mode 100644 index 0000000..9ead5b5 --- /dev/null +++ b/golden-tests/tests/ill-typed-main/ill-typed-main.quox @@ -0,0 +1,2 @@ +#[main] +def main : ℕ = 5 diff --git a/golden-tests/tests/ill-typed-main/run b/golden-tests/tests/ill-typed-main/run new file mode 100644 index 0000000..5ad1fb7 --- /dev/null +++ b/golden-tests/tests/ill-typed-main/run @@ -0,0 +1,2 @@ +. ../lib.sh +check "$1" ill-typed-main.quox diff --git a/golden-tests/tests/isprop-subsing/expected b/golden-tests/tests/isprop-subsing/expected new file mode 100644 index 0000000..8fbea7a --- /dev/null +++ b/golden-tests/tests/isprop-subsing/expected @@ -0,0 +1,2 @@ +0.IsProp : 1.★ → ★ +0.feq : 1.(A : ★) → 1.(f : IsProp A) → 1.(g : IsProp A) → f ≡ g : IsProp A diff --git a/golden-tests/tests/isprop-subsing/isprop-subsing.quox b/golden-tests/tests/isprop-subsing/isprop-subsing.quox new file mode 100644 index 0000000..2117d08 --- /dev/null +++ b/golden-tests/tests/isprop-subsing/isprop-subsing.quox @@ -0,0 +1,4 @@ +def0 IsProp : ★ → ★ = λ A ⇒ (x y : A) → x ≡ y : A + +def0 feq : (A : ★) → (f g : IsProp A) → f ≡ g : IsProp A = + λ A f g ⇒ δ _ ⇒ f diff --git a/golden-tests/tests/isprop-subsing/run b/golden-tests/tests/isprop-subsing/run new file mode 100644 index 0000000..feb762b --- /dev/null +++ b/golden-tests/tests/isprop-subsing/run @@ -0,0 +1,2 @@ +. ../lib.sh +check "$1" isprop-subsing.quox diff --git a/golden-tests/tests/it-5/expected b/golden-tests/tests/it-5/expected new file mode 100644 index 0000000..3644760 --- /dev/null +++ b/golden-tests/tests/it-5/expected @@ -0,0 +1,4 @@ +ω.five : ℕ +five = 5 +(define five + 5) diff --git a/golden-tests/tests/it-5/five.quox b/golden-tests/tests/it-5/five.quox new file mode 100644 index 0000000..365c1a7 --- /dev/null +++ b/golden-tests/tests/it-5/five.quox @@ -0,0 +1 @@ +def five : ℕ = 5 diff --git a/golden-tests/tests/it-5/run b/golden-tests/tests/it-5/run new file mode 100644 index 0000000..bb90a15 --- /dev/null +++ b/golden-tests/tests/it-5/run @@ -0,0 +1,2 @@ +. ../lib.sh +scheme "$1" five.quox diff --git a/golden-tests/tests/lib.sh b/golden-tests/tests/lib.sh new file mode 100644 index 0000000..7dbfb7b --- /dev/null +++ b/golden-tests/tests/lib.sh @@ -0,0 +1,18 @@ +FLAGS="--dump-check - --dump-erase - --dump-scheme - --color=none --width=100000" + +check() { + $1 $FLAGS "$2" -P check 2>&1 +} + +erase() { + $1 $FLAGS "$2" -P erase 2>&1 +} + +scheme() { + $1 $FLAGS "$2" -P scheme 2>&1 +} + +compile_run() { + $1 $FLAGS "$2" -o "$3" 2>&1 + chezscheme --program "$3" +} diff --git a/golden-tests/tests/load/expected b/golden-tests/tests/load/expected new file mode 100644 index 0000000..b7dd6c9 --- /dev/null +++ b/golden-tests/tests/load/expected @@ -0,0 +1,16 @@ +0.lib.IO : 1.★ → ★ +ω.lib.print : 1.String → lib.IO {ok} +ω.lib.main : lib.IO {ok} +ω.main : lib.IO {ok} +lib.IO = □ +lib.print = scheme:(lambda (str) (builtin-io (display str) (newline))) +lib.main = lib.print "hello 🐉" +#[main] main = lib.main +;; lib.IO erased +(define lib.print + (lambda (str) (builtin-io (display str) (newline)))) +(define lib.main + (lib.print "hello \x1f409;")) +(define main + lib.main) +hello 🐉 diff --git a/golden-tests/tests/load/lib.quox b/golden-tests/tests/load/lib.quox new file mode 100644 index 0000000..5ba4344 --- /dev/null +++ b/golden-tests/tests/load/lib.quox @@ -0,0 +1,8 @@ +namespace lib { +def0 IO : ★ → ★ = λ A ⇒ IOState → A × IOState + +#[compile-scheme "(lambda (str) (builtin-io (display str) (newline)))"] +postulate print : String → IO {ok} + +def main = print "hello 🐉" +} diff --git a/golden-tests/tests/load/main.quox b/golden-tests/tests/load/main.quox new file mode 100644 index 0000000..c53d261 --- /dev/null +++ b/golden-tests/tests/load/main.quox @@ -0,0 +1,4 @@ +load "lib.quox" + +#[main] +def main = lib.main diff --git a/golden-tests/tests/load/run b/golden-tests/tests/load/run new file mode 100644 index 0000000..677a01b --- /dev/null +++ b/golden-tests/tests/load/run @@ -0,0 +1,2 @@ +. ../lib.sh +compile_run "$1" main.quox load.ss diff --git a/golden-tests/tests/regularity/expected b/golden-tests/tests/regularity/expected new file mode 100644 index 0000000..5b9502a --- /dev/null +++ b/golden-tests/tests/regularity/expected @@ -0,0 +1 @@ +0.reggie : 1.(A : ★) → 1.(AA : A ≡ A : ★) → 1.(s : A) → 1.(P : 1.A → ★) → 1.(P (coe (𝑖 ⇒ AA @𝑖) @0 @1 s)) → P s diff --git a/golden-tests/tests/regularity/regularity.quox b/golden-tests/tests/regularity/regularity.quox new file mode 100644 index 0000000..9a06dc7 --- /dev/null +++ b/golden-tests/tests/regularity/regularity.quox @@ -0,0 +1,12 @@ +-- this definition depends on coercion regularity in xtt. which is this +-- (adapted to quox): +-- +-- Ψ | Γ ⊢ 0 · A‹0/𝑖› = A‹1/𝑖› ⇐ ★ +-- --------------------------------------------------------- +-- Ψ | Γ ⊢ π · coe (𝑖 ⇒ A) @p @q s ⇝ (s ∷ A‹1/𝑖›) ⇒ A‹1/𝑖› +-- +-- otherwise, the types P (coe ⋯ s) and P s are incompatible + +def0 reggie : (A : ★) → (AA : A ≡ A : ★) → (s : A) → + (P : A → ★) → P (coe (𝑖 ⇒ AA @𝑖) s) → P s = + λ A AA s P p ⇒ p diff --git a/golden-tests/tests/regularity/run b/golden-tests/tests/regularity/run new file mode 100644 index 0000000..cbfda48 --- /dev/null +++ b/golden-tests/tests/regularity/run @@ -0,0 +1,2 @@ +. ../lib.sh +check "$1" regularity.quox diff --git a/golden-tests/tests/useless-coe/coe.quox b/golden-tests/tests/useless-coe/coe.quox new file mode 100644 index 0000000..85da306 --- /dev/null +++ b/golden-tests/tests/useless-coe/coe.quox @@ -0,0 +1,9 @@ +-- non-dependent coe should reduce to its body + +def five : ℕ = 5 +def five? : ℕ = coe ℕ 5 + +def eq : five ≡ five? : ℕ = δ _ ⇒ 5 + +def subst1 : 0.(P : ℕ → ★) → P five → P five? = λ P p ⇒ p +def subst2 : 0.(P : ℕ → ★) → P five? → P five = λ P p ⇒ p diff --git a/golden-tests/tests/useless-coe/expected b/golden-tests/tests/useless-coe/expected new file mode 100644 index 0000000..b0b14ce --- /dev/null +++ b/golden-tests/tests/useless-coe/expected @@ -0,0 +1,5 @@ +ω.five : ℕ +ω.five? : ℕ +ω.eq : five ≡ five? : ℕ +ω.subst1 : 0.(P : 1.ℕ → ★) → 1.(P five) → P five? +ω.subst2 : 0.(P : 1.ℕ → ★) → 1.(P five?) → P five diff --git a/golden-tests/tests/useless-coe/run b/golden-tests/tests/useless-coe/run new file mode 100644 index 0000000..aba005b --- /dev/null +++ b/golden-tests/tests/useless-coe/run @@ -0,0 +1,2 @@ +. ../lib.sh +check "$1" coe.quox diff --git a/lib/Control/Monad/ST/Extra.idr b/lib/Control/Monad/ST/Extra.idr new file mode 100644 index 0000000..7ddeef1 --- /dev/null +++ b/lib/Control/Monad/ST/Extra.idr @@ -0,0 +1,82 @@ +module Control.Monad.ST.Extra + +import public Control.Monad.ST +import Data.IORef +import Control.MonadRec + +%default total + +export %inline +MonadRec (ST s) where + tailRecM seed (Access rec) st f = MkST $ do + let MkST io = f seed st + case !io of + Done res => pure res + Cont seed2 prf vst => + let MkST io = tailRecM seed2 (rec seed2 prf) vst f in io + + +public export +interface HasST (0 m : Type -> Type -> Type) where + liftST : ST s a -> m s a + +export %inline HasST ST where liftST = id + + +public export +record STErr e s a where + constructor STE + fromSTErr : ST s (Either e a) + +export +Functor (STErr e s) where + map f (STE e) = STE $ map f <$> e + +export +Applicative (STErr e s) where + pure x = STE $ pure $ pure x + STE f <*> STE x = STE [|f <*> x|] + +export +Monad (STErr e s) where + STE m >>= k = STE $ do + case !m of + Left err => pure $ Left err + Right x => fromSTErr $ k x + +export +MonadRec (STErr e s) where + tailRecM s (Access r) x k = STE $ do + let STE m = k s x + case !m of + Left err => pure $ Left err + Right (Cont s' p y) => fromSTErr $ tailRecM s' (r s' p) y k + Right (Done y) => pure $ Right y + +export +runSTErr : (forall s. STErr e s a) -> Either e a +runSTErr ste = runST $ fromSTErr ste + +export %inline HasST (STErr e) where liftST = STE . map Right + +export +stLeft : e -> STErr e s a +stLeft e = STE $ pure $ Left e + + +parameters {auto _ : HasST m} + export %inline + newSTRef' : a -> m s (STRef s a) + newSTRef' x = liftST $ newSTRef x + + export %inline + readSTRef' : STRef s a -> m s a + readSTRef' r = liftST $ readSTRef r + + export %inline + writeSTRef' : STRef s a -> a -> m s () + writeSTRef' r x = liftST $ writeSTRef r x + + export %inline + modifySTRef' : STRef s a -> (a -> a) -> m s () + modifySTRef' r f = liftST $ modifySTRef r f diff --git a/lib/Quox/BoolExtra.idr b/lib/Quox/BoolExtra.idr index 69a7495..7a34ac1 100644 --- a/lib/Quox/BoolExtra.idr +++ b/lib/Quox/BoolExtra.idr @@ -3,8 +3,8 @@ module Quox.BoolExtra import public Data.Bool -infixr 5 `andM` -infixr 4 `orM` +export infixr 5 `andM` +export infixr 4 `orM` public export andM, orM : Monad m => m Bool -> m Bool -> m Bool diff --git a/lib/Quox/CharExtra.idr b/lib/Quox/CharExtra.idr index a2a05a3..48c1fab 100644 --- a/lib/Quox/CharExtra.idr +++ b/lib/Quox/CharExtra.idr @@ -166,3 +166,10 @@ isWhitespace ch = ch == '\t' || ch == '\r' || ch == '\n' || isSeparator ch export %foreign "scheme:string-normalize-nfc" normalizeNfc : String -> String + + +export +isCodepoint : Int -> Bool +isCodepoint n = + n <= 0x10FFFF && + not (n >= 0xD800 && n <= 0xDBFF || n >= 0xDC00 && n <= 0xDFFF) diff --git a/lib/Quox/CheckBuiltin.idr b/lib/Quox/CheckBuiltin.idr new file mode 100644 index 0000000..44b4f08 --- /dev/null +++ b/lib/Quox/CheckBuiltin.idr @@ -0,0 +1,33 @@ +||| check that special functions (e.g. `main`) have the expected type +module Quox.CheckBuiltin + +import Quox.Syntax +import Quox.Typing +import Quox.Whnf + +%default total + + +export covering +expectSingleEnum : Definitions -> TyContext d n -> SQty -> Loc -> + Term d n -> Eff Whnf () +expectSingleEnum defs ctx sg loc s = do + let err = delay $ ExpectedSingleEnum loc ctx.names s + cases <- wrapErr (const err) $ expectEnum defs ctx sg loc s + unless (length (SortedSet.toList cases) == 1) $ throw err + +||| `main` should have a type `1.IOState → {𝑎} × IOState`, +||| for some (single) tag `𝑎` +export covering +expectMainType : Definitions -> Term 0 0 -> Eff Whnf () +expectMainType defs ty = + wrapErr (WrongBuiltinType Main) $ do + let ctx = TyContext.empty + (qty, arg, res) <- expectPi defs ctx SZero ty.loc ty + expectEqualQ ty.loc qty One + expectIOState defs ctx SZero arg.loc arg + let ctx = extendTy qty res.name arg ctx + (ret, st) <- expectSig defs ctx SZero res.loc res.term + expectSingleEnum defs ctx SZero ret.loc ret + let ctx = extendTy qty st.name ret ctx + expectIOState defs ctx SZero st.loc st.term diff --git a/lib/Quox/Context.idr b/lib/Quox/Context.idr index a376042..97daabd 100644 --- a/lib/Quox/Context.idr +++ b/lib/Quox/Context.idr @@ -6,16 +6,13 @@ import Quox.Name import Data.DPair import Data.Nat -import Data.Fin import Data.Singleton import Data.SnocList import Data.SnocVect import Data.Vect import Control.Monad.Identity -import Derive.Prelude %default total -%language ElabReflection ||| a sequence of bindings under an existing context. each successive element @@ -61,6 +58,7 @@ public export tail : Context tm (S n) -> Context tm n tail = fst . unsnoc + parameters {0 tm : Nat -> Type} (f : forall n. tm n -> a) export toSnocListWith : Telescope tm _ _ -> SnocList a @@ -87,13 +85,6 @@ export %inline toSnocList' : Telescope' a _ _ -> SnocList a toSnocList' = toSnocListWith id -export %inline -toSnocListRelevant : {n1 : Nat} -> Telescope tm n1 n2 -> SnocList (n ** tm n) -toSnocListRelevant tel = toSnocList' $ snd $ go tel where - go : Telescope tm n1 n2' -> (Singleton n2', Telescope' (n ** tm n) n1 n2') - go [<] = (Val n1, [<]) - go (tel :< x) = let (Val n, tel) = go tel in (Val (S n), tel :< (n ** x)) - export %inline toList : Telescope tm _ _ -> List (Exists tm) toList = toListWith (Evidence _) @@ -118,10 +109,17 @@ fromSnocVect [<] = [<] fromSnocVect (sx :< x) = fromSnocVect sx :< x +public export +tabulateLT : (n : Nat) -> ((i : Nat) -> (0 p : i `LT` n) => tm i) -> + Context tm n +tabulateLT 0 f = [<] +tabulateLT (S k) f = + tabulateLT k (\i => f i @{lteSuccRight %search}) :< f k @{reflexive} + public export tabulate : ((n : Nat) -> tm n) -> (n : Nat) -> Context tm n -tabulate f 0 = [<] -tabulate f (S k) = tabulate f k :< f k +tabulate f n = tabulateLT n (\i => f i) +-- [todo] fixup argument order lol public export replicate : (n : Nat) -> a -> Context' a n @@ -147,34 +145,34 @@ tel ++ (sx :< x) = (tel ++ sx) :< x public export getShiftWith : (forall from, to. tm from -> Shift from to -> tm to) -> - Shift len out -> Context tm len -> Fin len -> tm out -getShiftWith shft by (ctx :< t) FZ = t `shft` ssDown by -getShiftWith shft by (ctx :< t) (FS i) = getShiftWith shft (ssDown by) ctx i + Shift len out -> Context tm len -> Var len -> tm out +getShiftWith shft by (ctx :< t) VZ = t `shft` ssDown by +getShiftWith shft by (ctx :< t) (VS i) = getShiftWith shft (ssDown by) ctx i public export %inline -getShift : CanShift tm => Shift len out -> Context tm len -> Fin len -> tm out +getShift : CanShift tm => Shift len out -> Context tm len -> Var len -> tm out getShift = getShiftWith (//) public export %inline getWith : (forall from, to. tm from -> Shift from to -> tm to) -> - Context tm len -> Fin len -> tm len + Context tm len -> Var len -> tm len getWith shft = getShiftWith shft SZ -infixl 8 !! +export infixl 8 !! public export %inline -(!!) : CanShift tm => Context tm len -> Fin len -> tm len +(!!) : CanShift tm => Context tm len -> Var len -> tm len (!!) = getWith (//) -infixl 8 !!! +export infixl 8 !!! public export %inline -(!!!) : Context' tm len -> Fin len -> tm +(!!!) : Context' tm len -> Var len -> tm (!!!) = getWith const public export find : Alternative f => - (forall n. tm n -> Bool) -> Context tm len -> f (Fin len) + (forall n. tm n -> Bool) -> Context tm len -> f (Var len) find p [<] = empty -find p (ctx :< x) = (guard (p x) $> FZ) <|> (FS <$> find p ctx) +find p (ctx :< x) = (guard (p x) $> VZ) <|> (VS <$> find p ctx) export @@ -191,6 +189,12 @@ export %hint succGT = LTESucc reflexive +public export +drop : (m : Nat) -> Context term (m + n) -> Context term n +drop 0 ctx = ctx +drop (S m) (ctx :< _) = drop m ctx + + parameters {auto _ : Applicative f} export traverse : (forall n. tm1 n -> f (tm2 n)) -> @@ -202,7 +206,7 @@ parameters {auto _ : Applicative f} traverse' : (a -> f b) -> Telescope' a from to -> f (Telescope' b from to) traverse' f = traverse f - infixl 3 `app` + export infixl 3 `app` ||| like `(<*>)` but with effects export app : Telescope (\n => tm1 n -> f (tm2 n)) from to -> @@ -269,16 +273,17 @@ unzip3 (tel :< (x, y, z)) = public export -lengthPrf : Telescope _ from to -> (len ** len + from = to) -lengthPrf [<] = (0 ** Refl) +lengthPrf : Telescope _ from to -> Subset Nat (\len => len + from = to) +lengthPrf [<] = Element 0 Refl lengthPrf (tel :< _) = - let len = lengthPrf tel in (S len.fst ** cong S len.snd) + let len = lengthPrf tel in Element (S len.fst) (cong S len.snd) export -lengthPrf0 : Context _ to -> (len ** len = to) +lengthPrf0 : Context _ to -> Singleton to lengthPrf0 ctx = - let len = lengthPrf ctx in - (len.fst ** rewrite sym $ plusZeroRightNeutral len.fst in len.snd) + let Element len prf = lengthPrf ctx in + rewrite sym prf `trans` plusZeroRightNeutral len in + [|len|] public export %inline length : Telescope {} -> Nat @@ -297,6 +302,10 @@ foldl : {0 acc : Nat -> Type} -> foldl f z [<] = z foldl f z (tel :< t) = f (foldl f z tel) (rewrite (lengthPrf tel).snd in t) +export %inline +foldl_ : (acc -> tm -> acc) -> acc -> Telescope' tm from to -> acc +foldl_ f z tel = foldl f z tel + export %inline foldMap : Monoid a => (forall n. tm n -> a) -> Telescope tm from to -> a foldMap f = foldl (\acc, tm => acc <+> f tm) neutral @@ -331,14 +340,6 @@ export %inline where Show (Exists tm) where showPrec d t = showPrec d t.snd -export -implementation [ShowTelRelevant] - {n1 : Nat} -> ({n : Nat} -> Show (f n)) => Show (Telescope f n1 n2) -where - showPrec d = showPrec d . toSnocListRelevant - where Show (n : Nat ** f n) where showPrec d (_ ** t) = showPrec d t - - parameters {opts : LayoutOpts} {0 tm : Nat -> Type} (nameHL : HL) (pterm : forall n. BContext n -> tm n -> Eff Pretty (Doc opts)) @@ -364,4 +365,4 @@ parameters {opts : LayoutOpts} {0 tm : Nat -> Type} namespace BContext export toNames : BContext n -> SnocList BaseName - toNames = foldl (\xs, x => xs :< x.name) [<] + toNames = foldl (\xs, x => xs :< x.val) [<] diff --git a/lib/Quox/Definition.idr b/lib/Quox/Definition.idr index 693012a..900536d 100644 --- a/lib/Quox/Definition.idr +++ b/lib/Quox/Definition.idr @@ -2,9 +2,12 @@ module Quox.Definition import public Quox.No import public Quox.Syntax +import Quox.Displace import public Data.SortedMap import public Quox.Loc +import Quox.Pretty import Control.Eff +import Data.Singleton import Decidable.Decidable @@ -23,18 +26,24 @@ namespace DefBody public export record Definition where constructor MkDef - qty : GQty - type0 : Term 0 0 - body0 : DefBody - loc_ : Loc + qty : GQty + type0 : Term 0 0 + body0 : DefBody + scheme : Maybe String + isMain : Bool + loc_ : Loc public export %inline -mkPostulate : GQty -> (type0 : Term 0 0) -> Loc -> Definition -mkPostulate qty type0 loc_ = MkDef {qty, type0, body0 = Postulate, loc_} +mkPostulate : GQty -> (type0 : Term 0 0) -> Maybe String -> Bool -> Loc -> + Definition +mkPostulate qty type0 scheme isMain loc_ = + MkDef {qty, type0, body0 = Postulate, scheme, isMain, loc_} public export %inline -mkDef : GQty -> (type0, term0 : Term 0 0) -> Loc -> Definition -mkDef qty type0 term0 loc_ = MkDef {qty, type0, body0 = Concrete term0, loc_} +mkDef : GQty -> (type0, term0 : Term 0 0) -> Maybe String -> Bool -> Loc -> + Definition +mkDef qty type0 term0 scheme isMain loc_ = + MkDef {qty, type0, body0 = Concrete term0, scheme, isMain, loc_} export Located Definition where def.loc = def.loc_ export Relocatable Definition where setLoc loc = {loc_ := loc} @@ -45,27 +54,51 @@ parameters {d, n : Nat} (.type) : Definition -> Term d n g.type = g.type0 // shift0 d // shift0 n + public export %inline + (.typeAt) : Definition -> Universe -> Term d n + g.typeAt u = displace u g.type + public export %inline (.term) : Definition -> Maybe (Term d n) g.term = g.body0.term0 <&> \t => t // shift0 d // shift0 n public export %inline - toElim : Definition -> Maybe $ Elim d n - toElim def = pure $ Ann !def.term def.type def.loc + (.termAt) : Definition -> Universe -> Maybe (Term d n) + g.termAt u = displace u <$> g.term + + public export %inline + toElim : Definition -> Universe -> Maybe $ Elim d n + toElim def u = pure $ Ann !(def.termAt u) (def.typeAt u) def.loc + +public export +(.typeWith) : Definition -> Singleton d -> Singleton n -> Term d n +g.typeWith (Val d) (Val n) = g.type + +public export +(.typeWithAt) : Definition -> Singleton d -> Singleton n -> Universe -> Term d n +g.typeWithAt d n u = displace u $ g.typeWith d n + +public export +(.termWith) : Definition -> Singleton d -> Singleton n -> Maybe (Term d n) +g.termWith (Val d) (Val n) = g.term public export %inline isZero : Definition -> Bool -isZero g = g.qty.fst == Zero +isZero g = g.qty == GZero public export -data DefEnvTag = DEFS +NDefinition : Type +NDefinition = (Name, Definition) public export Definitions : Type Definitions = SortedMap Name Definition +public export +data DefEnvTag = DEFS + public export DefsReader : Type -> Type DefsReader = ReaderL DEFS Definitions @@ -74,7 +107,21 @@ public export DefsState : Type -> Type DefsState = StateL DEFS Definitions +public export %inline +lookupElim : {d, n : Nat} -> Name -> Universe -> Definitions -> Maybe (Elim d n) +lookupElim x u defs = toElim !(lookup x defs) u public export %inline -lookupElim : {d, n : Nat} -> Name -> Definitions -> Maybe (Elim d n) -lookupElim x defs = toElim !(lookup x defs) +lookupElim0 : Name -> Universe -> Definitions -> Maybe (Elim 0 0) +lookupElim0 = lookupElim + + +export +prettyDef : {opts : LayoutOpts} -> Name -> Definition -> Eff Pretty (Doc opts) +prettyDef name def = withPrec Outer $ do + qty <- prettyQty def.qty.qty + dot <- dotD + name <- prettyFree name + colon <- colonD + type <- prettyTerm [<] [<] def.type + hangDSingle (hsep [hcat [qty, dot, name], colon]) type diff --git a/lib/Quox/Displace.idr b/lib/Quox/Displace.idr index c7d5e02..6f8e1ed 100644 --- a/lib/Quox/Displace.idr +++ b/lib/Quox/Displace.idr @@ -2,6 +2,8 @@ module Quox.Displace import Quox.Syntax +%default total + parameters (k : Universe) namespace Term @@ -14,6 +16,7 @@ parameters (k : Universe) namespace Term doDisplace (TYPE l loc) = TYPE (k + l) loc + doDisplace (IOState loc) = IOState loc doDisplace (Pi qty arg res loc) = Pi qty (doDisplace arg) (doDisplaceS res) loc doDisplace (Lam body loc) = Lam (doDisplaceS body) loc @@ -24,14 +27,18 @@ parameters (k : Universe) doDisplace (Eq ty l r loc) = Eq (doDisplaceDS ty) (doDisplace l) (doDisplace r) loc doDisplace (DLam body loc) = DLam (doDisplaceDS body) loc - doDisplace (Nat loc) = Nat loc - doDisplace (Zero loc) = Zero loc + doDisplace (NAT loc) = NAT loc + doDisplace (Nat n loc) = Nat n loc doDisplace (Succ p loc) = Succ (doDisplace p) loc + doDisplace (STRING loc) = STRING loc + doDisplace (Str s loc) = Str s loc doDisplace (BOX qty ty loc) = BOX qty (doDisplace ty) loc doDisplace (Box val loc) = Box (doDisplace val) loc + doDisplace (Let qty rhs body loc) = + Let qty (doDisplace rhs) (doDisplaceS body) loc doDisplace (E e) = E (doDisplace e) doDisplace (CloT (Sub t th)) = - CloT (Sub (doDisplace t) (map doDisplace th)) + CloT (Sub (doDisplace t) (assert_total $ map doDisplace th)) doDisplace (DCloT (Sub t th)) = DCloT (Sub (doDisplace t) th) @@ -47,8 +54,11 @@ parameters (k : Universe) doDisplace (App fun arg loc) = App (doDisplace fun) (doDisplace arg) loc doDisplace (CasePair qty pair ret body loc) = CasePair qty (doDisplace pair) (doDisplaceS ret) (doDisplaceS body) loc + doDisplace (Fst pair loc) = Fst (doDisplace pair) loc + doDisplace (Snd pair loc) = Snd (doDisplace pair) loc doDisplace (CaseEnum qty tag ret arms loc) = - CaseEnum qty (doDisplace tag) (doDisplaceS ret) (map doDisplace arms) loc + CaseEnum qty (doDisplace tag) (doDisplaceS ret) + (assert_total $ map doDisplace arms) loc doDisplace (CaseNat qty qtyIH nat ret zero succ loc) = CaseNat qty qtyIH (doDisplace nat) (doDisplaceS ret) (doDisplace zero) (doDisplaceS succ) loc @@ -65,9 +75,9 @@ parameters (k : Universe) (doDisplaceDS zero) (doDisplaceDS one) loc doDisplace (TypeCase ty ret arms def loc) = TypeCase (doDisplace ty) (doDisplace ret) - (map doDisplaceS arms) (doDisplace def) loc + (assert_total $ map doDisplaceS arms) (doDisplace def) loc doDisplace (CloE (Sub e th)) = - CloE (Sub (doDisplace e) (map doDisplace th)) + CloE (Sub (doDisplace e) (assert_total $ map doDisplace th)) doDisplace (DCloE (Sub e th)) = DCloE (Sub (doDisplace e) th) diff --git a/lib/Quox/EffExtra.idr b/lib/Quox/EffExtra.idr index e80a922..4090553 100644 --- a/lib/Quox/EffExtra.idr +++ b/lib/Quox/EffExtra.idr @@ -2,6 +2,7 @@ module Quox.EffExtra import public Control.Eff +import Control.Monad.ST.Extra import Data.IORef @@ -26,48 +27,40 @@ local_ : Has (State s) fs => s -> Eff fs a -> Eff fs a local_ = localAt_ () -export -hasDrop : (0 neq : Not (a = b)) -> - (ha : Has a fs) => (hb : Has b fs) => - Has a (drop fs hb) -hasDrop neq {ha = Z} {hb = Z} = void $ neq Refl -hasDrop neq {ha = S ha} {hb = Z} = ha -hasDrop neq {ha = Z} {hb = S hb} = Z -hasDrop neq {ha = S ha} {hb = S hb} = S $ hasDrop neq {ha, hb} +export %inline +getsAt : (0 lbl : tag) -> Has (StateL lbl s) fs => (s -> a) -> Eff fs a +getsAt lbl f = f <$> getAt lbl + +export %inline +gets : Has (State s) fs => (s -> a) -> Eff fs a +gets = getsAt () + + +export %inline +stateAt : (0 lbl : tag) -> Has (StateL lbl s) fs => (s -> (a, s)) -> Eff fs a +stateAt lbl f = do (res, x) <- getsAt lbl f; putAt lbl x $> res + +export %inline +state : Has (State s) fs => (s -> (a, s)) -> Eff fs a +state = stateAt () -private -0 ioNotState : Not (IO = StateL _ _) -ioNotState Refl impossible export -runStateIORefAt : (0 lbl : tag) -> (Has IO fs, Has (StateL lbl s) fs) => - IORef s -> Eff fs a -> Eff (fs - StateL lbl s) a -runStateIORefAt lbl ref act = do - let hh : Has IO (fs - StateL lbl s) := hasDrop ioNotState - (val, st) <- runStateAt lbl !(readIORef ref) act - writeIORef ref st $> val - -export %inline -runStateIORef : (Has IO fs, Has (State s) fs) => - IORef s -> Eff fs a -> Eff (fs - State s) a -runStateIORef = runStateIORefAt () - - -export %inline -evalStateAt : (0 lbl : tag) -> Has (StateL lbl s) fs => - s -> Eff fs a -> Eff (fs - StateL lbl s) a -evalStateAt lbl s act = map fst $ runStateAt lbl s act - -export %inline -evalState : Has (State s) fs => s -> Eff fs a -> Eff (fs - State s) a -evalState = evalStateAt () +handleStateIORef : HasIO m => IORef st -> StateL lbl st a -> m a +handleStateIORef r Get = readIORef r +handleStateIORef r (Put s) = writeIORef r s +export +handleStateSTRef : HasST m => STRef s st -> StateL lbl st a -> m s a +handleStateSTRef r Get = liftST $ readSTRef r +handleStateSTRef r (Put s) = liftST $ writeSTRef r s public export data Length : List a -> Type where Z : Length [] S : Length xs -> Length (x :: xs) +%builtin Natural Length export subsetWith : Length xs => (forall z. Has z xs -> Has z ys) -> @@ -80,23 +73,77 @@ subsetSelf : Length xs => Subset xs xs subsetSelf = subsetWith id export -subsetTail : Length xs => Subset xs (x :: xs) -subsetTail = subsetWith S +subsetTail : Length xs => (0 x : a) -> Subset xs (x :: xs) +subsetTail _ = subsetWith S + --- [fixme] allow the error to be anywhere in the effect list export -wrapErrAt : Length fs => (0 lbl : tag) -> (e -> e) -> - Eff (ExceptL lbl e :: fs) a -> Eff (ExceptL lbl e :: fs) a -wrapErrAt lbl f act = - rethrowAt lbl . mapFst f =<< lift @{subsetTail} (runExceptAt lbl act) +rethrowAtWith : (0 lbl : tag) -> Has (ExceptL lbl e') fs => + (e -> e') -> Either e a -> Eff fs a +rethrowAtWith lbl f = rethrowAt lbl . mapFst f + +export +rethrowWith : Has (Except e') fs => (e -> e') -> Either e a -> Eff fs a +rethrowWith = rethrowAtWith () + +export +wrapErr : Length fs => (e -> e') -> + Eff (ExceptL lbl e :: fs) a -> + Eff (ExceptL lbl e' :: fs) a +wrapErr f act = + catchAt lbl (throwAt lbl . f) @{S Z} $ + lift @{subsetTail _} act + + +export +handleExcept : Functor m => (forall c. e -> m c) -> ExceptL lbl e a -> m a +handleExcept thr (Err e) = thr e + + +export +handleReaderConst : Applicative m => r -> ReaderL lbl r a -> m a +handleReaderConst x Ask = pure x + +export +handleWriterSTRef : HasST m => STRef s (SnocList w) -> WriterL lbl w a -> m s a +handleWriterSTRef ref (Tell w) = liftST $ modifySTRef ref (:< w) + + +public export +record IOErr e a where + constructor IOE + fromIOErr : IO (Either e a) + +export +Functor (IOErr e) where + map f (IOE e) = IOE $ map f <$> e + +export +Applicative (IOErr e) where + pure x = IOE $ pure $ pure x + IOE f <*> IOE x = IOE [|f <*> x|] + +export +Monad (IOErr e) where + IOE m >>= k = IOE $ do + case !m of + Left err => pure $ Left err + Right x => fromIOErr $ k x + +export +MonadRec (IOErr e) where + tailRecM s (Access r) x k = IOE $ do + let IOE m = k s x + case !m of + Left err => pure $ Left err + Right (Cont s' p y) => fromIOErr $ tailRecM s' (r s' p) y k + Right (Done y) => pure $ Right y + +export +HasIO (IOErr e) where + liftIO = IOE . map Right export %inline -wrapErr : Length fs => (e -> e) -> - Eff (Except e :: fs) a -> Eff (Except e :: fs) a -wrapErr = wrapErrAt () - - -export %inline -runIO : (MonadRec io, HasIO io) => Eff [IO] a -> io a -runIO act = runEff act [liftIO] +ioLeft : e -> IOErr e a +ioLeft = IOE . pure . Left diff --git a/lib/Quox/Equal.idr b/lib/Quox/Equal.idr index c3e49dc..5ac02b2 100644 --- a/lib/Quox/Equal.idr +++ b/lib/Quox/Equal.idr @@ -2,9 +2,14 @@ module Quox.Equal import Quox.BoolExtra import public Quox.Typing -import Data.Maybe +import Quox.FreeVars +import Quox.Pretty import Quox.EffExtra +import Data.List1 +import Data.Maybe +import Data.Either + %default total @@ -13,59 +18,34 @@ EqModeState : Type -> Type EqModeState = State EqMode public export -Equal : Type -> Type -Equal = Eff [ErrorEff, DefsReader, NameGen] +Equal : List (Type -> Type) +Equal = [ErrorEff, DefsReader, NameGen, Log] public export -Equal_ : Type -> Type -Equal_ = Eff [ErrorEff, NameGen, EqModeState] - -export -runEqualWith_ : EqMode -> NameSuf -> Equal_ a -> (Either Error a, NameSuf) -runEqualWith_ mode suf act = - extract $ - runNameGenWith suf $ - runExcept $ - evalState mode act - -export -runEqual_ : EqMode -> Equal_ a -> Either Error a -runEqual_ mode act = fst $ runEqualWith_ mode 0 act - - -export -runEqualWith : NameSuf -> Definitions -> Equal a -> (Either Error a, NameSuf) -runEqualWith suf defs act = - extract $ - runStateAt GEN suf $ - runReaderAt DEFS defs $ - runExcept act - -export -runEqual : Definitions -> Equal a -> Either Error a -runEqual defs act = fst $ runEqualWith 0 defs act +EqualInner : List (Type -> Type) +EqualInner = [ErrorEff, NameGen, EqModeState, Log] export %inline mode : Has EqModeState fs => Eff fs EqMode mode = get +private %inline +withEqual : Has EqModeState fs => Eff fs a -> Eff fs a +withEqual = local_ Equal + parameters (loc : Loc) (ctx : EqContext n) private %inline - clashT : Term 0 n -> Term 0 n -> Term 0 n -> Equal_ a + clashT : Term 0 n -> Term 0 n -> Term 0 n -> Eff EqualInner a clashT ty s t = throw $ ClashT loc ctx !mode ty s t private %inline - clashTy : Term 0 n -> Term 0 n -> Equal_ a + clashTy : Term 0 n -> Term 0 n -> Eff EqualInner a clashTy s t = throw $ ClashTy loc ctx !mode s t private %inline - clashE : Elim 0 n -> Elim 0 n -> Equal_ a - clashE e f = throw $ ClashE loc ctx !mode e f - - private %inline - wrongType : Term 0 n -> Term 0 n -> Equal_ a + wrongType : Term 0 n -> Term 0 n -> Eff EqualInner a wrongType ty s = throw $ WrongType loc ctx ty s @@ -73,607 +53,923 @@ public export %inline sameTyCon : (s, t : Term d n) -> (0 ts : So (isTyConE s)) => (0 tt : So (isTyConE t)) => Bool -sameTyCon (TYPE {}) (TYPE {}) = True -sameTyCon (TYPE {}) _ = False -sameTyCon (Pi {}) (Pi {}) = True -sameTyCon (Pi {}) _ = False -sameTyCon (Sig {}) (Sig {}) = True -sameTyCon (Sig {}) _ = False -sameTyCon (Enum {}) (Enum {}) = True -sameTyCon (Enum {}) _ = False -sameTyCon (Eq {}) (Eq {}) = True -sameTyCon (Eq {}) _ = False -sameTyCon (Nat {}) (Nat {}) = True -sameTyCon (Nat {}) _ = False -sameTyCon (BOX {}) (BOX {}) = True -sameTyCon (BOX {}) _ = False -sameTyCon (E {}) (E {}) = True -sameTyCon (E {}) _ = False +sameTyCon (TYPE {}) (TYPE {}) = True +sameTyCon (TYPE {}) _ = False +sameTyCon (IOState {}) (IOState {}) = True +sameTyCon (IOState {}) _ = False +sameTyCon (Pi {}) (Pi {}) = True +sameTyCon (Pi {}) _ = False +sameTyCon (Sig {}) (Sig {}) = True +sameTyCon (Sig {}) _ = False +sameTyCon (Enum {}) (Enum {}) = True +sameTyCon (Enum {}) _ = False +sameTyCon (Eq {}) (Eq {}) = True +sameTyCon (Eq {}) _ = False +sameTyCon (NAT {}) (NAT {}) = True +sameTyCon (NAT {}) _ = False +sameTyCon (STRING {}) (STRING {}) = True +sameTyCon (STRING {}) _ = False +sameTyCon (BOX {}) (BOX {}) = True +sameTyCon (BOX {}) _ = False +sameTyCon (E {}) (E {}) = True +sameTyCon (E {}) _ = False + + +||| true if a type is known to be empty. +||| +||| * a pair is empty if either element is. +||| * `{}` is empty. +||| * `[π.A]` is empty if `A` is. +||| * that's it. +public export covering +isEmpty : + {default 30 logLevel : Nat} -> (0 _ : So (isLogLevel logLevel)) => + Definitions -> EqContext n -> SQty -> Term 0 n -> Eff EqualInner Bool + +private covering +isEmptyNoLog : + Definitions -> EqContext n -> SQty -> Term 0 n -> Eff EqualInner Bool + +isEmpty defs ctx sg ty = do + sayMany "equal" ty.loc + [logLevel :> "isEmpty", + 95 :> hsep ["ctx =", runPretty $ prettyEqContext ctx], + 95 :> hsep ["sg =", runPretty $ prettyQty sg.qty], + logLevel :> hsep ["ty =", runPretty $ prettyTerm [<] ctx.tnames ty]] + res <- isEmptyNoLog defs ctx sg ty + say "equal" logLevel ty.loc $ hsep ["isEmpty ⇝", pshow res] + pure res + +isEmptyNoLog defs ctx sg ty0 = do + Element ty0 nc <- whnf defs ctx sg ty0.loc ty0 + let Left y = choose $ isTyConE ty0 + | Right n => pure False + case ty0 of + TYPE {} => pure False + IOState {} => pure False + Pi {arg, res, _} => pure False + Sig {fst, snd, _} => + isEmpty defs ctx sg fst {logLevel = 90} `orM` + isEmpty defs (extendTy0 snd.name fst ctx) sg snd.term {logLevel = 90} + Enum {cases, _} => + pure $ null cases + Eq {} => pure False + NAT {} => pure False + STRING {} => pure False + BOX {ty, _} => isEmpty defs ctx sg ty {logLevel = 90} + E _ => pure False ||| true if a type is known to be a subsingleton purely by its form. ||| a subsingleton is a type with only zero or one possible values. ||| equality/subtyping accepts immediately on values of subsingleton types. ||| -||| * a function type is a subsingleton if its codomain is. +||| * a function type is a subsingleton if its codomain is, +||| or if its domain is empty. ||| * a pair type is a subsingleton if both its elements are. ||| * equality types are subsingletons because of uip. ||| * an enum type is a subsingleton if it has zero or one tags. ||| * a box type is a subsingleton if its content is public export covering -isSubSing : {n : Nat} -> Definitions -> EqContext n -> Term 0 n -> Equal_ Bool -isSubSing defs ctx ty0 = do - Element ty0 nc <- whnf defs ctx ty0.loc ty0 +isSubSing : + {default 30 logLevel : Nat} -> (0 _ : So (isLogLevel logLevel)) => + Definitions -> EqContext n -> SQty -> Term 0 n -> Eff EqualInner Bool + +private covering +isSubSingNoLog : + Definitions -> EqContext n -> SQty -> Term 0 n -> Eff EqualInner Bool + +isSubSing defs ctx sg ty = do + sayMany "equal" ty.loc + [logLevel :> "isSubSing", + 95 :> hsep ["ctx =", runPretty $ prettyEqContext ctx], + 95 :> hsep ["sg =", runPretty $ prettyQty sg.qty], + logLevel :> hsep ["ty =", runPretty $ prettyTerm [<] ctx.tnames ty]] + res <- isSubSingNoLog defs ctx sg ty + say "equal" logLevel ty.loc $ hsep ["isSubsing ⇝", pshow res] + pure res + +isSubSingNoLog defs ctx sg ty0 = do + Element ty0 nc <- whnf defs ctx sg ty0.loc ty0 + let Left y = choose $ isTyConE ty0 | _ => pure False case ty0 of TYPE {} => pure False + IOState {} => pure False Pi {arg, res, _} => - isSubSing defs (extendTy Zero res.name arg ctx) res.term + isEmpty defs ctx sg arg {logLevel = 90} `orM` + isSubSing defs (extendTy0 res.name arg ctx) sg res.term {logLevel = 90} Sig {fst, snd, _} => - isSubSing defs ctx fst `andM` - isSubSing defs (extendTy Zero snd.name fst ctx) snd.term + isSubSing defs ctx sg fst {logLevel = 90} `andM` + isSubSing defs (extendTy0 snd.name fst ctx) sg snd.term {logLevel = 90} Enum {cases, _} => pure $ length (SortedSet.toList cases) <= 1 Eq {} => pure True - Nat {} => pure False - BOX {ty, _} => isSubSing defs ctx ty - E (Ann {tm, _}) => isSubSing defs ctx tm + NAT {} => pure False + STRING {} => pure False + BOX {ty, _} => isSubSing defs ctx sg ty {logLevel = 90} E _ => pure False - Lam {} => pure False - Pair {} => pure False - Tag {} => pure False - DLam {} => pure False - Zero {} => pure False - Succ {} => pure False - Box {} => pure False + + +||| the left argument if the current mode is `Super`; otherwise the right one. +private %inline +bigger : Has EqModeState fs => (left, right : Lazy a) -> Eff fs a +bigger l r = gets $ \case Super => l; _ => r export -ensureTyCon : Has ErrorEff fs => - (loc : Loc) -> (ctx : EqContext n) -> (t : Term 0 n) -> - Eff fs (So (isTyConE t)) -ensureTyCon loc ctx t = case nchoose $ isTyConE t of - Left y => pure y - Right n => throw $ NotType loc (toTyContext ctx) (t // shift0 ctx.dimLen) +ensureTyCon, ensureTyConNoLog : + (Has Log fs, Has ErrorEff fs) => + (loc : Loc) -> (ctx : EqContext n) -> (t : Term 0 n) -> + Eff fs (So (isTyConE t)) +ensureTyConNoLog loc ctx ty = do + case nchoose $ isTyConE ty of + Left y => pure y + Right n => throw $ NotType loc (toTyContext ctx) (ty // shift0 ctx.dimLen) -||| performs the minimum work required to recompute the type of an elim. -||| -||| ⚠ **assumes the elim is already typechecked.** ⚠ -private covering -computeElimTypeE : (defs : Definitions) -> EqContext n -> - (e : Elim 0 n) -> (0 ne : NotRedex defs e) => - Equal_ (Term 0 n) -computeElimTypeE defs ectx e = - let Val n = ectx.termLen in - lift $ computeElimType defs (toWhnfContext ectx) e +ensureTyCon loc ctx ty = do + sayMany "equal" ty.loc + [60 :> "ensureTyCon", + 95 :> hsep ["ctx =", runPretty $ prettyEqContext ctx], + 60 :> hsep ["ty =", runPretty $ prettyTerm [<] ctx.tnames ty]] + ensureTyConNoLog loc ctx ty -parameters (defs : Definitions) - mutual - namespace Term - ||| `compare0 ctx ty s t` compares `s` and `t` at type `ty`, according to - ||| the current variance `mode`. - ||| - ||| ⚠ **assumes that `s`, `t` have already been checked against `ty`**. ⚠ - export covering %inline - compare0 : EqContext n -> (ty, s, t : Term 0 n) -> Equal_ () - compare0 ctx ty s t = - wrapErr (WhileComparingT ctx !mode ty s t) $ do - let Val n = ctx.termLen - Element ty' _ <- whnf defs ctx ty.loc ty - Element s' _ <- whnf defs ctx s.loc s - Element t' _ <- whnf defs ctx t.loc t - tty <- ensureTyCon ty.loc ctx ty' - compare0' ctx ty' s' t' - ||| converts an elim "Γ ⊢ e" to "Γ, x ⊢ e x", for comparing with - ||| a lambda "Γ ⊢ λx ⇒ t" that has been converted to "Γ, x ⊢ t". - private %inline - toLamBody : Elim d n -> Term d (S n) - toLamBody e = E $ App (weakE 1 e) (BVT 0 e.loc) e.loc +namespace Term + ||| `compare0 ctx ty s t` compares `s` and `t` at type `ty`, according to + ||| the current variance `mode`. + ||| + ||| ⚠ **assumes that `s`, `t` have already been checked against `ty`**. ⚠ + export covering %inline + compare0 : Definitions -> EqContext n -> SQty -> (ty, s, t : Term 0 n) -> + Eff EqualInner () - private covering - compare0' : EqContext n -> - (ty, s, t : Term 0 n) -> - (0 _ : NotRedex defs ty) => (0 _ : So (isTyConE ty)) => - (0 _ : NotRedex defs s) => (0 _ : NotRedex defs t) => - Equal_ () - compare0' ctx (TYPE {}) s t = compareType ctx s t +namespace Elim + ||| compare two eliminations according to the given variance `mode`. + ||| + ||| ⚠ **assumes that they have both been typechecked, and have + ||| equal types.** ⚠ + export covering %inline + compare0 : Definitions -> EqContext n -> SQty -> (e, f : Elim 0 n) -> + Eff EqualInner (Term 0 n) - compare0' ctx ty@(Pi {qty, arg, res, _}) s t {n} = local_ Equal $ - case (s, t) of - -- Γ, x : A ⊢ s = t : B - -- ------------------------------------------- - -- Γ ⊢ (λ x ⇒ s) = (λ x ⇒ t) : (π·x : A) → B - (Lam b1 {}, Lam b2 {}) => - compare0 ctx' res.term b1.term b2.term +||| compares two types, using the current variance `mode` for universes. +||| fails if they are not types, even if they would happen to be equal. +export covering %inline +compareType : Definitions -> EqContext n -> (s, t : Term 0 n) -> + Eff EqualInner () - -- Γ, x : A ⊢ s = e x : B - -- ----------------------------------- - -- Γ ⊢ (λ x ⇒ s) = e : (π·x : A) → B - (E e, Lam b {}) => eta s.loc e b - (Lam b {}, E e) => eta s.loc e b - (E e, E f) => Elim.compare0 ctx e f +private +0 NotRedexEq : {isRedex : RedexTest tm} -> CanWhnf tm isRedex => + Definitions -> EqContext n -> SQty -> Pred (tm 0 n) +NotRedexEq defs ctx sg t = NotRedex defs (toWhnfContext ctx) sg t - (Lam {}, t) => wrongType t.loc ctx ty t - (E _, t) => wrongType t.loc ctx ty t - (s, _) => wrongType s.loc ctx ty s - where - ctx' : EqContext (S n) - ctx' = extendTy qty res.name arg ctx +namespace Term + private covering + compare0' : (defs : Definitions) -> (ctx : EqContext n) -> (sg : SQty) -> + (ty, s, t : Term 0 n) -> + (0 _ : NotRedexEq defs ctx SZero ty) => + (0 _ : So (isTyConE ty)) => + (0 _ : NotRedexEq defs ctx sg s) => + (0 _ : NotRedexEq defs ctx sg t) => + Eff EqualInner () + compare0' defs ctx sg (TYPE {}) s t = compareType defs ctx s t - eta : Loc -> Elim 0 n -> ScopeTerm 0 n -> Equal_ () - eta _ e (S _ (Y b)) = compare0 ctx' res.term (toLamBody e) b - eta loc e (S _ (N _)) = clashT loc ctx ty s t + compare0' defs ctx sg ty@(IOState {}) s t = + -- Γ ⊢ e = f ⇒ IOState + -- ---------------------- + -- Γ ⊢ e = f ⇐ IOState + -- + -- (no canonical values, ofc) + case (s, t) of + (E e, E f) => ignore $ Elim.compare0 defs ctx sg e f + (E _, _) => wrongType t.loc ctx ty t + _ => wrongType s.loc ctx ty s - compare0' ctx ty@(Sig {fst, snd, _}) s t = local_ Equal $ - case (s, t) of - -- Γ ⊢ s₁ = t₁ : A Γ ⊢ s₂ = t₂ : B{s₁/x} - -- -------------------------------------------- - -- Γ ⊢ (s₁, t₁) = (s₂,t₂) : (x : A) × B - -- - -- [todo] η for π ≥ 0 maybe - (Pair sFst sSnd {}, Pair tFst tSnd {}) => do - compare0 ctx fst sFst tFst - compare0 ctx (sub1 snd (Ann sFst fst fst.loc)) sSnd tSnd + compare0' defs ctx sg ty@(Pi {qty, arg, res, _}) s t = withEqual $ + -- Γ ⊢ A empty + -- ------------------------------------------- + -- Γ ⊢ (λ x ⇒ s) = (λ x ⇒ t) ⇐ π.(x : A) → B + if !(isEmpty defs ctx sg arg) then pure () else + case (s, t) of + -- Γ, x : A ⊢ s = t ⇐ B + -- ------------------------------------------- + -- Γ ⊢ (λ x ⇒ s) = (λ x ⇒ t) ⇐ π.(x : A) → B + (Lam b1 {}, Lam b2 {}) => + compare0 defs ctx' sg res.term b1.term b2.term - (E e, E f) => Elim.compare0 ctx e f + -- Γ, x : A ⊢ s = e x ⇐ B + -- ----------------------------------- + -- Γ ⊢ (λ x ⇒ s) = e ⇐ π.(x : A) → B + (E e, Lam b {}) => eta s.loc e b + (Lam b {}, E e) => eta s.loc e b - (Pair {}, E _) => clashT s.loc ctx ty s t - (E _, Pair {}) => clashT s.loc ctx ty s t + (E e, E f) => ignore $ Elim.compare0 defs ctx sg e f - (Pair {}, t) => wrongType t.loc ctx ty t - (E _, t) => wrongType t.loc ctx ty t - (s, _) => wrongType s.loc ctx ty s + (Lam {}, t) => wrongType t.loc ctx ty t + (E _, t) => wrongType t.loc ctx ty t + (s, _) => wrongType s.loc ctx ty s + where + ctx' : EqContext (S n) + ctx' = extendTy qty res.name arg ctx - compare0' ctx ty@(Enum {}) s t = local_ Equal $ - case (s, t) of - -- -------------------- - -- Γ ⊢ `t = `t : {ts} - -- - -- t ∈ ts is in the typechecker, not here, ofc - (Tag t1 {}, Tag t2 {}) => - unless (t1 == t2) $ clashT s.loc ctx ty s t - (E e, E f) => Elim.compare0 ctx e f + toLamBody : Elim d n -> Term d (S n) + toLamBody e = E $ App (weakE 1 e) (BVT 0 e.loc) e.loc - (Tag {}, E _) => clashT s.loc ctx ty s t - (E _, Tag {}) => clashT s.loc ctx ty s t + eta : Loc -> Elim 0 n -> ScopeTerm 0 n -> Eff EqualInner () + eta loc e (S _ (N b)) = + if !(pure (qty /= One) `andM` isSubSing defs ctx sg arg) + then compare0 defs ctx' sg res.term (toLamBody e) (weakT 1 b) + else clashT loc ctx ty s t + eta _ e (S _ (Y b)) = + compare0 defs ctx' sg res.term (toLamBody e) b - (Tag {}, t) => wrongType t.loc ctx ty t - (E _, t) => wrongType t.loc ctx ty t - (s, _) => wrongType s.loc ctx ty s + compare0' defs ctx sg ty@(Sig {fst, snd, _}) s t = withEqual $ + case (s, t) of + -- Γ ⊢ s₁ = t₁ ⇐ A Γ ⊢ s₂ = t₂ ⇐ B{s₁/x} + -- -------------------------------------------- + -- Γ ⊢ (s₁, t₁) = (s₂,t₂) ⇐ (x : A) × B + (Pair sFst sSnd {}, Pair tFst tSnd {}) => do + compare0 defs ctx sg fst sFst tFst + compare0 defs ctx sg (sub1 snd (Ann sFst fst fst.loc)) sSnd tSnd - compare0' _ (Eq {}) _ _ = - -- ✨ uip ✨ - -- - -- ---------------------------- - -- Γ ⊢ e = f : Eq [i ⇒ A] s t - pure () + (E e, E f) => ignore $ Elim.compare0 defs ctx sg e f - compare0' ctx nat@(Nat {}) s t = local_ Equal $ - case (s, t) of - -- --------------- - -- Γ ⊢ 0 = 0 : ℕ - (Zero {}, Zero {}) => pure () + (E e, Pair fst snd _) => eta s.loc e fst snd + (Pair fst snd _, E f) => eta s.loc f fst snd - -- Γ ⊢ s = t : ℕ - -- ------------------------- - -- Γ ⊢ succ s = succ t : ℕ - (Succ s' {}, Succ t' {}) => compare0 ctx nat s' t' + (Pair {}, t) => wrongType t.loc ctx ty t + (E _, t) => wrongType t.loc ctx ty t + (s, _) => wrongType s.loc ctx ty s + where + eta : Loc -> Elim 0 n -> Term 0 n -> Term 0 n -> Eff EqualInner () + eta loc e s t = + case sg of + SZero => do + compare0 defs ctx sg fst (E $ Fst e e.loc) s + compare0 defs ctx sg (sub1 snd (Ann s fst s.loc)) (E $ Snd e e.loc) t + SOne => clashT loc ctx ty s t - (E e, E f) => Elim.compare0 ctx e f - - (Zero {}, Succ {}) => clashT s.loc ctx nat s t - (Zero {}, E _) => clashT s.loc ctx nat s t - (Succ {}, Zero {}) => clashT s.loc ctx nat s t - (Succ {}, E _) => clashT s.loc ctx nat s t - (E _, Zero {}) => clashT s.loc ctx nat s t - (E _, Succ {}) => clashT s.loc ctx nat s t - - (Zero {}, t) => wrongType t.loc ctx nat t - (Succ {}, t) => wrongType t.loc ctx nat t - (E _, t) => wrongType t.loc ctx nat t - (s, _) => wrongType s.loc ctx nat s - - compare0' ctx ty@(BOX q ty' {}) s t = local_ Equal $ - case (s, t) of - -- Γ ⊢ s = t : A - -- ----------------------- - -- Γ ⊢ [s] = [t] : [π.A] - (Box s' {}, Box t' {}) => compare0 ctx ty' s' t' - - (E e, E f) => Elim.compare0 ctx e f - - (Box {}, t) => wrongType t.loc ctx ty t - (E _, t) => wrongType t.loc ctx ty t - (s, _) => wrongType s.loc ctx ty s - - compare0' ctx ty@(E _) s t = do - -- a neutral type can only be inhabited by neutral values - -- e.g. an abstract value in an abstract type, bound variables, … - let E e = s | _ => wrongType s.loc ctx ty s - E f = t | _ => wrongType t.loc ctx ty t - Elim.compare0 ctx e f - - ||| compares two types, using the current variance `mode` for universes. - ||| fails if they are not types, even if they would happen to be equal. - export covering %inline - compareType : EqContext n -> (s, t : Term 0 n) -> Equal_ () - compareType ctx s t = do - let Val n = ctx.termLen - Element s' _ <- whnf defs ctx s.loc s - Element t' _ <- whnf defs ctx t.loc t - ts <- ensureTyCon s.loc ctx s' - tt <- ensureTyCon t.loc ctx t' - st <- either pure (const $ clashTy s.loc ctx s' t') $ - nchoose $ sameTyCon s' t' - compareType' ctx s' t' - - private covering - compareType' : EqContext n -> (s, t : Term 0 n) -> - (0 _ : NotRedex defs s) => (0 _ : So (isTyConE s)) => - (0 _ : NotRedex defs t) => (0 _ : So (isTyConE t)) => - (0 _ : So (sameTyCon s t)) => - Equal_ () - -- equality is the same as subtyping, except with the - -- "≤" in the TYPE rule being replaced with "=" - compareType' ctx a@(TYPE k {}) (TYPE l {}) = - -- 𝓀 ≤ ℓ - -- ---------------------- - -- Γ ⊢ Type 𝓀 <: Type ℓ - expectModeU a.loc !mode k l - - compareType' ctx a@(Pi {qty = sQty, arg = sArg, res = sRes, _}) - (Pi {qty = tQty, arg = tArg, res = tRes, _}) = do - -- Γ ⊢ A₁ :> A₂ Γ, x : A₁ ⊢ B₁ <: B₂ - -- ---------------------------------------- - -- Γ ⊢ (π·x : A₁) → B₁ <: (π·x : A₂) → B₂ - expectEqualQ a.loc sQty tQty - local flip $ compareType ctx sArg tArg -- contra - compareType (extendTy Zero sRes.name sArg ctx) sRes.term tRes.term - - compareType' ctx (Sig {fst = sFst, snd = sSnd, _}) - (Sig {fst = tFst, snd = tSnd, _}) = do - -- Γ ⊢ A₁ <: A₂ Γ, x : A₁ ⊢ B₁ <: B₂ - -- -------------------------------------- - -- Γ ⊢ (x : A₁) × B₁ <: (x : A₂) × B₂ - compareType ctx sFst tFst - compareType (extendTy Zero sSnd.name sFst ctx) sSnd.term tSnd.term - - compareType' ctx (Eq {ty = sTy, l = sl, r = sr, _}) - (Eq {ty = tTy, l = tl, r = tr, _}) = do - -- Γ ⊢ A₁‹ε/i› <: A₂‹ε/i› - -- Γ ⊢ l₁ = l₂ : A₁‹𝟎/i› Γ ⊢ r₁ = r₂ : A₁‹𝟏/i› - -- ------------------------------------------------ - -- Γ ⊢ Eq [i ⇒ A₁] l₁ r₂ <: Eq [i ⇒ A₂] l₂ r₂ - compareType (extendDim sTy.name Zero ctx) sTy.zero tTy.zero - compareType (extendDim sTy.name One ctx) sTy.one tTy.one - let ty = case !mode of Super => sTy; _ => tTy - local_ Equal $ do - Term.compare0 ctx ty.zero sl tl - Term.compare0 ctx ty.one sr tr - - compareType' ctx s@(Enum tags1 {}) t@(Enum tags2 {}) = do - -- ------------------ - -- Γ ⊢ {ts} <: {ts} + compare0' defs ctx sg ty@(Enum cases _) s t = withEqual $ + -- η for empty & singleton enums + if length (SortedSet.toList cases) <= 1 then pure () else + case (s, t) of + -- -------------------- + -- Γ ⊢ 't = 't ⇐ {ts} -- - -- no subtyping based on tag subsets, since that would need - -- a runtime coercion - unless (tags1 == tags2) $ clashTy s.loc ctx s t + -- t ∈ ts is in the typechecker, not here, ofc + (Tag t1 {}, Tag t2 {}) => unless (t1 == t2) $ clashT s.loc ctx ty s t + (E e, E f) => ignore $ Elim.compare0 defs ctx sg e f - compareType' ctx (Nat {}) (Nat {}) = - -- ------------ - -- Γ ⊢ ℕ <: ℕ - pure () + (Tag {}, E _) => clashT s.loc ctx ty s t + (E _, Tag {}) => clashT s.loc ctx ty s t - compareType' ctx (BOX pi a loc) (BOX rh b {}) = do - expectEqualQ loc pi rh - compareType ctx a b + (Tag {}, t) => wrongType t.loc ctx ty t + (E _, t) => wrongType t.loc ctx ty t + (s, _) => wrongType s.loc ctx ty s - compareType' ctx (E e) (E f) = do - -- no fanciness needed here cos anything other than a neutral - -- has been inlined by whnf - Elim.compare0 ctx e f + compare0' _ _ _ (Eq {}) _ _ = + -- ✨ uip ✨ + -- + -- ---------------------------- + -- Γ ⊢ e = f ⇐ Eq [i ⇒ A] s t + pure () + compare0' defs ctx sg nat@(NAT {}) s t = withEqual $ + case (s, t) of + -- --------------- + -- Γ ⊢ n = n ⇐ ℕ + (Nat x {}, Nat y {}) => unless (x == y) $ clashT s.loc ctx nat s t - namespace Elim - -- [fixme] the following code ends up repeating a lot of work in the - -- computeElimType calls. the results should be shared better + -- Γ ⊢ s = t ⇐ ℕ + -- ------------------------- + -- Γ ⊢ succ s = succ t ⇐ ℕ + (Succ s' {}, Succ t' {}) => compare0 defs ctx sg nat s' t' + (Nat (S x) {}, Succ t' {}) => compare0 defs ctx sg nat (Nat x s.loc) t' + (Succ s' {}, Nat (S y) {}) => compare0 defs ctx sg nat s' (Nat y t.loc) - ||| compare two eliminations according to the given variance `mode`. - ||| - ||| ⚠ **assumes that they have both been typechecked, and have - ||| equal types.** ⚠ - export covering %inline - compare0 : EqContext n -> (e, f : Elim 0 n) -> Equal_ () - compare0 ctx e f = - wrapErr (WhileComparingE ctx !mode e f) $ do - let Val n = ctx.termLen - Element e' ne <- whnf defs ctx e.loc e - Element f' nf <- whnf defs ctx f.loc f - unless !(isSubSing defs ctx =<< computeElimTypeE defs ctx e') $ - compare0' ctx e' f' ne nf + (E e, E f) => ignore $ Elim.compare0 defs ctx sg e f - private covering - compare0' : EqContext n -> - (e, f : Elim 0 n) -> - (0 ne : NotRedex defs e) -> (0 nf : NotRedex defs f) -> - Equal_ () + (Nat 0 {}, Succ {}) => clashT s.loc ctx nat s t + (Nat 0 {}, E _) => clashT s.loc ctx nat s t + (Succ {}, Nat 0 {}) => clashT s.loc ctx nat s t + (Succ {}, E _) => clashT s.loc ctx nat s t + (E _, Nat 0 {}) => clashT s.loc ctx nat s t + (E _, Succ {}) => clashT s.loc ctx nat s t - compare0' ctx e@(F x u _) f@(F y v _) _ _ = - unless (x == y && u == v) $ clashE e.loc ctx e f - compare0' ctx e@(F {}) f _ _ = clashE e.loc ctx e f + (Nat {}, t) => wrongType t.loc ctx nat t + (Succ {}, t) => wrongType t.loc ctx nat t + (E _, t) => wrongType t.loc ctx nat t + (s, _) => wrongType s.loc ctx nat s - compare0' ctx e@(B i _) f@(B j _) _ _ = - unless (i == j) $ clashE e.loc ctx e f - compare0' ctx e@(B {}) f _ _ = clashE e.loc ctx e f + compare0' defs ctx sg str@(STRING {}) s t = withEqual $ + case (s, t) of + (Str x _, Str y _) => unless (x == y) $ clashT s.loc ctx str s t - -- Ψ | Γ ⊢ e = f ⇒ π.(x : A) → B - -- Ψ | Γ ⊢ s = t ⇐ A - -- ------------------------------- - -- Ψ | Γ ⊢ e s = f t ⇒ B[s∷A/x] - compare0' ctx (App e s eloc) (App f t floc) ne nf = - local_ Equal $ do - compare0 ctx e f - (_, arg, _) <- expectPi defs ctx eloc =<< - computeElimTypeE defs ctx e @{noOr1 ne} - Term.compare0 ctx arg s t - compare0' ctx e@(App {}) f _ _ = clashE e.loc ctx e f + (E e, E f) => ignore $ Elim.compare0 defs ctx sg e f - -- Ψ | Γ ⊢ e = f ⇒ (x : A) × B - -- Ψ | Γ, 0.p : (x : A) × B ⊢ Q = R - -- Ψ | Γ, x : A, y : B ⊢ s = t ⇐ Q[((x, y) ∷ (x : A) × B)/p] - -- ----------------------------------------------------------- - -- Ψ | Γ ⊢ caseπ e return Q of { (x, y) ⇒ s } - -- = caseπ f return R of { (x, y) ⇒ t } ⇒ Q[e/p] - compare0' ctx (CasePair epi e eret ebody eloc) - (CasePair fpi f fret fbody {}) ne nf = - local_ Equal $ do - compare0 ctx e f - ety <- computeElimTypeE defs ctx e @{noOr1 ne} - compareType (extendTy Zero eret.name ety ctx) eret.term fret.term - (fst, snd) <- expectSig defs ctx eloc ety - let [< x, y] = ebody.names - Term.compare0 (extendTyN [< (epi, x, fst), (epi, y, snd.term)] ctx) - (substCasePairRet ebody.names ety eret) - ebody.term fbody.term - expectEqualQ e.loc epi fpi - compare0' ctx e@(CasePair {}) f _ _ = clashE e.loc ctx e f + (Str {}, E _) => clashT s.loc ctx str s t + (E _, Str {}) => clashT s.loc ctx str s t - -- Ψ | Γ ⊢ e = f ⇒ {𝐚s} - -- Ψ | Γ, x : {𝐚s} ⊢ Q = R - -- Ψ | Γ ⊢ sᵢ = tᵢ ⇐ Q[𝐚ᵢ∷{𝐚s}] - -- -------------------------------------------------- - -- Ψ | Γ ⊢ caseπ e return Q of { '𝐚ᵢ ⇒ sᵢ } - -- = caseπ f return R of { '𝐚ᵢ ⇒ tᵢ } ⇒ Q[e/x] - compare0' ctx (CaseEnum epi e eret earms eloc) - (CaseEnum fpi f fret farms floc) ne nf = - local_ Equal $ do - compare0 ctx e f - ety <- computeElimTypeE defs ctx e @{noOr1 ne} - compareType (extendTy Zero eret.name ety ctx) eret.term fret.term - for_ !(expectEnum defs ctx eloc ety) $ \t => do - l <- lookupArm eloc t earms - r <- lookupArm floc t farms - compare0 ctx (sub1 eret $ Ann (Tag t l.loc) ety l.loc) l r - expectEqualQ eloc epi fpi - where - lookupArm : Loc -> TagVal -> CaseEnumArms d n -> Equal_ (Term d n) - lookupArm loc t arms = case lookup t arms of - Just arm => pure arm - Nothing => throw $ TagNotIn loc t (fromList $ keys arms) - compare0' ctx e@(CaseEnum {}) f _ _ = clashE e.loc ctx e f + (Str {}, _) => wrongType t.loc ctx str t + (E _, _) => wrongType t.loc ctx str t + _ => wrongType s.loc ctx str s - -- Ψ | Γ ⊢ e = f ⇒ ℕ - -- Ψ | Γ, x : ℕ ⊢ Q = R - -- Ψ | Γ ⊢ s₀ = t₀ ⇐ Q[(0 ∷ ℕ)/x] - -- Ψ | Γ, x : ℕ, y : Q ⊢ s₁ = t₁ ⇐ Q[(succ x ∷ ℕ)/x] + compare0' defs ctx sg bty@(BOX q ty {}) s t = withEqual $ + case (s, t) of + -- Γ ⊢ s = t ⇐ A + -- ----------------------- + -- Γ ⊢ [s] = [t] ⇐ [π.A] + (Box s _, Box t _) => compare0 defs ctx sg ty s t + + -- Γ ⊢ σ⨴ρ · s = (case1 e return A of {[x] ⇒ x}) ⇐ A -- ----------------------------------------------------- - -- Ψ | Γ ⊢ caseπ e return Q of { 0 ⇒ s₀; x, π.y ⇒ s₁ } - -- = caseπ f return R of { 0 ⇒ t₀; x, π.y ⇒ t₁ } - -- ⇒ Q[e/x] - compare0' ctx (CaseNat epi epi' e eret ezer esuc eloc) - (CaseNat fpi fpi' f fret fzer fsuc floc) ne nf = - local_ Equal $ do - compare0 ctx e f - ety <- computeElimTypeE defs ctx e @{noOr1 ne} - compareType (extendTy Zero eret.name ety ctx) eret.term fret.term - compare0 ctx - (sub1 eret (Ann (Zero ezer.loc) (Nat ezer.loc) ezer.loc)) - ezer fzer - let [< p, ih] = esuc.names - compare0 - (extendTyN [< (epi, p, Nat p.loc), (epi', ih, eret.term)] ctx) - (substCaseSuccRet esuc.names eret) esuc.term fsuc.term - expectEqualQ e.loc epi fpi - expectEqualQ e.loc epi' fpi' - compare0' ctx e@(CaseNat {}) f _ _ = clashE e.loc ctx e f + -- Γ ⊢ σ · [s] = e ⇐ [ρ.A] + (Box s loc, E f) => eta s f + (E e, Box t loc) => eta t e - -- Ψ | Γ ⊢ e = f ⇒ [ρ. A] - -- Ψ | Γ, x : [ρ. A] ⊢ Q = R - -- Ψ | Γ, x : A ⊢ s = t ⇐ Q[([x] ∷ [ρ. A])/x] - -- -------------------------------------------------- - -- Ψ | Γ ⊢ caseπ e return Q of { [x] ⇒ s } - -- = caseπ f return R of { [x] ⇒ t } ⇒ Q[e/x] - compare0' ctx (CaseBox epi e eret ebody eloc) - (CaseBox fpi f fret fbody floc) ne nf = - local_ Equal $ do - compare0 ctx e f - ety <- computeElimTypeE defs ctx e @{noOr1 ne} - compareType (extendTy Zero eret.name ety ctx) eret.term fret.term - (q, ty) <- expectBOX defs ctx eloc ety - compare0 (extendTy (epi * q) ebody.name ty ctx) - (substCaseBoxRet ebody.name ety eret) - ebody.term fbody.term - expectEqualQ eloc epi fpi - compare0' ctx e@(CaseBox {}) f _ _ = clashE e.loc ctx e f + (E e, E f) => ignore $ Elim.compare0 defs ctx sg e f - -- all dim apps replaced with ends by whnf - compare0' _ (DApp _ (K {}) _) _ ne _ = void $ absurd $ noOr2 $ noOr2 ne - compare0' _ _ (DApp _ (K {}) _) _ nf = void $ absurd $ noOr2 $ noOr2 nf + (Box {}, _) => wrongType t.loc ctx bty t + (E _, _) => wrongType t.loc ctx bty t + _ => wrongType s.loc ctx bty s + where + eta : Term 0 n -> Elim 0 n -> Eff EqualInner () + eta s e = do + nm <- mnb "inner" e.loc + let e = CaseBox One e (SN ty) (SY [< nm] (BVT 0 nm.loc)) e.loc + compare0 defs ctx (sg `subjMult` q) ty s (E e) - -- Ψ | Γ ⊢ s <: t : B - -- -------------------------------- - -- Ψ | Γ ⊢ (s ∷ A) <: (t ∷ B) ⇒ B - -- - -- and similar for :> and A - compare0' ctx (Ann s a _) (Ann t b _) _ _ = - let ty = case !mode of Super => a; _ => b in - Term.compare0 ctx ty s t + compare0' defs ctx sg ty@(E _) s t = do + -- a neutral type can only be inhabited by neutral values + -- e.g. an abstract value in an abstract type, bound variables, … + let E e = s | _ => wrongType s.loc ctx ty s + E f = t | _ => wrongType t.loc ctx ty t + ignore $ Elim.compare0 defs ctx sg e f - -- Ψ | Γ ⊢ A‹p₁/𝑖› <: B‹p₂/𝑖› - -- Ψ | Γ ⊢ A‹q₁/𝑖› <: B‹q₂/𝑖› - -- Ψ | Γ ⊢ e <: f ⇒ _ - -- (non-neutral forms have the coercion already pushed in) - -- ----------------------------------------------------------- - -- Ψ | Γ ⊢ coe [𝑖 ⇒ A] @p₁ @q₁ e - -- <: coe [𝑖 ⇒ B] @p₂ @q₂ f ⇒ B‹q₂/𝑖› - compare0' ctx (Coe ty1 p1 q1 (E val1) _) - (Coe ty2 p2 q2 (E val2) _) ne nf = do - compareType ctx (dsub1 ty1 p1) (dsub1 ty2 p2) - compareType ctx (dsub1 ty1 q1) (dsub1 ty2 q2) - compare0 ctx val1 val2 - compare0' ctx e@(Coe {}) f _ _ = clashE e.loc ctx e f - -- (no neutral compositions in a closed dctx) - compare0' _ (Comp {r = K e _, _}) _ ne _ = void $ absurd $ noOr2 ne - compare0' _ (Comp {r = B i _, _}) _ _ _ = absurd i - compare0' _ _ (Comp {r = K _ _, _}) _ nf = void $ absurd $ noOr2 nf +private covering +compareType' : (defs : Definitions) -> (ctx : EqContext n) -> + (s, t : Term 0 n) -> + (0 _ : NotRedexEq defs ctx SZero s) => (0 _ : So (isTyConE s)) => + (0 _ : NotRedexEq defs ctx SZero t) => (0 _ : So (isTyConE t)) => + (0 _ : So (sameTyCon s t)) => + Eff EqualInner () +-- equality is the same as subtyping, except with the +-- "≤" in the TYPE rule being replaced with "=" +compareType' defs ctx a@(TYPE k {}) (TYPE l {}) = + -- 𝓀 ≤ ℓ + -- ---------------------- + -- Γ ⊢ Type 𝓀 <: Type ℓ + expectModeU a.loc !mode k l - -- (type case equality purely structural) - compare0' ctx (TypeCase ty1 ret1 arms1 def1 eloc) - (TypeCase ty2 ret2 arms2 def2 floc) ne _ = - local_ Equal $ do - compare0 ctx ty1 ty2 - u <- expectTYPE defs ctx eloc =<< - computeElimTypeE defs ctx ty1 @{noOr1 ne} - compareType ctx ret1 ret2 - compareType ctx def1 def2 - for_ allKinds $ \k => - compareArm ctx k ret1 u - (lookupPrecise k arms1) (lookupPrecise k arms2) def1 - compare0' ctx e@(TypeCase {}) f _ _ = clashE e.loc ctx e f +compareType' defs ctx a@(IOState {}) (IOState {}) = + -- Γ ⊢ IOState <: IOState + pure () - -- Ψ | Γ ⊢ s <: f ⇐ A - -- -------------------------- - -- Ψ | Γ ⊢ (s ∷ A) <: f ⇒ A - -- - -- and vice versa - compare0' ctx (Ann s a _) f _ _ = Term.compare0 ctx a s (E f) - compare0' ctx e (Ann t b _) _ _ = Term.compare0 ctx b (E e) t - compare0' ctx e@(Ann {}) f _ _ = clashE e.loc ctx e f +compareType' defs ctx (Pi {qty = sQty, arg = sArg, res = sRes, loc}) + (Pi {qty = tQty, arg = tArg, res = tRes, _}) = do + -- Γ ⊢ A₁ :> A₂ Γ, x : A₁ ⊢ B₁ <: B₂ + -- ---------------------------------------- + -- Γ ⊢ π.(x : A₁) → B₁ <: π.(x : A₂) → B₂ + expectEqualQ loc sQty tQty + local flip $ compareType defs ctx sArg tArg -- contra + compareType defs (extendTy0 sRes.name sArg ctx) sRes.term tRes.term - ||| compare two type-case branches, which came from the arms of the given - ||| kind. `ret` is the return type of the case expression, and `u` is the - ||| universe the head is in. - private covering - compareArm : EqContext n -> (k : TyConKind) -> - (ret : Term 0 n) -> (u : Universe) -> - (b1, b2 : Maybe (TypeCaseArmBody k 0 n)) -> - (def : Term 0 n) -> - Equal_ () - compareArm {b1 = Nothing, b2 = Nothing, _} = pure () - compareArm ctx k ret u b1 b2 def = - let def = SN def in - compareArm_ ctx k ret u (fromMaybe def b1) (fromMaybe def b2) +compareType' defs ctx (Sig {fst = sFst, snd = sSnd, _}) + (Sig {fst = tFst, snd = tSnd, _}) = do + -- Γ ⊢ A₁ <: A₂ Γ, x : A₁ ⊢ B₁ <: B₂ + -- -------------------------------------- + -- Γ ⊢ (x : A₁) × B₁ <: (x : A₂) × B₂ + compareType defs ctx sFst tFst + compareType defs (extendTy0 sSnd.name sFst ctx) sSnd.term tSnd.term - private covering - compareArm_ : EqContext n -> (k : TyConKind) -> - (ret : Term 0 n) -> (u : Universe) -> - (b1, b2 : TypeCaseArmBody k 0 n) -> - Equal_ () - compareArm_ ctx KTYPE ret u b1 b2 = - compare0 ctx ret b1.term b2.term +compareType' defs ctx (Eq {ty = sTy, l = sl, r = sr, _}) + (Eq {ty = tTy, l = tl, r = tr, _}) = do + -- Γ ⊢ A₁‹ε/i› <: A₂‹ε/i› + -- Γ ⊢ l₁ = l₂ : A₁‹𝟎/i› Γ ⊢ r₁ = r₂ : A₁‹𝟏/i› + -- ------------------------------------------------ + -- Γ ⊢ Eq [i ⇒ A₁] l₁ r₂ <: Eq [i ⇒ A₂] l₂ r₂ + compareType defs (extendDim sTy.name Zero ctx) sTy.zero tTy.zero + compareType defs (extendDim sTy.name One ctx) sTy.one tTy.one + ty <- bigger sTy tTy + withEqual $ do + Term.compare0 defs ctx SZero ty.zero sl tl + Term.compare0 defs ctx SZero ty.one sr tr - compareArm_ ctx KPi ret u b1 b2 = do - let [< a, b] = b1.names - ctx = extendTyN - [< (Zero, a, TYPE u a.loc), - (Zero, b, Arr Zero (BVT 0 b.loc) (TYPE u b.loc) b.loc)] ctx - compare0 ctx (weakT 2 ret) b1.term b2.term +compareType' defs ctx s@(Enum tags1 {}) t@(Enum tags2 {}) = do + -- ------------------ + -- Γ ⊢ {ts} <: {ts} + -- + -- no subtyping based on tag subsets, since that would need + -- a runtime coercion + unless (tags1 == tags2) $ clashTy s.loc ctx s t - compareArm_ ctx KSig ret u b1 b2 = do - let [< a, b] = b1.names - ctx = extendTyN - [< (Zero, a, TYPE u a.loc), - (Zero, b, Arr Zero (BVT 0 b.loc) (TYPE u b.loc) b.loc)] ctx - compare0 ctx (weakT 2 ret) b1.term b2.term +compareType' defs ctx (NAT {}) (NAT {}) = + -- ------------ + -- Γ ⊢ ℕ <: ℕ + pure () - compareArm_ ctx KEnum ret u b1 b2 = - compare0 ctx ret b1.term b2.term +compareType' defs ctx (STRING {}) (STRING {}) = + -- ------------ + -- Γ ⊢ String <: String + pure () - compareArm_ ctx KEq ret u b1 b2 = do - let [< a0, a1, a, l, r] = b1.names - ctx = extendTyN - [< (Zero, a0, TYPE u a0.loc), - (Zero, a1, TYPE u a1.loc), - (Zero, a, Eq0 (TYPE u a.loc) - (BVT 1 a0.loc) (BVT 0 a1.loc) a.loc), - (Zero, l, BVT 2 a0.loc), - (Zero, r, BVT 2 a1.loc)] ctx - compare0 ctx (weakT 5 ret) b1.term b2.term +compareType' defs ctx (BOX pi a loc) (BOX rh b {}) = do + expectEqualQ loc pi rh + compareType defs ctx a b - compareArm_ ctx KNat ret u b1 b2 = - compare0 ctx ret b1.term b2.term +compareType' defs ctx (E e) (E f) = do + -- no fanciness needed here cos anything other than a neutral + -- has been inlined by whnf + ignore $ Elim.compare0 defs ctx SZero e f - compareArm_ ctx KBOX ret u b1 b2 = do - let ctx = extendTy Zero b1.name (TYPE u b1.name.loc) ctx - compare0 ctx (weakT 1 ret) b1.term b1.term +private +lookupFree : Has ErrorEff fs => + Definitions -> EqContext n -> Name -> Universe -> Loc -> + Eff fs (Term 0 n) +lookupFree defs ctx x u loc = + case lookup x defs of + Nothing => throw $ NotInScope loc x + Just d => pure $ d.typeWithAt [|Z|] ctx.termLen u + + +export +typecaseTel : (k : TyConKind) -> BContext (arity k) -> Universe -> + CtxExtension d n (arity k + n) +typecaseTel k xs u = case k of + KTYPE => [<] + KIOState => [<] + -- A : ★ᵤ, B : 0.A → ★ᵤ + KPi => + let [< a, b] = xs in + [< (Zero, a, TYPE u a.loc), + (Zero, b, Arr Zero (BVT 0 b.loc) (TYPE u b.loc) b.loc)] + KSig => + let [< a, b] = xs in + [< (Zero, a, TYPE u a.loc), + (Zero, b, Arr Zero (BVT 0 b.loc) (TYPE u b.loc) b.loc)] + KEnum => [<] + -- A₀ : ★ᵤ, A₁ : ★ᵤ, A : (A₀ ≡ A₁ : ★ᵤ), L : A₀, R : A₀ + KEq => + let [< a0, a1, a, l, r] = xs in + [< (Zero, a0, TYPE u a0.loc), + (Zero, a1, TYPE u a1.loc), + (Zero, a, Eq0 (TYPE u a.loc) (BVT 1 a.loc) (BVT 0 a.loc) a.loc), + (Zero, l, BVT 2 l.loc), + (Zero, r, BVT 2 r.loc)] + KNat => [<] + KString => [<] + -- A : ★ᵤ + KBOX => let [< a] = xs in [< (Zero, a, TYPE u a.loc)] + + +namespace Elim + private data InnerErr : Type where + + private + InnerErrEff : Type -> Type + InnerErrEff = StateL InnerErr (Maybe Error) + + private + EqualElim : List (Type -> Type) + EqualElim = InnerErrEff :: EqualInner + + private covering %inline + computeElimTypeE : (defs : Definitions) -> (ctx : EqContext n) -> + (sg : SQty) -> + (e : Elim 0 n) -> (0 ne : NotRedexEq defs ctx sg e) => + Eff EqualElim (Term 0 n) + computeElimTypeE defs ectx sg e = lift $ + computeElimType defs (toWhnfContext ectx) sg e + + private %inline + putError : Has InnerErrEff fs => Error -> Eff fs () + putError err = modifyAt InnerErr (<|> Just err) + + private %inline + try : Eff EqualInner () -> Eff EqualElim () + try act = lift $ catch putError $ lift act {fs' = EqualElim} + + private %inline + succeeds : Eff EqualInner a -> Eff EqualElim Bool + succeeds act = lift $ map isRight $ runExcept act + + private covering %inline + clashE : (defs : Definitions) -> (ctx : EqContext n) -> (sg : SQty) -> + (e, f : Elim 0 n) -> (0 nf : NotRedexEq defs ctx sg f) => + Eff EqualElim (Term 0 n) + clashE defs ctx sg e f = do + putError $ ClashE e.loc ctx !mode e f + computeElimTypeE defs ctx sg f + + + ||| compare two type-case branches, which came from the arms of the given + ||| kind. `ret` is the return type of the case expression, and `u` is the + ||| universe the head is in. + private covering + compareArm : Definitions -> EqContext n -> (k : TyConKind) -> + (ret : Term 0 n) -> (u : Universe) -> + (b1, b2 : Maybe (TypeCaseArmBody k 0 n)) -> + (def : Term 0 n) -> + Eff EqualElim () + compareArm {b1 = Nothing, b2 = Nothing, _} = pure () + compareArm defs ctx k ret u b1 b2 def = do + let def = SN def + left = fromMaybe def b1; right = fromMaybe def b2 + names = (fromMaybe def $ b1 <|> b2).names + try $ compare0 defs (extendTyN (typecaseTel k names u) ctx) + SZero (weakT (arity k) ret) left.term right.term + + private covering + compare0Inner : Definitions -> EqContext n -> (sg : SQty) -> + (e, f : Elim 0 n) -> Eff EqualElim (Term 0 n) + + private covering + compare0Inner' : (defs : Definitions) -> (ctx : EqContext n) -> (sg : SQty) -> + (e, f : Elim 0 n) -> + (0 ne : NotRedexEq defs ctx sg e) -> + (0 nf : NotRedexEq defs ctx sg f) -> + Eff EqualElim (Term 0 n) + + -- (no neutral dim apps or comps in a closed dctx) + compare0Inner' _ _ _ (DApp _ (K {}) _) _ ne _ = + void $ absurd $ noOr2 $ noOr2 ne + compare0Inner' _ _ _ _ (DApp _ (K {}) _) _ nf = + void $ absurd $ noOr2 $ noOr2 nf + compare0Inner' _ _ _ (Comp {r = K {}, _}) _ ne _ = void $ absurd $ noOr2 ne + compare0Inner' _ _ _ (Comp {r = B i _, _}) _ _ _ = absurd i + compare0Inner' _ _ _ _ (Comp {r = K {}, _}) _ nf = void $ absurd $ noOr2 nf + + -- Ψ | Γ ⊢ A‹p₁/𝑖› <: B‹p₂/𝑖› + -- Ψ | Γ ⊢ A‹q₁/𝑖› <: B‹q₂/𝑖› + -- Ψ | Γ ⊢ s <: t ⇐ B‹p₂/𝑖› + -- ----------------------------------------------------------- + -- Ψ | Γ ⊢ coe [𝑖 ⇒ A] @p₁ @q₁ s + -- <: coe [𝑖 ⇒ B] @p₂ @q₂ t ⇒ B‹q₂/𝑖› + compare0Inner' defs ctx sg (Coe ty1 p1 q1 val1 _) + (Coe ty2 p2 q2 val2 _) ne nf = do + let ty1p = dsub1 ty1 p1; ty2p = dsub1 ty2 p2 + ty1q = dsub1 ty1 q1; ty2q = dsub1 ty2 q2 + (ty_p, ty_q) <- bigger (ty1p, ty1q) (ty2p, ty2q) + try $ do + compareType defs ctx ty1p ty2p + compareType defs ctx ty1q ty2q + Term.compare0 defs ctx sg ty_p val1 val2 + pure $ ty_q + + -- an adaptation of the rule + -- + -- Ψ | Γ ⊢ A‹0/𝑖› = A‹1/𝑖› ⇐ ★ + -- ----------------------------------------------------- + -- Ψ | Γ ⊢ coe (𝑖 ⇒ A) @p @q s ⇝ (s ∷ A‹1/𝑖›) ⇒ A‹1/𝑖› + -- + -- it's here so that whnf doesn't have to depend on the equality checker + compare0Inner' defs ctx sg (Coe ty p q val loc) f _ _ = + if !(succeeds $ withEqual $ compareType defs ctx ty.zero ty.one) + then compare0Inner defs ctx sg (Ann val (dsub1 ty q) loc) f + else clashE defs ctx sg (Coe ty p q val loc) f + + -- symmetric version of the above + compare0Inner' defs ctx sg e (Coe ty p q val loc) _ _ = + if !(succeeds $ withEqual $ compareType defs ctx ty.zero ty.one) + then compare0Inner defs ctx sg e (Ann val (dsub1 ty q) loc) + else clashE defs ctx sg e (Coe ty p q val loc) + + compare0Inner' defs ctx sg e@(F {}) f _ _ = do + if e == f then computeElimTypeE defs ctx sg f + else clashE defs ctx sg e f + + compare0Inner' defs ctx sg e@(B {}) f _ _ = do + if e == f then computeElimTypeE defs ctx sg f + else clashE defs ctx sg e f + + -- Ψ | Γ ⊢ e = f ⇒ π.(x : A) → B + -- Ψ | Γ ⊢ s = t ⇐ A + -- ------------------------------- + -- Ψ | Γ ⊢ e s = f t ⇒ B[s∷A/x] + compare0Inner' defs ctx sg (App e s eloc) (App f t floc) ne nf = do + ety <- compare0Inner defs ctx sg e f + (_, arg, res) <- expectPi defs ctx sg eloc ety + try $ Term.compare0 defs ctx sg arg s t + pure $ sub1 res $ Ann s arg s.loc + compare0Inner' defs ctx sg e'@(App {}) f' ne nf = + clashE defs ctx sg e' f' + + -- Ψ | Γ ⊢ e = f ⇒ (x : A) × B + -- Ψ | Γ, 0.p : (x : A) × B ⊢ Q = R + -- Ψ | Γ, x : A, y : B ⊢ s = t ⇐ Q[((x, y) ∷ (x : A) × B)/p] + -- ----------------------------------------------------------- + -- Ψ | Γ ⊢ caseπ e return Q of { (x, y) ⇒ s } + -- = caseπ f return R of { (x, y) ⇒ t } ⇒ Q[e/p] + compare0Inner' defs ctx sg (CasePair epi e eret ebody eloc) + (CasePair fpi f fret fbody floc) ne nf = + withEqual $ do + ety <- compare0Inner defs ctx sg e f + (fst, snd) <- expectSig defs ctx sg eloc ety + let [< x, y] = ebody.names + try $ do + compareType defs (extendTy0 eret.name ety ctx) eret.term fret.term + Term.compare0 defs + (extendTyN [< (epi, x, fst), (epi, y, snd.term)] ctx) sg + (substCasePairRet ebody.names ety eret) + ebody.term fbody.term + expectEqualQ e.loc epi fpi + pure $ sub1 eret e + compare0Inner' defs ctx sg e'@(CasePair {}) f' ne nf = + clashE defs ctx sg e' f' + + -- Ψ | Γ ⊢ e = f ⇒ (x : A) × B + -- ------------------------------ + -- Ψ | Γ ⊢ fst e = fst f ⇒ A + compare0Inner' defs ctx sg (Fst e eloc) (Fst f floc) ne nf = + withEqual $ do + ety <- compare0Inner defs ctx sg e f + fst <$> expectSig defs ctx sg eloc ety + compare0Inner' defs ctx sg e@(Fst {}) f _ _ = + clashE defs ctx sg e f + + -- Ψ | Γ ⊢ e = f ⇒ (x : A) × B + -- ------------------------------------ + -- Ψ | Γ ⊢ snd e = snd f ⇒ B[fst e/x] + compare0Inner' defs ctx sg (Snd e eloc) (Snd f floc) ne nf = + withEqual $ do + ety <- compare0Inner defs ctx sg e f + (_, tsnd) <- expectSig defs ctx sg eloc ety + pure $ sub1 tsnd (Fst e eloc) + compare0Inner' defs ctx sg e@(Snd {}) f _ _ = + clashE defs ctx sg e f + + -- Ψ | Γ ⊢ e = f ⇒ {𝐚s} + -- Ψ | Γ, x : {𝐚s} ⊢ Q = R + -- Ψ | Γ ⊢ sᵢ = tᵢ ⇐ Q[𝐚ᵢ∷{𝐚s}] + -- -------------------------------------------------- + -- Ψ | Γ ⊢ caseπ e return Q of { '𝐚ᵢ ⇒ sᵢ } + -- = caseπ f return R of { '𝐚ᵢ ⇒ tᵢ } ⇒ Q[e/x] + compare0Inner' defs ctx sg (CaseEnum epi e eret earms eloc) + (CaseEnum fpi f fret farms floc) ne nf = + withEqual $ do + ety <- compare0Inner defs ctx sg e f + try $ + compareType defs (extendTy0 eret.name ety ctx) eret.term fret.term + for_ (SortedMap.toList earms) $ \(t, l) => do + let Just r = lookup t farms + | Nothing => putError $ TagNotIn floc t (fromList $ keys farms) + let t' = Ann (Tag t l.loc) ety l.loc + try $ Term.compare0 defs ctx sg (sub1 eret t') l r + try $ expectEqualQ eloc epi fpi + pure $ sub1 eret e + compare0Inner' defs ctx sg e@(CaseEnum {}) f _ _ = clashE defs ctx sg e f + + -- Ψ | Γ ⊢ e = f ⇒ ℕ + -- Ψ | Γ, x : ℕ ⊢ Q = R + -- Ψ | Γ ⊢ s₀ = t₀ ⇐ Q[(0 ∷ ℕ)/x] + -- Ψ | Γ, x : ℕ, y : Q ⊢ s₁ = t₁ ⇐ Q[(succ x ∷ ℕ)/x] + -- ----------------------------------------------------- + -- Ψ | Γ ⊢ caseπ e return Q of { 0 ⇒ s₀; x, π.y ⇒ s₁ } + -- = caseπ f return R of { 0 ⇒ t₀; x, π.y ⇒ t₁ } + -- ⇒ Q[e/x] + compare0Inner' defs ctx sg (CaseNat epi epi' e eret ezer esuc eloc) + (CaseNat fpi fpi' f fret fzer fsuc floc) ne nf = + withEqual $ do + ety <- compare0Inner defs ctx sg e f + let [< p, ih] = esuc.names + try $ do + compareType defs (extendTy0 eret.name ety ctx) eret.term fret.term + Term.compare0 defs ctx sg + (sub1 eret (Ann (Zero ezer.loc) (NAT ezer.loc) ezer.loc)) + ezer fzer + Term.compare0 defs + (extendTyN [< (epi, p, NAT p.loc), (epi', ih, eret.term)] ctx) sg + (substCaseSuccRet esuc.names eret) esuc.term fsuc.term + expectEqualQ e.loc epi fpi + expectEqualQ e.loc epi' fpi' + pure $ sub1 eret e + compare0Inner' defs ctx sg e@(CaseNat {}) f _ _ = clashE defs ctx sg e f + + -- Ψ | Γ ⊢ e = f ⇒ [ρ. A] + -- Ψ | Γ, x : [ρ. A] ⊢ Q = R + -- Ψ | Γ, x : A ⊢ s = t ⇐ Q[([x] ∷ [ρ. A])/x] + -- -------------------------------------------------- + -- Ψ | Γ ⊢ caseπ e return Q of { [x] ⇒ s } + -- = caseπ f return R of { [x] ⇒ t } ⇒ Q[e/x] + compare0Inner' defs ctx sg (CaseBox epi e eret ebody eloc) + (CaseBox fpi f fret fbody floc) ne nf = + withEqual $ do + ety <- compare0Inner defs ctx sg e f + (q, ty) <- expectBOX defs ctx sg eloc ety + try $ do + compareType defs (extendTy0 eret.name ety ctx) eret.term fret.term + Term.compare0 defs (extendTy (epi * q) ebody.name ty ctx) sg + (substCaseBoxRet ebody.name ety eret) + ebody.term fbody.term + expectEqualQ eloc epi fpi + pure $ sub1 eret e + compare0Inner' defs ctx sg e@(CaseBox {}) f _ _ = clashE defs ctx sg e f + + -- Ψ | Γ ⊢ s <: t : B + -- -------------------------------- + -- Ψ | Γ ⊢ (s ∷ A) <: (t ∷ B) ⇒ B + -- + -- and similar for :> and A + compare0Inner' defs ctx sg (Ann s a _) (Ann t b _) _ _ = do + ty <- bigger a b + try $ Term.compare0 defs ctx sg ty s t + pure ty + + -- (type case equality purely structural) + compare0Inner' defs ctx sg (TypeCase ty1 ret1 arms1 def1 eloc) + (TypeCase ty2 ret2 arms2 def2 floc) ne _ = + case sg `decEq` SZero of + Yes Refl => withEqual $ do + ety <- compare0Inner defs ctx SZero ty1 ty2 + u <- expectTYPE defs ctx SZero eloc ety + try $ do + compareType defs ctx ret1 ret2 + compareType defs ctx def1 def2 + for_ allKinds $ \k => + compareArm defs ctx k ret1 u + (lookupPrecise k arms1) (lookupPrecise k arms2) def1 + pure ret1 + No _ => do + putError $ ClashQ eloc sg.qty Zero + computeElimTypeE defs ctx sg $ TypeCase ty1 ret1 arms1 def1 eloc + compare0Inner' defs ctx sg e@(TypeCase {}) f _ _ = clashE defs ctx sg e f + + -- Ψ | Γ ⊢ s <: f ⇐ A + -- -------------------------- + -- Ψ | Γ ⊢ (s ∷ A) <: f ⇒ A + -- + -- and vice versa + compare0Inner' defs ctx sg (Ann s a _) f _ _ = do + try $ Term.compare0 defs ctx sg a s (E f) + pure a + compare0Inner' defs ctx sg e (Ann t b _) _ _ = do + try $ Term.compare0 defs ctx sg b (E e) t + pure b + compare0Inner' defs ctx sg e@(Ann {}) f _ _ = + clashE defs ctx sg e f + + compare0Inner defs ctx sg e f = do + Element e ne <- whnf defs ctx sg e.loc e + Element f nf <- whnf defs ctx sg f.loc f + ty <- compare0Inner' defs ctx sg e f ne nf + if !(lift $ isSubSing defs ctx sg ty) && isJust !(getAt InnerErr) + then putAt InnerErr Nothing + else modifyAt InnerErr $ map $ WhileComparingE ctx !mode sg e f + pure ty + + +namespace Term + export covering %inline + compare0NoLog : + Definitions -> EqContext n -> SQty -> (ty, s, t : Term 0 n) -> + Eff EqualInner () + compare0NoLog defs ctx sg ty s t = + wrapErr (WhileComparingT ctx !mode sg ty s t) $ do + Element ty' _ <- whnf defs ctx SZero ty.loc ty + Element s' _ <- whnf defs ctx sg s.loc s + Element t' _ <- whnf defs ctx sg t.loc t + tty <- ensureTyCon ty.loc ctx ty' + compare0' defs ctx sg ty' s' t' + + compare0 defs ctx sg ty s t = do + sayMany "equal" s.loc + [30 :> "Term.compare0", + 30 :> hsep ["mode =", pshow !mode], + 95 :> hsep ["ctx =", runPretty $ prettyEqContext ctx], + 95 :> hsep ["sg =", runPretty $ prettyQty sg.qty], + 31 :> hsep ["ty =", runPretty $ prettyTerm [<] ctx.tnames ty], + 30 :> hsep ["s =", runPretty $ prettyTerm [<] ctx.tnames s], + 30 :> hsep ["t =", runPretty $ prettyTerm [<] ctx.tnames t]] + compare0NoLog defs ctx sg ty s t + +namespace Elim + export covering %inline + compare0NoLog : + Definitions -> EqContext n -> SQty -> (e, f : Elim 0 n) -> + Eff EqualInner (Term 0 n) + compare0NoLog defs ctx sg e f = do + (ty, err) <- runStateAt InnerErr Nothing $ compare0Inner defs ctx sg e f + maybe (pure ty) throw err + + compare0 defs ctx sg e f = do + sayMany "equal" e.loc + [30 :> "Elim.compare0", + 30 :> hsep ["mode =", pshow !mode], + 95 :> hsep ["ctx =", runPretty $ prettyEqContext ctx], + 95 :> hsep ["sg =", runPretty $ prettyQty sg.qty], + 30 :> hsep ["e =", runPretty $ prettyElim [<] ctx.tnames e], + 30 :> hsep ["f =", runPretty $ prettyElim [<] ctx.tnames f]] + ty <- compare0NoLog defs ctx sg e f + say "equal" 31 e.loc $ + hsep ["Elim.compare0 ⇝", runPretty $ prettyTerm [<] ctx.tnames ty] + pure ty + +export covering %inline +compareTypeNoLog : + Definitions -> EqContext n -> (s, t : Term 0 n) -> Eff EqualInner () +compareTypeNoLog defs ctx s t = do + Element s' _ <- whnf defs ctx SZero s.loc s + Element t' _ <- whnf defs ctx SZero t.loc t + ts <- ensureTyCon s.loc ctx s' + tt <- ensureTyCon t.loc ctx t' + let Left _ = choose $ sameTyCon s' t' | _ => clashTy s.loc ctx s' t' + compareType' defs ctx s' t' + +compareType defs ctx s t = do + sayMany "equal" s.loc + [30 :> "compareType", + 30 :> hsep ["mode =", pshow !mode], + 95 :> hsep ["ctx =", runPretty $ prettyEqContext ctx], + 30 :> hsep ["s =", runPretty $ prettyTerm [<] ctx.tnames s], + 30 :> hsep ["t =", runPretty $ prettyTerm [<] ctx.tnames t]] + compareTypeNoLog defs ctx s t + + +private +getVars : TyContext d _ -> FreeVars d -> List BindName +getVars ctx (FV fvs) = case ctx.dctx of + ZeroIsOne => [] + C eqs => toList $ getVars' ctx.dnames eqs fvs +where + getVars' : BContext d' -> DimEq' d' -> FreeVars' d' -> SnocList BindName + getVars' (names :< name) (eqs :< eq) (fvs :< fv) = + let rest = getVars' names eqs fvs in + case eq of Nothing => rest :< name + Just _ => rest + getVars' [<] [<] [<] = [<] parameters (loc : Loc) (ctx : TyContext d n) - -- [todo] only split on the dvars that are actually used anywhere in - -- the calls to `splits` - parameters (mode : EqMode) private - fromEqual_ : Equal_ a -> Equal a - fromEqual_ act = lift $ evalState mode act + fromInner : Eff EqualInner a -> Eff Equal a + fromInner = lift . map fst . runState mode private - eachFace : Applicative f => (EqContext n -> DSubst d 0 -> f ()) -> f () - eachFace act = - for_ (splits loc ctx.dctx) $ \th => act (makeEqContext ctx th) th + eachCorner : Has Log fs => Loc -> FreeVars d -> + (EqContext n -> DSubst d 0 -> Eff fs ()) -> Eff fs () + eachCorner loc fvs act = do + say "equal" 50 loc $ + let vars = map prettyBind' (getVars ctx fvs) in + hsep $ "eachCorner: split on" :: if null vars then ["(none)"] else vars + for_ (splits loc ctx.dctx fvs) $ \th => + act (makeEqContext ctx th) th private - runCompare : (Definitions -> EqContext n -> DSubst d 0 -> Equal_ ()) -> - Equal () - runCompare act = fromEqual_ $ eachFace $ act !(askAt DEFS) + CompareAction : Nat -> Nat -> Type + CompareAction d n = + Definitions -> EqContext n -> DSubst d 0 -> Eff EqualInner () + + private + runCompare : Loc -> FreeVars d -> CompareAction d n -> Eff Equal () + runCompare loc fvs act = fromInner $ eachCorner loc fvs $ act !(askAt DEFS) + + private + foldMap1 : Semigroup b => (a -> b) -> List1 a -> b + foldMap1 f = foldl1By (\x, y => x <+> f y) f + + private + fdvAll : HasFreeDVars t => (xs : List (t d n)) -> (0 _ : NonEmpty xs) => + FreeVars d + fdvAll (x :: xs) = foldMap1 (fdvWith ctx.dimLen ctx.termLen) (x ::: xs) namespace Term export covering - compare : (ty, s, t : Term d n) -> Equal () - compare ty s t = runCompare $ \defs, ectx, th => - compare0 defs ectx (ty // th) (s // th) (t // th) + compare : SQty -> (ty, s, t : Term d n) -> Eff Equal () + compare sg ty s t = runCompare s.loc (fdvAll [ty, s, t]) $ + \defs, ectx, th => compare0 defs ectx sg (ty // th) (s // th) (t // th) export covering - compareType : (s, t : Term d n) -> Equal () - compareType s t = runCompare $ \defs, ectx, th => - compareType defs ectx (s // th) (t // th) + compareType : (s, t : Term d n) -> Eff Equal () + compareType s t = runCompare s.loc (fdvAll [s, t]) $ + \defs, ectx, th => compareType defs ectx (s // th) (t // th) namespace Elim ||| you don't have to pass the type in but the arguments must still be ||| of the same type!! export covering - compare : (e, f : Elim d n) -> Equal () - compare e f = runCompare $ \defs, ectx, th => - compare0 defs ectx (e // th) (f // th) + compare : SQty -> (e, f : Elim d n) -> Eff Equal () + compare sg e f = runCompare e.loc (fdvAll [e, f]) $ + \defs, ectx, th => ignore $ compare0 defs ectx sg (e // th) (f // th) namespace Term export covering %inline - equal, sub, super : (ty, s, t : Term d n) -> Equal () + equal, sub, super : SQty -> (ty, s, t : Term d n) -> Eff Equal () equal = compare Equal sub = compare Sub super = compare Super export covering %inline - equalType, subtype, supertype : (s, t : Term d n) -> Equal () + equalType, subtype, supertype : (s, t : Term d n) -> Eff Equal () equalType = compareType Equal subtype = compareType Sub supertype = compareType Super namespace Elim export covering %inline - equal, sub, super : (e, f : Elim d n) -> Equal () + equal, sub, super : SQty -> (e, f : Elim d n) -> Eff Equal () equal = compare Equal sub = compare Sub super = compare Super diff --git a/lib/Quox/FinExtra.idr b/lib/Quox/FinExtra.idr deleted file mode 100644 index fffc8e3..0000000 --- a/lib/Quox/FinExtra.idr +++ /dev/null @@ -1,44 +0,0 @@ -module Quox.FinExtra - -import public Data.Fin -import Quox.Decidable - -public export -data LT : Rel (Fin n) where - LTZ : FZ `LT` FS i - LTS : i `LT` j -> FS i `LT` FS j -%builtin Natural FinExtra.LT -%name FinExtra.LT lt - -public export %inline -GT : Rel (Fin n) -GT = flip LT - -export -Transitive (Fin n) LT where - transitive LTZ (LTS _) = LTZ - transitive (LTS p) (LTS q) = LTS $ transitive p q - -export Uninhabited (i `FinExtra.LT` i) where uninhabited (LTS p) = uninhabited p -export Uninhabited (FS i `LT` FZ) where uninhabited _ impossible - - -public export -data Compare : Rel (Fin n) where - IsLT : (lt : i `LT` j) -> Compare i j - IsEQ : Compare i i - IsGT : (gt : i `GT` j) -> Compare i j -%name Compare cmp - -export -compareS : Compare i j -> Compare (FS i) (FS j) -compareS (IsLT lt) = IsLT (LTS lt) -compareS IsEQ = IsEQ -compareS (IsGT gt) = IsGT (LTS gt) - -export -compareP : (i, j : Fin n) -> Compare i j -compareP FZ FZ = IsEQ -compareP FZ (FS j) = IsLT LTZ -compareP (FS i) FZ = IsGT LTZ -compareP (FS i) (FS j) = compareS $ compareP i j diff --git a/lib/Quox/FreeVars.idr b/lib/Quox/FreeVars.idr new file mode 100644 index 0000000..de52813 --- /dev/null +++ b/lib/Quox/FreeVars.idr @@ -0,0 +1,310 @@ +module Quox.FreeVars + +import Quox.Syntax.Term.Base +import Data.Maybe +import Data.Nat +import Data.Singleton +import Data.SortedSet +import Derive.Prelude + +%language ElabReflection + + +public export +FreeVars' : Nat -> Type +FreeVars' n = Context' Bool n + +public export +record FreeVars n where + constructor FV + vars : FreeVars' n +%name FreeVars xs + +%runElab deriveIndexed "FreeVars" [Eq, Ord, Show] + + +export %inline +(||) : FreeVars n -> FreeVars n -> FreeVars n +FV s || FV t = FV $ zipWith (\x, y => x || y) s t + +export %inline +(&&) : FreeVars n -> FreeVars n -> FreeVars n +FV s && FV t = FV $ zipWith (\x, y => x && y) s t + +export %inline Semigroup (FreeVars n) where (<+>) = (||) + +export %inline [AndS] Semigroup (FreeVars n) where (<+>) = (&&) + +export +only : {n : Nat} -> Var n -> FreeVars n +only i = FV $ only' i where + only' : {n' : Nat} -> Var n' -> FreeVars' n' + only' VZ = replicate (pred n') False :< True + only' (VS i) = only' i :< False + +export %inline +all : {n : Nat} -> FreeVars n +all = FV $ replicate n True + +export %inline +none : {n : Nat} -> FreeVars n +none = FV $ replicate n False + + +export %inline +uncons : FreeVars (S n) -> (FreeVars n, Bool) +uncons (FV (xs :< x)) = (FV xs, x) + + +export %inline {n : Nat} -> Monoid (FreeVars n) where neutral = none +export %inline [AndM] {n : Nat} -> Monoid (FreeVars n) where neutral = all + + +private +self : {n : Nat} -> Context' (FreeVars n) n +self = tabulate (\i => FV $ tabulate (== i) n) n + +export +shift : forall from, to. Shift from to -> FreeVars from -> FreeVars to +shift by (FV xs) = FV $ shift' by xs where + shift' : Shift from' to' -> FreeVars' from' -> FreeVars' to' + shift' SZ ctx = ctx + shift' (SS by) ctx = shift' by ctx :< False + + +export +fromSet : {n : Nat} -> SortedSet (Var n) -> FreeVars n +fromSet vs = FV $ tabulateLT n $ \i => contains (V i) vs + +export +toSet : {n : Nat} -> FreeVars n -> SortedSet (Var n) +toSet (FV vs) = + foldl_ (\s, i => maybe s (\i => insert i s) i) empty $ + zipWith (\i, b => guard b $> i) (tabulateLT n V) vs + + +public export +interface HasFreeVars (0 tm : Nat -> Type) where + constructor HFV + fv : {n : Nat} -> tm n -> FreeVars n + +public export +interface HasFreeDVars (0 tm : TermLike) where + constructor HFDV + fdv : {d, n : Nat} -> tm d n -> FreeVars d + +public export %inline +fvWith : HasFreeVars tm => Singleton n -> tm n -> FreeVars n +fvWith (Val n) = fv + +public export %inline +fdvWith : HasFreeDVars tm => Singleton d -> Singleton n -> tm d n -> FreeVars d +fdvWith (Val d) (Val n) = fdv + +export +Fdv : (0 tm : TermLike) -> {n : Nat} -> + HasFreeDVars tm => HasFreeVars (\d => tm d n) +Fdv tm @{HFDV fdv} = HFV fdv + + +export +fvEach : {n1, n2 : Nat} -> HasFreeVars env => + Subst env n1 n2 -> Context' (Lazy (FreeVars n2)) n1 +fvEach (Shift by) = map (delay . shift by) self +fvEach (t ::: th) = fvEach th :< fv t + +export +fdvEach : {d, n1, n2 : Nat} -> HasFreeDVars env => + Subst (env d) n1 n2 -> Context' (Lazy (FreeVars d)) n1 +fdvEach (Shift by) = replicate n1 none +fdvEach (t ::: th) = fdvEach th :< fdv t + + +export +HasFreeVars Dim where + fv (K _ _) = none + fv (B i _) = only i + + +export +{s : Nat} -> HasFreeVars tm => HasFreeVars (Scoped s tm) where + fv (S _ (Y body)) = FV $ drop s (fv body).vars + fv (S _ (N body)) = fv body + +export +implementation [DScope] + {s : Nat} -> HasFreeDVars tm => + HasFreeDVars (\d, n => Scoped s (\d' => tm d' n) d) +where + fdv (S _ (Y body)) = FV $ drop s (fdv body).vars + fdv (S _ (N body)) = fdv body + +export +fvD : {0 tm : TermLike} -> {n : Nat} -> (forall d. HasFreeVars (tm d)) => + Scoped s (\d => tm d n) d -> FreeVars n +fvD (S _ (Y body)) = fv body +fvD (S _ (N body)) = fv body + +export +fdvT : HasFreeDVars tm => {s, d, n : Nat} -> Scoped s (tm d) n -> FreeVars d +fdvT (S _ (Y body)) = fdv body +fdvT (S _ (N body)) = fdv body + + +private +guardM : Monoid a => Bool -> Lazy a -> a +guardM b x = if b then x else neutral + +export +implementation + (HasFreeVars tm, HasFreeVars env) => + HasFreeVars (WithSubst tm env) +where + fv (Sub term subst) = + let Val from = getFrom subst in + foldMap (uncurry guardM) $ zipWith (,) (fv term).vars (fvEach subst) + +export +implementation [WithSubst] + ((forall d. HasFreeVars (tm d)), HasFreeDVars tm, HasFreeDVars env) => + HasFreeDVars (\d => WithSubst (tm d) (env d)) +where + fdv (Sub term subst) = + let Val from = getFrom subst in + fdv term <+> + foldMap (uncurry guardM) (zipWith (,) (fv term).vars (fdvEach subst)) + + +export HasFreeVars (Term d) +export HasFreeVars (Elim d) + +export +HasFreeVars (Term d) where + fv (TYPE {}) = none + fv (IOState {}) = none + fv (Pi {arg, res, _}) = fv arg <+> fv res + fv (Lam {body, _}) = fv body + fv (Sig {fst, snd, _}) = fv fst <+> fv snd + fv (Pair {fst, snd, _}) = fv fst <+> fv snd + fv (Enum {}) = none + fv (Tag {}) = none + fv (Eq {ty, l, r, _}) = fvD ty <+> fv l <+> fv r + fv (DLam {body, _}) = fvD body + fv (NAT {}) = none + fv (Nat {}) = none + fv (Succ {p, _}) = fv p + fv (STRING {}) = none + fv (Str {}) = none + fv (BOX {ty, _}) = fv ty + fv (Box {val, _}) = fv val + fv (Let {rhs, body, _}) = fv rhs <+> fv body + fv (E e) = fv e + fv (CloT s) = fv s + fv (DCloT s) = fv s.term + +export +HasFreeVars (Elim d) where + fv (F {}) = none + fv (B i _) = only i + fv (App {fun, arg, _}) = fv fun <+> fv arg + fv (CasePair {pair, ret, body, _}) = fv pair <+> fv ret <+> fv body + fv (Fst pair _) = fv pair + fv (Snd pair _) = fv pair + fv (CaseEnum {tag, ret, arms, _}) = + fv tag <+> fv ret <+> foldMap fv (values arms) + fv (CaseNat {nat, ret, zero, succ, _}) = + fv nat <+> fv ret <+> fv zero <+> fv succ + fv (CaseBox {box, ret, body, _}) = + fv box <+> fv ret <+> fv body + fv (DApp {fun, _}) = fv fun + fv (Ann {tm, ty, _}) = fv tm <+> fv ty + fv (Coe {ty, val, _}) = fvD ty <+> fv val + fv (Comp {ty, val, zero, one, _}) = + fv ty <+> fv val <+> fvD zero <+> fvD one + fv (TypeCase {ty, ret, arms, def, _}) = + fv ty <+> fv ret <+> fv def <+> foldMap (\x => fv x.snd) (toList arms) + fv (CloE s) = fv s + fv (DCloE s) = fv s.term + + + +private +expandDShift : {d1 : Nat} -> Shift d1 d2 -> Loc -> Context' (Dim d2) d1 +expandDShift by loc = tabulateLT d1 (\i => BV i loc // by) + +private +expandDSubst : {d1 : Nat} -> DSubst d1 d2 -> Loc -> Context' (Dim d2) d1 +expandDSubst (Shift by) loc = expandDShift by loc +expandDSubst (t ::: th) loc = expandDSubst th loc :< t + + +private +fdvSubst' : {d1, d2, n : Nat} -> (Located2 tm, HasFreeDVars tm) => + tm d1 n -> DSubst d1 d2 -> FreeVars d2 +fdvSubst' t th = + fold $ zipWith maybeOnly (fdv t).vars (expandDSubst th t.loc) +where + maybeOnly : {d : Nat} -> Bool -> Dim d -> FreeVars d + maybeOnly True (B i _) = only i + maybeOnly _ _ = none + +private +fdvSubst : {d, n : Nat} -> (Located2 tm, HasFreeDVars tm) => + WithSubst (\d => tm d n) Dim d -> FreeVars d +fdvSubst (Sub t th) = let Val from = getFrom th in fdvSubst' t th + + +export HasFreeDVars Term +export HasFreeDVars Elim + +export +HasFreeDVars Term where + fdv (TYPE {}) = none + fdv (IOState {}) = none + fdv (Pi {arg, res, _}) = fdv arg <+> fdvT res + fdv (Lam {body, _}) = fdvT body + fdv (Sig {fst, snd, _}) = fdv fst <+> fdvT snd + fdv (Pair {fst, snd, _}) = fdv fst <+> fdv snd + fdv (Enum {}) = none + fdv (Tag {}) = none + fdv (Eq {ty, l, r, _}) = fdv @{DScope} ty <+> fdv l <+> fdv r + fdv (DLam {body, _}) = fdv @{DScope} body + fdv (NAT {}) = none + fdv (Nat {}) = none + fdv (Succ {p, _}) = fdv p + fdv (STRING {}) = none + fdv (Str {}) = none + fdv (BOX {ty, _}) = fdv ty + fdv (Box {val, _}) = fdv val + fdv (Let {rhs, body, _}) = fdv rhs <+> fdvT body + fdv (E e) = fdv e + fdv (CloT s) = fdv s @{WithSubst} + fdv (DCloT s) = fdvSubst s + +export +HasFreeDVars Elim where + fdv (F {}) = none + fdv (B {}) = none + fdv (App {fun, arg, _}) = fdv fun <+> fdv arg + fdv (CasePair {pair, ret, body, _}) = fdv pair <+> fdvT ret <+> fdvT body + fdv (Fst pair _) = fdv pair + fdv (Snd pair _) = fdv pair + fdv (CaseEnum {tag, ret, arms, _}) = + fdv tag <+> fdvT ret <+> foldMap fdv (values arms) + fdv (CaseNat {nat, ret, zero, succ, _}) = + fdv nat <+> fdvT ret <+> fdv zero <+> fdvT succ + fdv (CaseBox {box, ret, body, _}) = + fdv box <+> fdvT ret <+> fdvT body + fdv (DApp {fun, arg, _}) = + fdv fun <+> fv arg + fdv (Ann {tm, ty, _}) = + fdv tm <+> fdv ty + fdv (Coe {ty, p, q, val, _}) = + fdv @{DScope} ty <+> fv p <+> fv q <+> fdv val + fdv (Comp {ty, p, q, val, r, zero, one, _}) = + fdv ty <+> fv p <+> fv q <+> fdv val <+> + fv r <+> fdv @{DScope} zero <+> fdv @{DScope} one + fdv (TypeCase {ty, ret, arms, def, _}) = + fdv ty <+> fdv ret <+> fdv def <+> foldMap (\x => fdvT x.snd) (toList arms) + fdv (CloE s) = fdv s @{WithSubst} + fdv (DCloE s) = fdvSubst s diff --git a/lib/Quox/Loc.idr b/lib/Quox/Loc.idr index cd63e2f..fae1bf8 100644 --- a/lib/Quox/Loc.idr +++ b/lib/Quox/Loc.idr @@ -1,6 +1,7 @@ ||| file locations module Quox.Loc +import Quox.PrettyValExtra import public Text.Bounded import Data.SortedMap import Derive.Prelude @@ -12,12 +13,12 @@ public export FileName : Type FileName = String -%runElab derive "Bounds" [Ord] +%runElab derive "Bounds" [Ord, PrettyVal] public export data Loc_ = NoLoc | YesLoc FileName Bounds %name Loc_ loc -%runElab derive "Loc_" [Eq, Ord, Show] +%runElab derive "Loc_" [Eq, Ord, Show, PrettyVal] ||| a wrapper for locations which are always considered equal @@ -39,6 +40,18 @@ public export %inline makeLoc : FileName -> Bounds -> Loc makeLoc = L .: YesLoc +public export %inline +loc : FileName -> (sl, sc, el, ec : Int) -> Loc +loc file sl sc el ec = makeLoc file $ MkBounds sl sc el ec + +export +PrettyVal Loc where + prettyVal (L NoLoc) = Con "noLoc" [] + prettyVal (L (YesLoc file (MkBounds sl sc el ec))) = + Con "loc" [prettyVal file, + prettyVal sl, prettyVal sc, + prettyVal el, prettyVal ec] + export onlyStart_ : Loc_ -> Loc_ @@ -95,7 +108,7 @@ extendL : Loc -> Loc -> Loc extendL l1 l2 = l1 `extend'` l2.bounds -infixr 1 `or_`, `or` +export infixr 1 `or_`, `or` export %inline or_ : Loc_ -> Loc_ -> Loc_ or_ l1@(YesLoc {}) _ = l1 @@ -105,6 +118,11 @@ export %inline or : Loc -> Loc -> Loc or (L l1) (L l2) = L $ l1 `or_` l2 +export %inline +extendOr : Loc -> Loc -> Loc +extendOr l1 l2 = (l1 `extendL` l2) `or` l2 + + public export interface Located a where (.loc) : a -> Loc @@ -113,9 +131,22 @@ public export 0 Located1 : (a -> Type) -> Type Located1 f = forall x. Located (f x) +public export +0 Located2 : (a -> b -> Type) -> Type +Located2 f = forall x, y. Located (f x y) + public export interface Located a => Relocatable a where setLoc : Loc -> a -> a public export 0 Relocatable1 : (a -> Type) -> Type Relocatable1 f = forall x. Relocatable (f x) + +public export +0 Relocatable2 : (a -> b -> Type) -> Type +Relocatable2 f = forall x, y. Relocatable (f x y) + + +export +locs : Located a => Foldable t => t a -> Loc +locs = foldl (\loc, y => loc `extendOr` y.loc) noLoc diff --git a/lib/Quox/Log.idr b/lib/Quox/Log.idr new file mode 100644 index 0000000..08d1873 --- /dev/null +++ b/lib/Quox/Log.idr @@ -0,0 +1,317 @@ +module Quox.Log + +import Quox.Loc +import Quox.Pretty +import Quox.PrettyValExtra + +import Data.So +import Data.DPair +import Data.Maybe +import Data.List1 +import Control.Eff +import Control.Monad.ST.Extra +import Data.IORef +import System.File +import Derive.Prelude + +%default total +%language ElabReflection + + +public export %inline +maxLogLevel : Nat +maxLogLevel = 100 + +public export %inline +logCategories : List String +logCategories = ["whnf", "equal", "check"] + +public export %inline +isLogLevel : Nat -> Bool +isLogLevel l = l <= maxLogLevel + +public export +IsLogLevel : Nat -> Type +IsLogLevel l = So $ isLogLevel l + +public export %inline +isLogCategory : String -> Bool +isLogCategory cat = cat `elem` logCategories + +public export +IsLogCategory : String -> Type +IsLogCategory cat = So $ isLogCategory cat + +-- Q: why are you using `So` instead of `LT` and `Elem` +-- A: ① proof search gives up before finding a proof of e.g. ``99 `LT` 100`` +-- (i.e. `LTESucc⁹⁹ LTEZero`) +-- ② the proofs aren't looked at in any way, i just wanted to make sure the +-- list of categories was consistent everywhere + + +||| a verbosity level from 0–100. higher is noisier. each log entry has a +||| verbosity level above which it will be printed, chosen, uh, based on vibes. +public export +LogLevel : Type +LogLevel = Subset Nat IsLogLevel + +||| a logging category, like "check" (type checking), "whnf", or whatever. +public export +LogCategory : Type +LogCategory = Subset String IsLogCategory + + +public export %inline +toLogLevel : Nat -> Maybe LogLevel +toLogLevel l = + case choose $ isLogLevel l of + Left y => Just $ Element l y + Right _ => Nothing + +public export %inline +toLogCategory : String -> Maybe LogCategory +toLogCategory c = + case choose $ isLogCategory c of + Left y => Just $ Element c y + Right _ => Nothing + + +||| verbosity levels for each category, if they differ from the default +public export +LevelMap : Type +LevelMap = List (LogCategory, LogLevel) + +-- Q: why `List` instead of `SortedMap` +-- A: oof ouch my constant factors (maybe this one was more obvious) + + +public export +record LogLevels where + constructor MkLogLevels + defLevel : LogLevel + levels : LevelMap +%name LogLevels lvls +%runElab derive "LogLevels" [Eq, Show, PrettyVal] + +public export +LevelStack : Type +LevelStack = List LogLevels + +public export %inline +defaultLevel : LogLevel +defaultLevel = Element 0 Oh + +export %inline +defaultLogLevels : LogLevels +defaultLogLevels = MkLogLevels defaultLevel [] + +export %inline +initStack : LevelStack +initStack = [] + +export %inline +getLevel1 : LogCategory -> LogLevels -> LogLevel +getLevel1 cat (MkLogLevels def lvls) = fromMaybe def $ lookup cat lvls + +export %inline +getLevel : LogCategory -> LevelStack -> LogLevel +getLevel cat (lvls :: _) = getLevel1 cat lvls +getLevel cat [] = defaultLevel + +export %inline +getCurLevels : LevelStack -> LogLevels +getCurLevels (lvls :: _) = lvls +getCurLevels [] = defaultLogLevels + + +public export +LogDoc : Type +LogDoc = Doc (Opts {lineLength = 80}) + + +private %inline +replace : Eq a => a -> b -> List (a, b) -> List (a, b) +replace k v kvs = (k, v) :: filter (\y => fst y /= k) kvs + +private %inline +mergeLeft : Eq a => List (a, b) -> List (a, b) -> List (a, b) +mergeLeft l r = foldl (\lst, (k, v) => replace k v lst) r l + + +public export +data PushArg = + SetDefault LogLevel + | SetCat LogCategory LogLevel + | SetAll LogLevel +%runElab derive "PushArg" [Eq, Ord, Show, PrettyVal] +%name PushArg push + +export %inline +applyPush : LogLevels -> PushArg -> LogLevels +applyPush lvls (SetDefault def) = {defLevel := def} lvls +applyPush lvls (SetCat cat lvl) = {levels $= replace cat lvl} lvls +applyPush lvls (SetAll lvl) = MkLogLevels lvl [] + +export %inline +fromPush : PushArg -> LogLevels +fromPush = applyPush defaultLogLevels + + +public export +record LogMsg where + constructor (:>) + level : Nat + {auto 0 levelOk : IsLogLevel level} + message : Lazy LogDoc +export infix 0 :> +%name Log.LogMsg msg + +public export +data LogL : (lbl : tag) -> Type -> Type where + ||| print some log messages + SayMany : (cat : LogCategory) -> (loc : Loc) -> + (msgs : List LogMsg) -> LogL lbl () + ||| set some verbosity levels + Push : (push : List PushArg) -> LogL lbl () + ||| restore the previous verbosity levels. + ||| returns False if the stack was already empty + Pop : LogL lbl Bool + ||| returns the current verbosity levels + CurLevels : LogL lbl LogLevels + +public export +Log : Type -> Type +Log = LogL () + +parameters (0 lbl : tag) {auto _ : Has (LogL lbl) fs} + public export %inline + sayManyAt : (cat : String) -> (0 catOk : IsLogCategory cat) => + Loc -> List LogMsg -> Eff fs () + sayManyAt cat loc msgs {catOk} = + send $ SayMany {lbl} (Element cat catOk) loc msgs + + public export %inline + sayAt : (cat : String) -> (0 catOk : IsLogCategory cat) => + (lvl : Nat) -> (0 lvlOk : IsLogLevel lvl) => + Loc -> Lazy LogDoc -> Eff fs () + sayAt cat lvl loc msg = sayManyAt cat loc [lvl :> msg] + + public export %inline + pushAt : List PushArg -> Eff fs () + pushAt lvls = send $ Push {lbl} lvls + + public export %inline + push1At : PushArg -> Eff fs () + push1At lvl = pushAt [lvl] + + public export %inline + popAt : Eff fs Bool + popAt = send $ Pop {lbl} + + public export %inline + curLevelsAt : Eff fs LogLevels + curLevelsAt = send $ CurLevels {lbl} + +parameters {auto _ : Has Log fs} + public export %inline + sayMany : (cat : String) -> (0 catOk : IsLogCategory cat) => + Loc -> List LogMsg -> Eff fs () + sayMany = sayManyAt () + + public export %inline + say : (cat : String) -> (0 _ : IsLogCategory cat) => + (lvl : Nat) -> (0 _ : IsLogLevel lvl) => + Loc -> Lazy LogDoc -> Eff fs () + say = sayAt () + + public export %inline + push : List PushArg -> Eff fs () + push = pushAt () + + public export %inline + push1 : PushArg -> Eff fs () + push1 = push1At () + + public export %inline + pop : Eff fs Bool + pop = popAt () + + public export %inline + curLevels : Eff fs LogLevels + curLevels = curLevelsAt () + + +||| handles a `Log` effect with an existing `State` and `Writer` +export %inline +handleLogSW : (0 s : ts) -> (0 w : tw) -> + Has (StateL s LevelStack) fs => Has (WriterL w LogDoc) fs => + LogL tag a -> Eff fs a +handleLogSW s w = \case + Push push => modifyAt s $ \lst => + foldl applyPush (fromMaybe defaultLogLevels (head' lst)) push :: lst + Pop => stateAt s $ maybe (False, []) (True,) . tail' + SayMany cat loc msgs => do + catLvl <- getsAt s $ fst . getLevel cat + let loc = runPretty $ prettyLoc loc + for_ msgs $ \(lvl :> msg) => when (lvl <= catLvl) $ tellAt w $ + hcat [loc, text cat.fst, "@", pshow lvl, ":"] <++> msg + CurLevels => + getsAt s getCurLevels + +export %inline +handleLogSW_ : LogL tag a -> Eff [State LevelStack, Writer LogDoc] a +handleLogSW_ = handleLogSW () () + +export %inline +handleLogIO : HasIO m => MonadRec m => + (FileError -> m ()) -> IORef LevelStack -> File -> + LogL tag a -> m a +handleLogIO th lvls h act = + runEff (handleLogSW_ act) [handleStateIORef lvls, handleWriter {m} printMsg] +where printMsg : LogDoc -> m () + printMsg msg = fPutStr h (render _ msg) >>= either th pure + +export %inline +handleLogST : HasST m => MonadRec (m s) => + STRef s (SnocList LogDoc) -> STRef s LevelStack -> + LogL tag a -> m s a +handleLogST docs lvls act = + runEff (handleLogSW_ act) [handleStateSTRef lvls, handleWriterSTRef docs] + +export %inline +handleLogDiscard : (0 s : ts) -> Has (StateL s Nat) fs => + LogL tag a -> Eff fs a +handleLogDiscard s = \case + Push _ => modifyAt s S + Pop => stateAt s $ \k => (k > 0, pred k) + SayMany {} => pure () + CurLevels => pure defaultLogLevels + +export %inline +handleLogDiscard_ : LogL tag a -> Eff [State Nat] a +handleLogDiscard_ = handleLogDiscard () + +export %inline +handleLogDiscardST : HasST m => MonadRec (m s) => STRef s Nat -> + LogL tag a -> m s a +handleLogDiscardST ref act = + runEff (handleLogDiscard_ act) [handleStateSTRef ref] + +export %inline +handleLogDiscardIO : HasIO m => MonadRec m => IORef Nat -> + LogL tag a -> m a +handleLogDiscardIO ref act = + runEff (handleLogDiscard_ act) [handleStateIORef ref] + + +||| approximate the push/pop effects in a discarded log by trimming a stack or +||| repeating its most recent element +export %inline +fixupDiscardedLog : Nat -> LevelStack -> LevelStack +fixupDiscardedLog want lvls = + let len = length lvls in + case compare len want of + EQ => lvls + GT => drop (len `minus` want) lvls + LT => let new = fromMaybe defaultLogLevels $ head' lvls in + replicate (want `minus` len) new ++ lvls diff --git a/lib/Quox/Name.idr b/lib/Quox/Name.idr index 57c6754..8686e54 100644 --- a/lib/Quox/Name.idr +++ b/lib/Quox/Name.idr @@ -2,6 +2,7 @@ module Quox.Name import Quox.Loc import Quox.CharExtra +import Quox.PrettyValExtra import public Data.SnocList import Data.List import Control.Eff @@ -23,7 +24,7 @@ data BaseName = UN String -- user-given name | MN String NameSuf -- machine-generated name | Unused -- "_" -%runElab derive "BaseName" [Eq, Ord] +%runElab derive "BaseName" [Eq, Ord, PrettyVal] export baseStr : BaseName -> String @@ -42,14 +43,14 @@ Mods = SnocList String public export record Name where - constructor MakeName + constructor MkName mods : Mods base : BaseName %runElab derive "Name" [Eq, Ord] public export %inline unq : BaseName -> Name -unq = MakeName [<] +unq = MkName [<] ||| add some namespaces to the beginning of a name public export %inline @@ -63,31 +64,31 @@ PBaseName = String public export record PName where - constructor MakePName + constructor MkPName mods : Mods base : PBaseName -%runElab derive "PName" [Eq, Ord] +%runElab derive "PName" [Eq, Ord, PrettyVal] export %inline fromPName : PName -> Name -fromPName p = MakeName p.mods $ UN p.base +fromPName p = MkName p.mods $ UN p.base export %inline toPName : Name -> PName -toPName p = MakePName p.mods $ baseStr p.base +toPName p = MkPName p.mods $ baseStr p.base export %inline fromPBaseName : PBaseName -> Name -fromPBaseName = MakeName [<] . UN +fromPBaseName = MkName [<] . UN export Show PName where - show (MakePName mods base) = + show (MkPName mods base) = show $ concat $ intersperse "." $ toList $ mods :< base export Show Name where show = show . toPName -export FromString PName where fromString = MakePName [<] +export FromString PName where fromString = MkPName [<] export FromString Name where fromString = fromPBaseName @@ -95,9 +96,9 @@ export FromString Name where fromString = fromPBaseName public export record BindName where constructor BN - name : BaseName + val : BaseName loc_ : Loc -%runElab derive "BindName" [Eq, Ord, Show] +%runElab derive "BindName" [Eq, Ord, Show, PrettyVal] export Located BindName where n.loc = n.loc_ export Relocatable BindName where setLoc loc (BN x _) = BN x loc @@ -115,7 +116,7 @@ export fromListP : List1 String -> PName fromListP (x ::: xs) = go [<] x xs where go : SnocList String -> String -> List String -> PName - go mods x [] = MakePName mods x + go mods x [] = MkPName mods x go mods x (y :: ys) = go (mods :< x) y ys export %inline @@ -169,14 +170,6 @@ public export NameGen : Type -> Type NameGen = StateL GEN NameSuf -export -runNameGenWith : Has NameGen fs => - NameSuf -> Eff fs a -> Eff (fs - NameGen) (a, NameSuf) -runNameGenWith = runStateAt GEN - -export -runNameGen : Has NameGen fs => Eff fs a -> Eff (fs - NameGen) a -runNameGen = map fst . runNameGenWith 0 ||| generate a fresh name with the given base export @@ -186,15 +179,13 @@ mn base = do modifyAt GEN S pure $ MN base i -||| generate a fresh binding name with the given base and -||| (optionally) location `loc` +||| generate a fresh binding name with the given base and location `loc` export -mnb : Has NameGen fs => - PBaseName -> {default noLoc loc : Loc} -> Eff fs BindName -mnb base = pure $ BN !(mn base) loc +mnb : Has NameGen fs => PBaseName -> Loc -> Eff fs BindName +mnb base loc = pure $ BN !(mn base) loc export fresh : Has NameGen fs => BindName -> Eff fs BindName -fresh (BN (UN str) loc) = mnb str {loc} -fresh (BN (MN str k) loc) = mnb str {loc} -fresh (BN Unused loc) = mnb "x" {loc} +fresh (BN (UN str) loc) = mnb str loc +fresh (BN (MN str k) loc) = mnb str loc +fresh (BN Unused loc) = mnb "x" loc diff --git a/lib/Quox/NatExtra.idr b/lib/Quox/NatExtra.idr index 0c863bb..714add1 100644 --- a/lib/Quox/NatExtra.idr +++ b/lib/Quox/NatExtra.idr @@ -1,19 +1,13 @@ module Quox.NatExtra import public Data.Nat -import public Data.Nat.Views import Data.Nat.Division import Data.SnocList import Data.Vect -import Syntax.PreorderReasoning +import Data.String %default total -infixl 8 `shiftL`, `shiftR` -infixl 7 .&. -infixl 6 `xor` -infixl 5 .|. - public export data LTE' : Nat -> Nat -> Type where @@ -59,151 +53,42 @@ parameters {base : Nat} {auto 0 _ : base `GTE` 2} (chars : Vect base Char) showAtBase : Nat -> String showAtBase = pack . showAtBase' [] -export -showHex : Nat -> String -showHex = showAtBase $ fromList $ unpack "0123456789ABCDEF" +namespace Nat + export + showHex : Nat -> String + showHex = showAtBase $ fromList $ unpack "0123456789abcdef" + +namespace Int + export + showHex : Int -> String + showHex x = + if x < 0 then "-" ++ Nat.showHex (cast (-x)) else Nat.showHex (cast x) -export -0 notEvenOdd : (a, b : Nat) -> Not (a + a = S (b + b)) -notEvenOdd 0 b prf = absurd prf -notEvenOdd (S a) b prf = - notEvenOdd b a $ Calc $ - |~ b + b - ~~ a + S a ..<(inj S prf) - ~~ S (a + a) ..<(plusSuccRightSucc {}) +namespace Int + export + fromHexit : Char -> Maybe Int + fromHexit c = + if c >= '0' && c <= '9' then Just $ ord c - ord '0' + else if c >= 'a' && c <= 'f' then Just $ ord c - ord 'a' + 10 + else if c >= 'A' && c <= 'F' then Just $ ord c - ord 'A' + 10 + else Nothing -export -0 doubleInj : (m, n : Nat) -> m + m = n + n -> m = n -doubleInj 0 0 _ = Refl -doubleInj (S m) (S n) prf = - cong S $ doubleInj m n $ - inj S $ Calc $ - |~ S (m + m) - ~~ m + S m ...(plusSuccRightSucc {}) - ~~ n + S n ...(inj S prf) - ~~ S (n + n) ..<(plusSuccRightSucc {}) + private + fromHex' : Int -> String -> Maybe Int + fromHex' acc str = case strM str of + StrNil => Just acc + StrCons c cs => fromHex' (16 * acc + !(fromHexit c)) (assert_smaller str cs) -export -0 halfDouble : (n : Nat) -> half (n + n) = HalfEven n -halfDouble n with (half (n + n)) | (n + n) proof nn - _ | HalfOdd k | S (k + k) = void $ notEvenOdd n k nn - _ | HalfEven k | k + k = rewrite doubleInj n k nn in Refl + export %inline + fromHex : String -> Maybe Int + fromHex str = do guard $ str /= ""; fromHex' 0 str -export -floorHalf : Nat -> Nat -floorHalf k = case half k of - HalfOdd n => n - HalfEven n => n +namespace Nat + export + fromHexit : Char -> Maybe Nat + fromHexit = map cast . Int.fromHexit - -||| like in intercal ☺ -||| -||| take all the bits of `subj` that are set in `mask`, and squish them down -||| towards the lsb -public export -select : (mask, subj : Nat) -> Nat -select mask subj = go 1 (halfRec mask) subj 0 where - go : forall mask. Nat -> HalfRec mask -> Nat -> Nat -> Nat - go bit HalfRecZ subj res = res - go bit (HalfRecEven _ rec) subj res = go bit rec (floorHalf subj) res - go bit (HalfRecOdd _ rec) subj res = case half subj of - HalfOdd subj => go (bit + bit) rec subj (res + bit) - HalfEven subj => go (bit + bit) rec subj res - -||| take the i least significant bits of subj (where i = popCount mask), -||| and place them where mask's set bits are -||| -||| left inverse of select if mask .|. subj = mask -public export -spread : (mask, subj : Nat) -> Nat -spread mask subj = go 1 (halfRec mask) subj 0 where - go : forall mask. Nat -> HalfRec mask -> Nat -> Nat -> Nat - go bit HalfRecZ subj res = res - go bit (HalfRecEven _ rec) subj res = go (bit + bit) rec subj res - go bit (HalfRecOdd _ rec) subj res = case half subj of - HalfOdd subj => go (bit + bit) rec subj (res + bit) - HalfEven subj => go (bit + bit) rec subj res - - - -public export -data BitwiseRec : Nat -> Nat -> Type where - BwDone : BitwiseRec 0 0 - Bw00 : (m, n : Nat) -> Lazy (BitwiseRec m n) -> - BitwiseRec (m + m) (n + n) - Bw01 : (m, n : Nat) -> Lazy (BitwiseRec m n) -> - BitwiseRec (m + m) (S (n + n)) - Bw10 : (m, n : Nat) -> Lazy (BitwiseRec m n) -> - BitwiseRec (S (m + m)) (n + n) - Bw11 : (m, n : Nat) -> Lazy (BitwiseRec m n) -> - BitwiseRec (S (m + m)) (S (n + n)) - -export -bitwiseRec : (m, n : Nat) -> BitwiseRec m n -bitwiseRec m n = go (halfRec m) (halfRec n) where - go : forall m, n. HalfRec m -> HalfRec n -> BitwiseRec m n - go HalfRecZ HalfRecZ = BwDone - go HalfRecZ (HalfRecEven n nr) = Bw00 0 n $ go HalfRecZ nr - go HalfRecZ (HalfRecOdd n nr) = Bw01 0 n $ go HalfRecZ nr - go (HalfRecEven m mr) HalfRecZ = Bw00 m 0 $ go mr HalfRecZ - go (HalfRecEven m mr) (HalfRecEven n nr) = Bw00 m n $ go mr nr - go (HalfRecEven m mr) (HalfRecOdd n nr) = Bw01 m n $ go mr nr - go (HalfRecOdd m mr) HalfRecZ = Bw10 m 0 $ go mr HalfRecZ - go (HalfRecOdd m mr) (HalfRecEven n nr) = Bw10 m n $ go mr nr - go (HalfRecOdd m mr) (HalfRecOdd n nr) = Bw11 m n $ go mr nr - -public export -bitwise : (Bool -> Bool -> Bool) -> Nat -> Nat -> Nat -bitwise f m n = go 1 (bitwiseRec m n) 0 where - one : Bool -> Bool -> Nat -> Nat -> Nat - one p q bit res = if f p q then bit + res else res - go : forall m, n. Nat -> BitwiseRec m n -> Nat -> Nat - go bit BwDone res = res - go bit (Bw00 m n rec) res = go (bit + bit) rec $ one False False bit res - go bit (Bw01 m n rec) res = go (bit + bit) rec $ one False True bit res - go bit (Bw10 m n rec) res = go (bit + bit) rec $ one True False bit res - go bit (Bw11 m n rec) res = go (bit + bit) rec $ one True True bit res - -public export -(.&.) : Nat -> Nat -> Nat -(.&.) = bitwise $ \p, q => p && q - -private %foreign "scheme:blodwen-and" -primAnd : Nat -> Nat -> Nat -%transform "NatExtra.(.&.)" NatExtra.(.&.) m n = primAnd m n - -public export -(.|.) : Nat -> Nat -> Nat -(.|.) = bitwise $ \p, q => p || q - -private %foreign "scheme:blodwen-or" -primOr : Nat -> Nat -> Nat -%transform "NatExtra.(.|.)" NatExtra.(.|.) m n = primOr m n - -public export -xor : Nat -> Nat -> Nat -xor = bitwise (/=) - -private %foreign "scheme:blodwen-xor" -primXor : Nat -> Nat -> Nat -%transform "NatExtra.xor" NatExtra.xor m n = primXor m n - - -public export -shiftL : Nat -> Nat -> Nat -shiftL n 0 = n -shiftL n (S i) = shiftL (n + n) i - -private %foreign "scheme:blodwen-shl" -primShiftL : Nat -> Nat -> Nat -%transform "NatExtra.shiftL" NatExtra.shiftL n i = primShiftL n i - -public export -shiftR : Nat -> Nat -> Nat -shiftR n 0 = n -shiftR n (S i) = shiftL (floorHalf n) i - -private %foreign "scheme:blodwen-shr" -primShiftR : Nat -> Nat -> Nat -%transform "NatExtra.shiftR" NatExtra.shiftR n i = primShiftR n i + export %inline + fromHex : String -> Maybe Nat + fromHex = map cast . Int.fromHex diff --git a/lib/Quox/No.idr b/lib/Quox/No.idr index 948eaf6..4134485 100644 --- a/lib/Quox/No.idr +++ b/lib/Quox/No.idr @@ -43,7 +43,7 @@ parameters {0 a, b : Bool} noOr2 = snd . noOr -infixr 1 `orNo` +export infixr 1 `orNo` export %inline orNo : No a -> No b -> No (a || b) orNo Ah Ah = Ah @@ -52,3 +52,8 @@ export %inline nchoose : (b : Bool) -> Either (So b) (No b) nchoose True = Left Oh nchoose False = Right Ah + +export +0 notYesNo : {f : Dec p} -> Not p -> No (isYes f) +notYesNo {f = Yes y} g = absurd $ g y +notYesNo {f = No n} g = Ah diff --git a/lib/Quox/OPE.idr b/lib/Quox/OPE.idr deleted file mode 100644 index 31203eb..0000000 --- a/lib/Quox/OPE.idr +++ /dev/null @@ -1,76 +0,0 @@ -||| "order preserving embeddings", for recording a correspondence between -||| a smaller scope and part of a larger one. -module Quox.OPE - -import Quox.NatExtra -import Data.Nat - -%default total - - -public export -data OPE : Nat -> Nat -> Type where - Id : OPE n n - Drop : OPE m n -> OPE m (S n) - Keep : OPE m n -> OPE (S m) (S n) -%name OPE p, q - -public export %inline Injective Drop where injective Refl = Refl -public export %inline Injective Keep where injective Refl = Refl - -public export -opeZero : {n : Nat} -> OPE 0 n -opeZero {n = 0} = Id -opeZero {n = S n} = Drop opeZero - -public export -(.) : OPE m n -> OPE n p -> OPE m p -p . Id = p -Id . q = q -p . Drop q = Drop $ p . q -Drop p . Keep q = Drop $ p . q -Keep p . Keep q = Keep $ p . q - -public export -toLTE : {m : Nat} -> OPE m n -> m `LTE` n -toLTE Id = reflexive -toLTE (Drop p) = lteSuccRight $ toLTE p -toLTE (Keep p) = LTESucc $ toLTE p - - -public export -keepN : (n : Nat) -> OPE a b -> OPE (n + a) (n + b) -keepN 0 p = p -keepN (S n) p = Keep $ keepN n p - -public export -dropInner' : LTE' m n -> OPE m n -dropInner' LTERefl = Id -dropInner' (LTESuccR p) = Drop $ dropInner' $ force p - -public export -dropInner : {n : Nat} -> LTE m n -> OPE m n -dropInner = dropInner' . fromLte - -public export -dropInnerN : (m : Nat) -> OPE n (m + n) -dropInnerN 0 = Id -dropInnerN (S m) = Drop $ dropInnerN m - - -public export -interface Tighten t where - tighten : OPE m n -> t n -> Maybe (t m) - -parameters {auto _ : Tighten t} - export %inline - tightenInner : {n : Nat} -> m `LTE` n -> t n -> Maybe (t m) - tightenInner = tighten . dropInner - - export %inline - tightenN : (m : Nat) -> t (m + n) -> Maybe (t n) - tightenN m = tighten $ dropInnerN m - - export %inline - tighten1 : t (S n) -> Maybe (t n) - tighten1 = tightenN 1 diff --git a/lib/Quox/Parser/FromParser.idr b/lib/Quox/Parser/FromParser.idr index 7ca26e5..2ae4f37 100644 --- a/lib/Quox/Parser/FromParser.idr +++ b/lib/Quox/Parser/FromParser.idr @@ -1,39 +1,31 @@ ||| take freshly-parsed input, scope check, type check, add to env module Quox.Parser.FromParser +import public Quox.Parser.FromParser.Error as Quox.Parser.FromParser + +import Quox.Pretty import Quox.Parser.Syntax import Quox.Parser.Parser +import public Quox.Parser.LoadFile import Quox.Typechecker +import Quox.CheckBuiltin import Data.List import Data.Maybe import Data.SnocVect import Quox.EffExtra +import Control.Monad.ST.Extra import System.File import System.Path import Data.IORef -import public Quox.Parser.FromParser.Error as Quox.Parser.FromParser - -%default total %hide Typing.Error %hide Lexer.Error %hide Parser.Error - -public export -NDefinition : Type -NDefinition = (Name, Definition) - -public export -IncludePath : Type -IncludePath = List String - -public export -SeenFiles : Type -SeenFiles = SortedSet String +%default total public export @@ -41,27 +33,50 @@ data StateTag = NS | SEEN public export FromParserPure : List (Type -> Type) -FromParserPure = - [Except Error, DefsState, StateL NS Mods, NameGen] - -public export -LoadFile' : List (Type -> Type) -LoadFile' = [IO, StateL SEEN SeenFiles, Reader IncludePath] - -public export -LoadFile : List (Type -> Type) -LoadFile = LoadFile' ++ [Except Error] +FromParserPure = [Except Error, DefsState, StateL NS Mods, NameGen, Log] public export FromParserIO : List (Type -> Type) -FromParserIO = FromParserPure ++ LoadFile' +FromParserIO = FromParserPure ++ [LoadFile] + + +public export +record PureParserResult a where + constructor MkPureParserResult + val : a + suf : NameSuf + defs : Definitions + log : SnocList LogDoc + logLevels : LevelStack + +export +fromParserPure : Mods -> NameSuf -> Definitions -> LevelStack -> + Eff FromParserPure a -> Either Error (PureParserResult a) +fromParserPure ns suf defs lvls act = runSTErr $ do + suf <- newSTRef' suf + defs <- newSTRef' defs + log <- newSTRef' [<] + lvls <- newSTRef' lvls + res <- runEff act $ with Union.(::) + [handleExcept $ \e => stLeft e, + handleStateSTRef defs, + handleStateSTRef !(newSTRef' ns), + handleStateSTRef suf, + handleLogST log lvls] + pure $ MkPureParserResult { + val = res, + suf = !(readSTRef' suf), + defs = !(readSTRef' defs), + log = !(readSTRef' log), + logLevels = !(readSTRef' lvls) + } parameters {auto _ : Functor m} (b : Var n -> m a) (f : PName -> m a) (xs : Context' PatVar n) private fromBaseName : PBaseName -> m a - fromBaseName x = maybe (f $ MakePName [<] x) b $ + fromBaseName x = maybe (f $ MkPName [<] x) b $ Context.find (\y => y.name == Just x) xs private @@ -113,11 +128,10 @@ fromV : Context' PatVar d -> Context' PatVar n -> PName -> Maybe Universe -> Loc -> Eff FromParserPure (Term d n) fromV ds ns x u loc = fromName bound free ns x where bound : Var n -> Eff FromParserPure (Term d n) - bound i = do whenJust u $ \u => throw $ DisplacedBoundVar loc x - pure $ E $ B i loc + bound i = unless (isNothing u) (throw $ DisplacedBoundVar loc x) $> BT i loc + free : PName -> Eff FromParserPure (Term d n) - free x = do x <- avoidDim ds loc x - resolveName !(getAt NS) loc x u + free x = resolveName !(getAt NS) loc !(avoidDim ds loc x) u mutual export @@ -127,6 +141,9 @@ mutual TYPE k loc => pure $ TYPE k loc + IOState loc => + pure $ IOState loc + Pi pi x s t loc => Pi (fromPQty pi) <$> fromPTermWith ds ns s @@ -157,17 +174,26 @@ mutual <*> fromPTermTScope ds ns [< x, y] body <*> pure loc + Fst pair loc => + map E $ Fst <$> fromPTermElim ds ns pair <*> pure loc + + Snd pair loc => + map E $ Snd <$> fromPTermElim ds ns pair <*> pure loc + Case pi tag (r, ret) (CaseEnum arms _) loc => map E $ CaseEnum (fromPQty pi) <$> fromPTermElim ds ns tag <*> fromPTermTScope ds ns [< r] ret - <*> assert_total fromPTermEnumArms ds ns arms + <*> assert_total fromPTermEnumArms loc ds ns arms <*> pure loc - Nat loc => pure $ Nat loc - Zero loc => pure $ Zero loc + NAT loc => pure $ NAT loc + Nat n loc => pure $ Nat n loc Succ n loc => [|Succ (fromPTermWith ds ns n) (pure loc)|] + STRING loc => pure $ STRING loc + Str str loc => pure $ Str str loc + Case pi nat (r, ret) (CaseNat zer (s, pi', ih, suc) _) loc => map E $ CaseNat (fromPQty pi) (fromPQty pi') <$> fromPTermElim ds ns nat @@ -176,12 +202,11 @@ mutual <*> fromPTermTScope ds ns [< s, ih] suc <*> pure loc - Enum strs loc => - let set = SortedSet.fromList strs in - if length strs == length (SortedSet.toList set) then - pure $ Enum set loc - else - throw $ DuplicatesInEnum loc strs + Enum strs loc => do + let set = SortedSet.fromList strs + unless (length strs == length (SortedSet.toList set)) $ + throw $ DuplicatesInEnumType loc strs + pure $ Enum set loc Tag str loc => pure $ Tag str loc @@ -238,13 +263,22 @@ mutual <*> fromPTermDScope ds ns [< j1] val1 <*> pure loc + Let (qty, x, rhs) body loc => + Let (fromPQty qty) + <$> fromPTermElim ds ns rhs + <*> fromPTermTScope ds ns [< x] body + <*> pure loc + private - fromPTermEnumArms : Context' PatVar d -> Context' PatVar n -> + fromPTermEnumArms : Loc -> Context' PatVar d -> Context' PatVar n -> List (PTagVal, PTerm) -> Eff FromParserPure (CaseEnumArms d n) - fromPTermEnumArms ds ns = - map SortedMap.fromList . - traverse (bitraverse (pure . fromPTagVal) (fromPTermWith ds ns)) + fromPTermEnumArms loc ds ns arms = do + res <- SortedMap.fromList <$> + traverse (bitraverse (pure . fromPTagVal) (fromPTermWith ds ns)) arms + unless (length (keys res) == length arms) $ + throw $ DuplicatesInEnumCase loc (map (fromPTagVal . fst) arms) + pure res private fromPTermElim : Context' PatVar d -> Context' PatVar n -> @@ -263,7 +297,7 @@ mutual if all isUnused xs then SN <$> fromPTermWith ds ns t else - ST (fromSnocVect $ map fromPatVar xs) <$> fromPTermWith ds (ns ++ xs) t + SY (fromSnocVect $ map fromPatVar xs) <$> fromPTermWith ds (ns ++ xs) t private fromPTermDScope : {s : Nat} -> Context' PatVar d -> Context' PatVar n -> @@ -271,9 +305,9 @@ mutual Eff FromParserPure (DScopeTermN s d n) fromPTermDScope ds ns xs t = if all isUnused xs then - SN <$> fromPTermWith ds ns t + SN {f = \d => Term d n} <$> fromPTermWith ds ns t else - DST (fromSnocVect $ map fromPatVar xs) <$> fromPTermWith (ds ++ xs) ns t + SY (fromSnocVect $ map fromPatVar xs) <$> fromPTermWith (ds ++ xs) ns t export %inline @@ -282,72 +316,110 @@ fromPTerm = fromPTermWith [<] [<] export -globalPQty : Loc -> (q : Qty) -> Eff [Except Error] (So $ isGlobal q) -globalPQty loc pi = case choose $ isGlobal pi of - Left y => pure y - Right _ => throw $ QtyNotGlobal loc pi - +globalPQty : Has (Except Error) fs => PQty -> Eff fs GQty +globalPQty (PQ pi loc) = case toGlobal pi of + Just g => pure g + Nothing => throw $ QtyNotGlobal loc pi export -fromPBaseNameNS : PBaseName -> Eff [StateL NS Mods] Name +fromPBaseNameNS : Has (StateL NS Mods) fs => PBaseName -> Eff fs Name fromPBaseNameNS name = pure $ addMods !(getAt NS) $ fromPBaseName name + private -liftTC : TC a -> Eff FromParserPure a -liftTC act = do - res <- lift $ runExcept $ runReaderAt DEFS !(getAt DEFS) act - rethrow $ mapFst WrapTypeError res +liftTC : Eff TC a -> Eff FromParserPure a +liftTC tc = runEff tc $ with Union.(::) + [handleExcept $ \e => throw $ WrapTypeError e, + handleReaderConst !(getAt DEFS), + \g => send g, + \g => send g] + +private +liftWhnf : Eff Whnf a -> Eff FromParserPure a +liftWhnf tc = runEff tc $ with Union.(::) + [handleExcept $ \e => throw $ WrapTypeError e, + \g => send g, + \g => send g] + +private +addDef : Has DefsState fs => Name -> Definition -> Eff fs NDefinition +addDef name def = do + modifyAt DEFS $ insert name def + pure (name, def) + export covering fromPDef : PDefinition -> Eff FromParserPure NDefinition -fromPDef (MkPDef qty pname ptype pterm defLoc) = do - name <- lift $ fromPBaseNameNS pname - qtyGlobal <- lift $ globalPQty qty.loc qty.val - let gqty = Element qty.val qtyGlobal - sqty = globalToSubj gqty - type <- lift $ traverse fromPTerm ptype - term <- lift $ fromPTerm pterm - case type of - Just type => do - liftTC $ checkTypeC empty type Nothing - liftTC $ ignore $ checkC empty sqty term type - let def = mkDef gqty type term defLoc - modifyAt DEFS $ insert name def - pure (name, def) - Nothing => do - let E elim = term | _ => throw $ AnnotationNeeded term.loc empty term - res <- liftTC $ inferC empty sqty elim - let def = mkDef gqty res.type term defLoc - modifyAt DEFS $ insert name def - pure (name, def) +fromPDef def = do + name <- fromPBaseNameNS def.name + defs <- getAt DEFS + when (isJust $ lookup name defs) $ do + throw $ AlreadyExists def.loc name + gqty <- globalPQty def.qty + let sqty = globalToSubj gqty + case def.body of + PConcrete ptype pterm => do + type <- traverse fromPTerm ptype + term <- fromPTerm pterm + type <- case type of + Just type => do + ignore $ liftTC $ do + checkTypeC empty type Nothing + checkC empty sqty term type + pure type + Nothing => do + let E elim = term + | _ => throw $ AnnotationNeeded term.loc empty term + res <- liftTC $ inferC empty sqty elim + pure res.type + when def.main $ liftWhnf $ expectMainType defs type + addDef name $ mkDef gqty type term def.scheme def.main def.loc + PPostulate ptype => do + type <- fromPTerm ptype + addDef name $ mkPostulate gqty type def.scheme def.main def.loc + + +public export +data HasFail = NoFail | AnyFail | FailWith String + +export covering +expectFail : Loc -> Eff FromParserPure a -> Eff FromParserPure Error +expectFail loc act = do + gen <- getAt GEN; defs <- getAt DEFS; ns <- getAt NS; lvl <- curLevels + case fromParserPure ns gen defs (singleton lvl) act of + Left err => pure err + Right _ => throw $ ExpectedFail loc + +export covering +maybeFail : Monoid a => + PFail -> Loc -> Eff FromParserPure a -> Eff FromParserPure a +maybeFail PSucceed _ act = act +maybeFail PFailAny loc act = expectFail loc act $> neutral +maybeFail (PFailMatch str) loc act = do + err <- expectFail loc act + let msg = runPretty $ prettyError False err {opts = Opts 10_000} -- w/e + if str `isInfixOf` renderInfinite msg + then pure neutral + else throw $ WrongFail str err loc export covering fromPDecl : PDecl -> Eff FromParserPure (List NDefinition) -fromPDecl (PDef def) = singleton <$> fromPDef def +fromPDecl (PDef def) = + maybeFail def.fail def.loc $ singleton <$> fromPDef def fromPDecl (PNs ns) = + maybeFail ns.fail ns.loc $ localAt NS (<+> ns.name) $ concat <$> traverse fromPDecl ns.decls - - -export covering -loadFile : Loc -> String -> Eff LoadFile (Maybe String) -loadFile loc file = - if contains file !(getAt SEEN) then - pure Nothing - else do - Just ifile <- firstExists (map ( file) !ask) - | Nothing => throw $ LoadError loc file FileNotFound - case !(readFile ifile) of - Right res => modifyAt SEEN (insert file) $> Just res - Left err => throw $ LoadError loc ifile err +fromPDecl (PPrag prag) = + case prag of + PLogPush p _ => Log.push p $> [] + PLogPop _ => Log.pop $> [] mutual export covering loadProcessFile : Loc -> String -> Eff FromParserIO (List NDefinition) loadProcessFile loc file = - case !(lift $ loadFile loc file) of - Just inp => do - tl <- either (throw . WrapParseError file) pure $ lexParseInput file inp - concat <$> traverse fromPTopLevel tl + case !(loadFile loc file) of + Just tl => concat <$> traverse fromPTopLevel tl Nothing => pure [] ||| populates the `defs` field of the state @@ -355,28 +427,3 @@ mutual fromPTopLevel : PTopLevel -> Eff FromParserIO (List NDefinition) fromPTopLevel (PD decl) = lift $ fromPDecl decl fromPTopLevel (PLoad file loc) = loadProcessFile loc file - -export -fromParserPure : NameSuf -> Definitions -> - Eff FromParserPure a -> - (Either Error (a, Definitions), NameSuf) -fromParserPure suf defs act = - extract $ - runStateAt GEN suf $ - runExcept $ - evalStateAt NS [<] $ - runStateAt DEFS defs act - -export -fromParserIO : (MonadRec io, HasIO io) => - IncludePath -> - IORef SeenFiles -> IORef NameSuf -> IORef Definitions -> - Eff FromParserIO a -> io (Either Error a) -fromParserIO inc seen suf defs act = - runIO $ - runStateIORefAt GEN suf $ - runExcept $ - evalStateAt NS [<] $ - runStateIORefAt SEEN seen $ - runStateIORefAt DEFS defs $ - runReader inc act diff --git a/lib/Quox/Parser/FromParser/Error.idr b/lib/Quox/Parser/FromParser/Error.idr index 6bc2b0b..16a3592 100644 --- a/lib/Quox/Parser/FromParser/Error.idr +++ b/lib/Quox/Parser/FromParser/Error.idr @@ -1,11 +1,14 @@ module Quox.Parser.FromParser.Error import Quox.Parser.Parser +import Quox.Parser.LoadFile import Quox.Typing import System.File import Quox.Pretty +%default total + %hide Text.PrettyPrint.Prettyprinter.Doc.infixr.(<++>) @@ -21,26 +24,34 @@ ParseError = Parser.Error public export data Error = AnnotationNeeded Loc (NameContexts d n) (Term d n) - | DuplicatesInEnum Loc (List TagVal) + | DuplicatesInEnumType Loc (List TagVal) + | DuplicatesInEnumCase Loc (List TagVal) | TermNotInScope Loc Name | DimNotInScope Loc PBaseName | QtyNotGlobal Loc Qty | DimNameInTerm Loc PBaseName | DisplacedBoundVar Loc PName | WrapTypeError TypeError - | LoadError Loc String FileError + | AlreadyExists Loc Name + | LoadError Loc FilePath FileError + | ExpectedFail Loc + | SchemeOnNamespace Loc Mods + | MainOnNamespace Loc Mods + | WrongFail String Error Loc | WrapParseError String ParseError export prettyLexError : {opts : _} -> String -> LexError -> Eff Pretty (Doc opts) prettyLexError file (Err reason line col char) = do - let loc = makeLoc file (MkBounds line col line col) reason <- case reason of - EndInput => pure "unexpected end of input" - NoRuleApply => pure $ text "unrecognised character: \{show char}" + Other msg => pure $ text msg + NoRuleApply => case char of + Just char => pure $ text "unrecognised character: \{show char}" + Nothing => pure $ text "unexpected end of input" ComposeNotClosing (sl, sc) (el, ec) => pure $ hsep ["unterminated token at", !(prettyBounds (MkBounds sl sc el ec))] + let loc = makeLoc file (MkBounds line col line col) pure $ vappend !(prettyLoc loc) reason export @@ -61,19 +72,23 @@ prettyParseError file (ParseError errs) = traverse (map ("-" <++>) . prettyParseError1 file) (toList errs) -parameters (showContext : Bool) +parameters {opts : LayoutOpts} (showContext : Bool) export - prettyError : {opts : _} -> Error -> Eff Pretty (Doc opts) + prettyError : Error -> Eff Pretty (Doc opts) prettyError (AnnotationNeeded loc ctx tm) = [|vappend (prettyLoc loc) (hangD "type annotation needed on" !(prettyTerm ctx.dnames ctx.tnames tm))|] -- [todo] print the original PTerm instead - prettyError (DuplicatesInEnum loc tags) = + prettyError (DuplicatesInEnumType loc tags) = [|vappend (prettyLoc loc) (hangD "duplicate tags in enum type" !(prettyEnum tags))|] + prettyError (DuplicatesInEnumCase loc tags) = + [|vappend (prettyLoc loc) + (hangD "duplicate arms in enum case" !(prettyEnum tags))|] + prettyError (DimNotInScope loc i) = [|vappend (prettyLoc loc) (pure $ hsep ["dimension", !(hl DVar $ text i), "not in scope"])|] @@ -100,10 +115,32 @@ parameters (showContext : Bool) prettyError (WrapTypeError err) = Typing.prettyError showContext $ trimContext 2 err - prettyError (LoadError loc str err) = pure $ + prettyError (AlreadyExists loc name) = pure $ vsep [!(prettyLoc loc), - "couldn't load file" <++> text str, + sep [!(prettyFree name), "has already been defined"]] + + prettyError (LoadError loc file err) = pure $ + vsep [!(prettyLoc loc), + "couldn't load file" <++> text file, text $ show err] + prettyError (ExpectedFail loc) = pure $ + vsep [!(prettyLoc loc), "expected error"] + + prettyError (SchemeOnNamespace loc ns) = pure $ + vsep [!(prettyLoc loc), + hsep ["namespace", !(hl Free $ text $ joinBy "." $ toList ns), + "cannot have #[compile-scheme] attached"]] + + prettyError (MainOnNamespace loc ns) = pure $ + vsep [!(prettyLoc loc), + hsep ["namespace", !(hl Free $ text $ joinBy "." $ toList ns), + "cannot have #[main] attached"]] + + prettyError (WrongFail str err loc) = pure $ + vsep [!(prettyLoc loc), + "wrong error, expected to match", !(hl Constant $ text "\"\{str}\""), + "but got", !(prettyError err)] + prettyError (WrapParseError file err) = prettyParseError file err diff --git a/lib/Quox/Parser/Lexer.idr b/lib/Quox/Parser/Lexer.idr index a6b1fee..f4a4ee0 100644 --- a/lib/Quox/Parser/Lexer.idr +++ b/lib/Quox/Parser/Lexer.idr @@ -1,6 +1,7 @@ module Quox.Parser.Lexer import Quox.CharExtra +import Quox.NatExtra import Quox.Name import Data.String.Extra import Data.SortedMap @@ -19,7 +20,7 @@ import Derive.Prelude ||| @ Reserved reserved token ||| @ Name name, possibly qualified ||| @ Nat nat literal -||| @ String string literal +||| @ Str string literal ||| @ Tag tag literal ||| @ TYPE "Type" or "★" with ascii nat directly after ||| @ Sup superscript or ^ number (displacement, or universe for ★) @@ -34,16 +35,27 @@ data Token = | Sup Nat %runElab derive "Token" [Eq, Ord, Show] --- token or whitespace +||| token or whitespace +||| @ Skip whitespace, comments, etc +||| @ Invalid a token which failed a post-lexer check +||| (e.g. a qualified name containing a keyword) +||| @ T a well formed token public export -0 TokenW : Type -TokenW = Maybe Token +data ExtToken = Skip | Invalid String String | T Token +%runElab derive "ExtToken" [Eq, Ord, Show] +public export +data ErrorReason = + NoRuleApply + | ComposeNotClosing (Int, Int) (Int, Int) + | Other String +%runElab derive "ErrorReason" [Eq, Ord, Show] + public export record Error where constructor Err - reason : StopReason + reason : ErrorReason line, col : Int ||| `Nothing` if the error is at the end of the input char : Maybe Char @@ -52,77 +64,118 @@ record Error where private -skip : Lexer -> Tokenizer TokenW -skip t = match t $ const Nothing +skip : Lexer -> Tokenizer ExtToken +skip t = match t $ const Skip private -match : Lexer -> (String -> Token) -> Tokenizer TokenW -match t f = Tokenizer.match t (Just . f) -%hide Tokenizer.match +tmatch : Lexer -> (String -> Token) -> Tokenizer ExtToken +tmatch t f = match t (T . f) -private -name : Tokenizer TokenW -name = match name $ Name . fromListP . split (== '.') . normalizeNfc - -||| [todo] escapes other than `\"` and (accidentally) `\\` export -fromStringLit : String -> String -fromStringLit = pack . go . unpack . drop 1 . dropLast 1 where - go : List Char -> List Char - go [] = [] - go ['\\'] = ['\\'] -- i guess??? - go ('\\' :: c :: cs) = c :: go cs - go (c :: cs) = c :: go cs +fromStringLit : (String -> Token) -> String -> ExtToken +fromStringLit f str = + case go $ unpack $ drop 1 $ dropLast 1 str of + Left err => Invalid err str + Right ok => T $ f $ pack ok +where + Interpolation Char where interpolate = singleton + + go, hexEscape : List Char -> Either String (List Char) + + go [] = Right [] + go ['\\'] = Left "string ends with \\" + go ('\\' :: 'n' :: cs) = ('\n' ::) <$> go cs + go ('\\' :: 't' :: cs) = ('\t' ::) <$> go cs + go ('\\' :: 'x' :: cs) = hexEscape cs + go ('\\' :: 'X' :: cs) = hexEscape cs + go ('\\' :: '\\' :: cs) = ('\\' ::) <$> go cs + go ('\\' :: '"' :: cs) = ('"' ::) <$> go cs + -- [todo] others + go ('\\' :: c :: _) = Left "unknown escape '\{c}'" + go (c :: cs) = (c ::) <$> go cs + + hexEscape cs = + case break (== ';') cs of + (hs, ';' :: rest) => do + let hs = pack hs + let Just c = Int.fromHex hs + | Nothing => Left #"invalid hex string "\#{hs}" in escape"# + if isCodepoint c + then (chr c ::) <$> go (assert_smaller cs rest) + else Left "codepoint \{hs} out of range" + _ => Left "unterminated hex escape" private -string : Tokenizer TokenW -string = match stringLit (Str . fromStringLit) +string : Tokenizer ExtToken +string = match stringLit $ fromStringLit Str + + +%hide binLit +%hide octLit +%hide hexLit private -nat : Tokenizer TokenW -nat = match (some (range '0' '9')) (Nat . cast) +nat : Tokenizer ExtToken +nat = match hexLit fromHexLit + <|> tmatch decLit fromDecLit +where + withUnderscores : Lexer -> Lexer + withUnderscores l = l <+> many (opt (is '_') <+> l) + + withoutUnderscores : String -> String + withoutUnderscores = pack . go . unpack where + go : List Char -> List Char + go [] = [] + go ('_' :: cs) = go cs + go (c :: cs) = c :: go cs + + decLit = + withUnderscores (range '0' '9') <+> reject idContEnd + + hexLit = + approx "0x" <+> + withUnderscores (range '0' '9' <|> range 'a' 'f' <|> range 'A' 'F') <+> + reject idContEnd + + fromDecLit : String -> Token + fromDecLit = Nat . cast . withoutUnderscores + + fromHexLit : String -> ExtToken + fromHexLit str = + maybe (Invalid "invalid hex sequence" str) (T . Nat) $ + fromHex $ withoutUnderscores $ drop 2 str + private -tag : Tokenizer TokenW -tag = match (is '\'' <+> name) (Tag . drop 1) - <|> match (is '\'' <+> stringLit) (Tag . fromStringLit . drop 1) +tag : Tokenizer ExtToken +tag = tmatch (is '\'' <+> name) (Tag . drop 1) + <|> match (is '\'' <+> stringLit) (fromStringLit Tag . drop 1) - -private %inline -fromSub : Char -> Char -fromSub c = case c of - '₀' => '0'; '₁' => '1'; '₂' => '2'; '₃' => '3'; '₄' => '4' - '₅' => '5'; '₆' => '6'; '₇' => '7'; '₈' => '8'; '₉' => '9'; _ => c - private %inline fromSup : Char -> Char fromSup c = case c of '⁰' => '0'; '¹' => '1'; '²' => '2'; '³' => '3'; '⁴' => '4' '⁵' => '5'; '⁶' => '6'; '⁷' => '7'; '⁸' => '8'; '⁹' => '9'; _ => c -private %inline -subToNat : String -> Nat -subToNat = cast . pack . map fromSub . unpack - private %inline supToNat : String -> Nat supToNat = cast . pack . map fromSup . unpack --- ★0, Type0. base ★/Type is a Reserved +-- ★0, Type0. base ★/Type is a Reserved and ★¹/Type¹ are sequences of two tokens private -universe : Tokenizer TokenW +universe : Tokenizer ExtToken universe = universeWith "★" <|> universeWith "Type" where - universeWith : String -> Tokenizer TokenW + universeWith : String -> Tokenizer ExtToken universeWith pfx = let len = length pfx in - match (exact pfx <+> digits) (TYPE . cast . drop len) + tmatch (exact pfx <+> digits) (TYPE . cast . drop len) private -sup : Tokenizer TokenW -sup = match (some $ pred isSupDigit) (Sup . supToNat) - <|> match (is '^' <+> digits) (Sup . cast . drop 1) +sup : Tokenizer ExtToken +sup = tmatch (some $ pred isSupDigit) (Sup . supToNat) + <|> tmatch (is '^' <+> digits) (Sup . cast . drop 1) private %inline @@ -134,9 +187,11 @@ namespace Reserved ||| description of a reserved symbol ||| @ Word a reserved word (must not be followed by letters, digits, etc) ||| @ Sym a reserved symbol (must not be followed by symbolic chars) - ||| @ Punc a character that doesn't show up in names (brackets, etc) + ||| @ Punc a character that doesn't show up in names (brackets, etc); + ||| also a sequence ending in one of those, like `#[`, since the + ||| difference relates to lookahead public export - data Reserved1 = Word String | Sym String | Punc Char + data Reserved1 = Word String | Sym String | Punc String %runElab derive "Reserved1" [Eq, Ord, Show] ||| description of a token that might have unicode & ascii-only aliases @@ -145,17 +200,14 @@ namespace Reserved %runElab derive "Reserved" [Eq, Ord, Show] public export - Sym1, Word1 : String -> Reserved - Sym1 = Only . Sym + Sym1, Word1, Punc1 : String -> Reserved + Sym1 = Only . Sym Word1 = Only . Word - - public export - Punc1 : Char -> Reserved Punc1 = Only . Punc public export resString1 : Reserved1 -> String -resString1 (Punc x) = singleton x +resString1 (Punc x) = x resString1 (Word w) = w resString1 (Sym s) = s @@ -166,17 +218,23 @@ resString : Reserved -> String resString (Only r) = resString1 r resString (r `Or` _) = resString1 r +||| return both representative strings for a token description +public export +resString2 : Reserved -> List String +resString2 (Only r) = [resString1 r] +resString2 (r `Or` s) = [resString1 r, resString1 s] + private -resTokenizer1 : Reserved1 -> String -> Tokenizer TokenW +resTokenizer1 : Reserved1 -> String -> Tokenizer ExtToken resTokenizer1 r str = let res : String -> Token := const $ Reserved str in - case r of Word w => match (exact w <+> reject idContEnd) res - Sym s => match (exact s <+> reject symCont) res - Punc x => match (is x) res + case r of Word w => tmatch (exact w <+> reject idContEnd) res + Sym s => tmatch (exact s <+> reject symCont) res + Punc x => tmatch (exact x) res ||| match a reserved token export -resTokenizer : Reserved -> Tokenizer TokenW +resTokenizer : Reserved -> Tokenizer ExtToken resTokenizer (Only r) = resTokenizer1 r (resString1 r) resTokenizer (r `Or` s) = resTokenizer1 r (resString1 r) <|> resTokenizer1 s (resString1 r) @@ -188,8 +246,8 @@ resTokenizer (r `Or` s) = public export reserved : List Reserved reserved = - [Punc1 '(', Punc1 ')', Punc1 '[', Punc1 ']', Punc1 '{', Punc1 '}', - Punc1 ',', Punc1 ';', + [Punc1 "(", Punc1 ")", Punc1 "[", Punc1 "]", Punc1 "{", Punc1 "}", + Punc1 ",", Punc1 ";", Punc1 "#[", Punc1 "#![", Sym1 "@", Sym1 ":", Sym "⇒" `Or` Sym "=>", @@ -197,12 +255,16 @@ reserved = Sym "×" `Or` Sym "**", Sym "≡" `Or` Sym "==", Sym "∷" `Or` Sym "::", - Punc1 '.', + Punc1 ".", Word1 "case", Word1 "case0", Word1 "case1", Word "caseω" `Or` Word "case#", Word1 "return", Word1 "of", + Word1 "let", Word1 "in", + Word1 "let0", Word1 "let1", + Word "letω" `Or` Word "let#", + Word1 "fst", Word1 "snd", Word1 "_", Word1 "Eq", Word "λ" `Or` Word "fun", @@ -210,35 +272,71 @@ reserved = Word "ω" `Or` Sym "#", Sym "★" `Or` Word "Type", Word "ℕ" `Or` Word "Nat", + Word1 "IOState", + Word1 "String", Word1 "zero", Word1 "succ", Word1 "coe", Word1 "comp", Word1 "def", Word1 "def0", Word "defω" `Or` Word "def#", + Word1 "postulate", + Word1 "postulate0", + Word "postulateω" `Or` Word "postulate#", Sym1 "=", Word1 "load", Word1 "namespace"] +public export +reservedStrings : List String +reservedStrings = map resString reserved + +public export +allReservedStrings : List String +allReservedStrings = foldMap resString2 reserved + ||| `IsReserved str` is true if `Reserved str` might actually show up in ||| the token stream public export IsReserved : String -> Type -IsReserved str = str `Elem` map resString reserved +IsReserved str = So (str `elem` reservedStrings) + +private +name : Tokenizer ExtToken +name = + match name $ \str => + let parts = split (== '.') $ normalizeNfc str in + case find (`elem` allReservedStrings) (toList parts) of + Nothing => T $ Name $ fromListP parts + Just w => Invalid "reserved word '\{w}' inside name \{str}" str export -tokens : Tokenizer TokenW +tokens : Tokenizer ExtToken tokens = choice $ map skip [pred isWhitespace, lineComment (exact "--" <+> reject symCont), blockComment (exact "{-") (exact "-}")] <+> - [universe] <+> -- ★ᵢ takes precedence over bare ★ + [universe] <+> -- Type takes precedence over bare Type map resTokenizer reserved <+> [sup, nat, string, tag, name] +export +check : Alternative f => + WithBounds ExtToken -> Either Error (f (WithBounds Token)) +check (MkBounded val irr bounds@(MkBounds line col _ _)) = case val of + Skip => Right empty + T tok => Right $ pure $ MkBounded tok irr bounds + Invalid msg tok => Left $ Err (Other msg) line col (index 0 tok) + +export +toErrorReason : StopReason -> Maybe ErrorReason +toErrorReason EndInput = Nothing +toErrorReason NoRuleApply = Just NoRuleApply +toErrorReason (ComposeNotClosing s e) = Just $ ComposeNotClosing s e + export lex : String -> Either Error (List (WithBounds Token)) lex str = let (res, reason, line, col, str) = lex tokens str in - case reason of - EndInput => Right $ mapMaybe sequence res - _ => Left $ Err {reason, line, col, char = index 0 str} + case toErrorReason reason of + Nothing => concatMap check res @{MonoidApplicative} + Just e => Left $ Err {reason = e, line, col, char = index 0 str} diff --git a/lib/Quox/Parser/LoadFile.idr b/lib/Quox/Parser/LoadFile.idr new file mode 100644 index 0000000..720a480 --- /dev/null +++ b/lib/Quox/Parser/LoadFile.idr @@ -0,0 +1,100 @@ +module Quox.Parser.LoadFile + +import public Quox.Parser.Syntax +import Quox.Parser.Parser +import Quox.Loc +import Quox.EffExtra +import Data.IORef +import Data.SortedSet +import System.File +import System.Path + + +%default total + +public export +FilePath : Type +FilePath = String + + +public export +data LoadFileL : (lbl : k) -> Type -> Type where + [search lbl] + Seen : FilePath -> LoadFileL lbl Bool + SetSeen : FilePath -> LoadFileL lbl () + DoLoad : Loc -> FilePath -> LoadFileL lbl PFile + +public export +LoadFile : Type -> Type +LoadFile = LoadFileL () + + +export +seenAt : (0 lbl : k) -> Has (LoadFileL lbl) fs => FilePath -> Eff fs Bool +seenAt lbl file = send $ Seen {lbl} file + +export %inline +seen : Has LoadFile fs => FilePath -> Eff fs Bool +seen = seenAt () + + +export +setSeenAt : (0 lbl : k) -> Has (LoadFileL lbl) fs => FilePath -> Eff fs () +setSeenAt lbl file = send $ SetSeen {lbl} file + +export %inline +setSeen : Has LoadFile fs => FilePath -> Eff fs () +setSeen = setSeenAt () + + +export +doLoadAt : (0 lbl : k) -> Has (LoadFileL lbl) fs => + Loc -> FilePath -> Eff fs PFile +doLoadAt lbl loc file = send $ DoLoad {lbl} loc file + +export %inline +doLoad : Has LoadFile fs => Loc -> FilePath -> Eff fs PFile +doLoad = doLoadAt () + + +public export +SeenSet : Type +SeenSet = SortedSet FilePath + +public export +IncludePath : Type +IncludePath = List String + +export covering +readFileFrom : HasIO io => IncludePath -> FilePath -> + io (Either FileError String) +readFileFrom inc f = + case !(firstExists $ map ( f) inc) of + Just path => readFile path + Nothing => pure $ Left $ FileNotFound + +export covering +handleLoadFileIOE : (Loc -> FilePath -> FileError -> e) -> + (FilePath -> Parser.Error -> e) -> + IORef SeenSet -> IncludePath -> + LoadFileL lbl a -> IOErr e a +handleLoadFileIOE injf injp seen inc = \case + Seen f => contains f <$> readIORef seen + SetSeen f => modifyIORef seen $ insert f + DoLoad l f => + case !(readFileFrom inc f) of + Left err => ioLeft $ injf l f err + Right str => either (ioLeft . injp f) pure $ lexParseInput f str + + +export +loadFileAt : (0 lbl : k) -> Has (LoadFileL lbl) fs => + Loc -> FilePath -> Eff fs (Maybe PFile) +loadFileAt lbl loc file = + if !(seenAt lbl file) + then pure Nothing + else Just <$> doLoadAt lbl loc file <* setSeenAt lbl file + +export +loadFile : Has LoadFile fs => Loc -> FilePath -> Eff fs (Maybe PFile) +loadFile = loadFileAt () diff --git a/lib/Quox/Parser/Parser.idr b/lib/Quox/Parser/Parser.idr index bca8089..6035d57 100644 --- a/lib/Quox/Parser/Parser.idr +++ b/lib/Quox/Parser/Parser.idr @@ -124,7 +124,7 @@ qname = terminalMatch "name" `(Name n) `(n) ||| unqualified name export baseName : Grammar True PBaseName -baseName = terminalMatch "unqualified name" `(Name (MakePName [<] b)) `(b) +baseName = terminalMatch "unqualified name" `(Name (MkPName [<] b)) `(b) ||| dimension constant (0 or 1) export @@ -149,6 +149,12 @@ export qty : FileName -> Grammar True PQty qty fname = withLoc fname [|PQ qtyVal|] +export +exactName : String -> Grammar True () +exactName name = terminal "expected '\{name}'" $ \case + Name (MkPName [<] x) => guard $ x == name + _ => Nothing + ||| pattern var (unqualified name or _) export @@ -198,18 +204,21 @@ export enumType : Grammar True (List TagVal) enumType = delimSep "{" "}" "," bareTag -||| e.g. `case` or `case 1.` +||| e.g. `case1` or `case 1.` export caseIntro : FileName -> Grammar True PQty caseIntro fname = withLoc fname (PQ Zero <$ res "case0") <|> withLoc fname (PQ One <$ res "case1") <|> withLoc fname (PQ Any <$ res "caseω") - <|> delim "case" "." (qty fname) + <|> do resC "case" + qty fname <* needRes "." <|> defLoc fname (PQ One) export qtyPatVar : FileName -> Grammar True (PQty, PatVar) -qtyPatVar fname = [|(,) (qty fname) (needRes "." *> patVar fname)|] +qtyPatVar fname = + [|(,) (qty fname) (needRes "." *> patVar fname)|] + <|> [|(,) (defLoc fname $ PQ One) (patVar fname)|] export @@ -277,19 +286,81 @@ export universe1 : Grammar True Universe universe1 = universeTok <|> res "★" *> option 0 super -||| argument/atomic term: single-token terms, or those with delimiters e.g. -||| `[t]` + +public export +PCaseArm : Type +PCaseArm = (PCasePat, PTerm) + +export +caseArm : FileName -> Grammar True PCaseArm +caseArm fname = + [|(,) (casePat fname) (needRes "⇒" *> assert_total term fname)|] + +export +checkCaseArms : Loc -> List PCaseArm -> Grammar False PCaseBody +checkCaseArms loc [] = pure $ CaseEnum [] loc +checkCaseArms loc ((PPair x y _, rhs) :: rest) = + if null rest then pure $ CasePair (x, y) rhs loc + else fatalError "unexpected pattern after pair" +checkCaseArms loc ((PTag tag _, rhs1) :: rest) = do + let rest = for rest $ \case + (PTag tag _, rhs) => Just (tag, rhs) + _ => Nothing + maybe (fatalError "expected all patterns to be tags") + (\rest => pure $ CaseEnum ((tag, rhs1) :: rest) loc) rest +checkCaseArms loc ((PZero _, rhs1) :: rest) = do + let [(PSucc p q ih _, rhs2)] = rest + | _ => fatalError "expected succ pattern after zero" + pure $ CaseNat rhs1 (p, q, ih, rhs2) loc +checkCaseArms loc ((PSucc p q ih _, rhs1) :: rest) = do + let [(PZero _, rhs2)] = rest + | _ => fatalError "expected zero pattern after succ" + pure $ CaseNat rhs2 (p, q, ih, rhs1) loc +checkCaseArms loc ((PBox x _, rhs) :: rest) = + if null rest then pure $ CaseBox x rhs loc + else fatalError "unexpected pattern after box" + +export +caseBody : FileName -> Grammar True PCaseBody +caseBody fname = do + body <- bounds $ delimSep "{" "}" ";" $ caseArm fname + let loc = makeLoc fname body.bounds + checkCaseArms loc body.val + +export +caseReturn : FileName -> Grammar True (PatVar, PTerm) +caseReturn fname = do + x <- patVar fname <* resC "⇒" <|> unused fname + ret <- assert_total term fname + pure (x, ret) + +export +caseTerm : FileName -> Grammar True PTerm +caseTerm fname = withLoc fname $ do + qty <- caseIntro fname; commit + head <- mustWork $ assert_total term fname; needRes "return" + ret <- mustWork $ caseReturn fname; needRes "of" + body <- mustWork $ caseBody fname + pure $ Case qty head ret body + + +||| argument/atomic term: single-token terms, or those with delimiters +||| e.g. `[t]`. includes `case` because the end delimiter is the `}`. export termArg : FileName -> Grammar True PTerm termArg fname = withLoc fname $ [|TYPE universe1|] + <|> IOState <$ res "IOState" <|> [|Enum enumType|] <|> [|Tag tag|] <|> const <$> boxTerm fname - <|> Nat <$ res "ℕ" - <|> Zero <$ res "zero" - <|> [|fromNat nat|] + <|> NAT <$ res "ℕ" + <|> Nat 0 <$ res "zero" + <|> [|Nat nat|] + <|> STRING <$ res "String" + <|> [|Str strLit|] <|> [|V qname displacement|] + <|> const <$> caseTerm fname <|> const <$> tupleTerm fname export @@ -369,10 +440,10 @@ eqTerm : FileName -> Grammar True PTerm eqTerm fname = withLoc fname $ resC "Eq" *> mustWork [|Eq (typeLine fname) (termArg fname) (termArg fname)|] -export -succTerm : FileName -> Grammar True PTerm -succTerm fname = withLoc fname $ - resC "succ" *> mustWork [|Succ (termArg fname)|] +private +appArg : Loc -> PTerm -> Either PDim PTerm -> PTerm +appArg loc f (Left p) = DApp f p loc +appArg loc f (Right s) = App f s loc ||| a dimension argument with an `@` prefix, or ||| a term argument with no prefix @@ -380,15 +451,32 @@ export anyArg : FileName -> Grammar True (Either PDim PTerm) anyArg fname = dimArg fname <||> termArg fname +export +resAppTerm : FileName -> (word : String) -> (0 _ : IsReserved word) => + (PTerm -> Loc -> PTerm) -> Grammar True PTerm +resAppTerm fname word f = withLoc fname $ do + head <- withLoc fname $ resC word *> mustWork [|f (termArg fname)|] + args <- many $ anyArg fname + pure $ \loc => foldl (appArg loc) head args + +export +succTerm : FileName -> Grammar True PTerm +succTerm fname = resAppTerm fname "succ" Succ + +export +fstTerm : FileName -> Grammar True PTerm +fstTerm fname = resAppTerm fname "fst" Fst + +export +sndTerm : FileName -> Grammar True PTerm +sndTerm fname = resAppTerm fname "snd" Snd + export normalAppTerm : FileName -> Grammar True PTerm normalAppTerm fname = withLoc fname $ do head <- termArg fname args <- many $ anyArg fname - pure $ \loc => foldl (ap loc) head args -where ap : Loc -> PTerm -> Either PDim PTerm -> PTerm - ap loc f (Left p) = DApp f p loc - ap loc f (Right s) = App f s loc + pure $ \loc => foldl (appArg loc) head args ||| application term `f x @y z`, or other terms that look like application ||| like `succ` or `coe`. @@ -400,6 +488,8 @@ appTerm fname = <|> splitUniverseTerm fname <|> eqTerm fname <|> succTerm fname + <|> fstTerm fname + <|> sndTerm fname <|> normalAppTerm fname export @@ -438,18 +528,6 @@ properBinders fname = assert_total $ do t <- term fname; needRes ")" pure (xs, t) -export -piTerm : FileName -> Grammar True PTerm -piTerm fname = withLoc fname $ do - q <- qty fname; resC "." - dom <- piBinder; needRes "→" - cod <- assert_total term fname; commit - pure $ \loc => foldr (\x, t => Pi q x (snd dom) t loc) cod (fst dom) -where - piBinder : Grammar True (List1 PatVar, PTerm) - piBinder = properBinders fname - <|> [|(,) [|singleton $ unused fname|] (termArg fname)|] - export sigmaTerm : FileName -> Grammar True PTerm sigmaTerm fname = @@ -470,105 +548,320 @@ where rest <- optional $ resC "×" *> sepBy1 (res "×") (annTerm fname) pure $ foldr1 cross $ fst ::: maybe [] toList rest -public export -PCaseArm : Type -PCaseArm = (PCasePat, PTerm) +export +piTerm : FileName -> Grammar True PTerm +piTerm fname = withLoc fname $ do + q <- [|GivenQ $ qty fname <* resC "."|] <|> defLoc fname DefaultQ + dom <- [|Dep $ properBinders fname|] <|> [|Nondep $ ndDom q fname|] + cod <- optional $ do resC "→"; assert_total term fname <* commit + when (needCod q dom && isNothing cod) $ fail "missing function type result" + pure $ maybe (const $ toTerm dom) (makePi q dom) cod +where + data PiQty = GivenQ PQty | DefaultQ Loc + data PiDom = Dep (List1 PatVar, PTerm) | Nondep PTerm + + ndDom : PiQty -> FileName -> Grammar True PTerm + ndDom (GivenQ _) = termArg -- 「1.(List A)」, not 「1.List A」 + ndDom (DefaultQ _) = sigmaTerm + + needCod : PiQty -> PiDom -> Bool + needCod (DefaultQ _) (Nondep _) = False + needCod _ _ = True + + toTerm : PiDom -> PTerm + toTerm (Dep (_, s)) = s + toTerm (Nondep s) = s + + toQty : PiQty -> PQty + toQty (GivenQ qty) = qty + toQty (DefaultQ loc) = PQ One loc + + toDoms : PQty -> PiDom -> List1 (PQty, PatVar, PTerm) + toDoms qty (Dep (xs, s)) = [(qty, x, s) | x <- xs] + toDoms qty (Nondep s) = singleton (qty, Unused s.loc, s) + + makePi : PiQty -> PiDom -> PTerm -> Loc -> PTerm + makePi q doms cod loc = + foldr (\(q, x, s), t => Pi q x s t loc) cod $ toDoms (toQty q) doms + export -caseArm : FileName -> Grammar True PCaseArm -caseArm fname = - [|(,) (casePat fname) (needRes "⇒" *> assert_total term fname)|] +letIntro : FileName -> Grammar True (Maybe PQty) +letIntro fname = + withLoc fname (Just . PQ Zero <$ res "let0") + <|> withLoc fname (Just . PQ One <$ res "let1") + <|> withLoc fname (Just . PQ Any <$ res "letω") + <|> Nothing <$ resC "let" + +private +letBinder : FileName -> Maybe PQty -> Grammar True (PQty, PatVar, PTerm) +letBinder fname mq = do + qty <- letQty fname mq + x <- patVar fname + type <- optional $ resC ":" *> term fname + rhs <- resC "=" *> term fname + pure (qty, x, makeLetRhs rhs type) +where + letQty : FileName -> Maybe PQty -> Grammar False PQty + letQty fname Nothing = qty fname <* mustWork (resC ".") <|> defLoc fname (PQ One) + letQty fname (Just q) = pure q + + makeLetRhs : PTerm -> Maybe PTerm -> PTerm + makeLetRhs tm ty = maybe tm (\t => Ann tm t (extendL tm.loc t.loc)) ty export -checkCaseArms : Loc -> List PCaseArm -> Grammar False PCaseBody -checkCaseArms loc [] = pure $ CaseEnum [] loc -checkCaseArms loc ((PPair x y _, rhs) :: rest) = - if null rest then pure $ CasePair (x, y) rhs loc - else fatalError "unexpected pattern after pair" -checkCaseArms loc ((PTag tag _, rhs1) :: rest) = do - let rest = for rest $ \case - (PTag tag _, rhs) => Just (tag, rhs) - _ => Nothing - maybe (fatalError "expected all patterns to be tags") - (\rest => pure $ CaseEnum ((tag, rhs1) :: rest) loc) rest -checkCaseArms loc ((PZero _, rhs1) :: rest) = do - let [(PSucc p q ih _, rhs2)] = rest - | _ => fatalError "expected succ pattern after zero" - pure $ CaseNat rhs1 (p, q, ih, rhs2) loc -checkCaseArms loc ((PSucc p q ih _, rhs1) :: rest) = do - let [(PZero _, rhs2)] = rest - | _ => fatalError "expected zero pattern after succ" - pure $ CaseNat rhs2 (p, q, ih, rhs1) loc -checkCaseArms loc ((PBox x _, rhs) :: rest) = - if null rest then pure $ CaseBox x rhs loc - else fatalError "unexpected pattern after box" +letTerm : FileName -> Grammar True PTerm +letTerm fname = withLoc fname $ do + qty <- letIntro fname + binds <- sepEndBy1 (res ";") $ assert_total letBinder fname qty + mustWork $ resC "in" + body <- assert_total term fname + pure $ \loc => foldr (\b, s => Let b s loc) body binds -export -caseBody : FileName -> Grammar True PCaseBody -caseBody fname = do - body <- bounds $ delimSep "{" "}" ";" $ caseArm fname - let loc = makeLoc fname body.bounds - checkCaseArms loc body.val - -export -caseReturn : FileName -> Grammar True (PatVar, PTerm) -caseReturn fname = do - x <- patVar fname <* resC "⇒" <|> unused fname - ret <- assert_total term fname - pure (x, ret) - -export -caseTerm : FileName -> Grammar True PTerm -caseTerm fname = withLoc fname $ do - qty <- caseIntro fname; commit - head <- mustWork $ assert_total term fname; needRes "return" - ret <- mustWork $ caseReturn fname; needRes "of" - body <- mustWork $ caseBody fname - pure $ Case qty head ret body - --- export -- term : FileName -> Grammar True PTerm term fname = lamTerm fname - <|> caseTerm fname <|> piTerm fname <|> sigmaTerm fname + <|> letTerm fname export -decl : FileName -> Grammar True PDecl +attr' : FileName -> (o : String) -> (0 _ : IsReserved o) => + Grammar True PAttr +attr' fname o = withLoc fname $ do + resC o + name <- baseName + args <- many $ termArg fname + mustWork $ resC "]" + pure $ PA name args + +export %inline +attr : FileName -> Grammar True PAttr +attr fname = attr' fname "#[" -||| `def` alone means `defω` export -defIntro : FileName -> Grammar True PQty -defIntro fname = - withLoc fname (PQ Zero <$ resC "def0") - <|> withLoc fname (PQ Any <$ resC "defω") - <|> do pos <- bounds $ resC "def" +findDups : List PAttr -> List String +findDups attrs = + SortedSet.toList $ snd $ foldl check (empty, empty) attrs +where + Seen = SortedSet String; Dups = SortedSet String + check : (Seen, Dups) -> PAttr -> (Seen, Dups) + check (seen, dups) (PA a _ _) = + (insert a seen, if contains a seen then insert a dups else dups) + +export +noDups : List PAttr -> Grammar False () +noDups attrs = do + let dups = findDups attrs + when (not $ null dups) $ + fatalError "duplicate attribute names: \{joinBy "," dups}" + +export +attrList : FileName -> Grammar False (List PAttr) +attrList fname = do + res <- many $ attr fname + noDups res $> res + +public export +data AttrMatch a = + Matched a + | NoMatch String (List String) + | Malformed String String + +export +Functor AttrMatch where + map f (Matched x) = Matched $ f x + map f (NoMatch s w) = NoMatch s w + map f (Malformed a e) = Malformed a e + +export +(<|>) : AttrMatch a -> AttrMatch a -> AttrMatch a +Matched x <|> _ = Matched x +NoMatch {} <|> y = y +Malformed a e <|> _ = Malformed a e + +export +isFail : PAttr -> List String -> AttrMatch PFail +isFail (PA "fail" [] _) _ = Matched PFailAny +isFail (PA "fail" [Str s _] _) _ = Matched $ PFailMatch s +isFail (PA "fail" _ _) _ = Malformed "fail" "be absent or a string literal" +isFail a w = NoMatch a.name w + +export +isMain : PAttr -> List String -> AttrMatch () +isMain (PA "main" [] _) _ = Matched () +isMain (PA "main" _ _) _ = Malformed "main" "have no arguments" +isMain a w = NoMatch a.name w + +export +isScheme : PAttr -> List String -> AttrMatch String +isScheme (PA "compile-scheme" [Str s _] _) _ = Matched s +isScheme (PA "compile-scheme" _ _) _ = + Malformed "compile-scheme" "be a string literal" +isScheme a w = NoMatch a.name w + +export +matchAttr : String -> AttrMatch a -> Either String a +matchAttr _ (Matched x) = Right x +matchAttr d (NoMatch a w) = Left $ unlines + ["unrecognised \{d} attribute \{a}", "expected one of: \{show w}"] +matchAttr _ (Malformed a s) = Left $ unlines + ["invalid \{a} attribute", "(should \{s})"] + +export +mkPDef : List PAttr -> PQty -> PBaseName -> PBody -> + Either String (Loc -> PDefinition) +mkPDef attrs qty name body = do + let start = MkPDef qty name body PSucceed False Nothing noLoc + res <- foldlM addAttr start attrs + pure $ \l => {loc_ := l} (the PDefinition res) +where + data PDefAttr = DefFail PFail | DefMain | DefScheme String + + isDefAttr : PAttr -> Either String PDefAttr + isDefAttr attr = + let defAttrs = ["fail", "main", "compile-scheme"] in + matchAttr "definition" $ + DefFail <$> isFail attr defAttrs + <|> DefMain <$ isMain attr defAttrs + <|> DefScheme <$> isScheme attr defAttrs + + addAttr : PDefinition -> PAttr -> Either String PDefinition + addAttr def attr = + case !(isDefAttr attr) of + DefFail f => pure $ {fail := f} def + DefMain => pure $ {main := True} def + DefScheme str => pure $ {scheme := Just str} def + +export +mkPNamespace : List PAttr -> Mods -> List PDecl -> + Either String (Loc -> PNamespace) +mkPNamespace attrs name decls = do + let start = MkPNamespace name decls PSucceed noLoc + res <- foldlM addAttr start attrs + pure $ \l => {loc_ := l} (the PNamespace res) +where + isNsAttr a = matchAttr "namespace" $ isFail a ["fail"] + + addAttr : PNamespace -> PAttr -> Either String PNamespace + addAttr ns attr = pure $ {fail := !(isNsAttr attr)} ns + +||| `def` alone means `defω`; same for `postulate` +export +defIntro' : (bare, zero, omega : String) -> + (0 _ : IsReserved bare) => + (0 _ : IsReserved zero) => + (0 _ : IsReserved omega) => + FileName -> Grammar True PQty +defIntro' bare zero omega fname = + withLoc fname (PQ Zero <$ resC zero) + <|> withLoc fname (PQ Any <$ resC omega) + <|> do pos <- bounds $ resC bare let any = PQ Any $ makeLoc fname pos.bounds option any $ qty fname <* needRes "." export -definition : FileName -> Grammar True PDefinition -definition fname = withLoc fname $ do +defIntro : FileName -> Grammar True PQty +defIntro = defIntro' "def" "def0" "defω" + +export +postulateIntro : FileName -> Grammar True PQty +postulateIntro = defIntro' "postulate" "postulate0" "postulateω" + +export +postulate : FileName -> List PAttr -> Grammar True PDefinition +postulate fname attrs = withLoc fname $ do + qty <- postulateIntro fname + name <- baseName + type <- resC ":" *> mustWork (term fname) + optRes ";" + either fatalError pure $ mkPDef attrs qty name $ PPostulate type + +export +concrete : FileName -> List PAttr -> Grammar True PDefinition +concrete fname attrs = withLoc fname $ do qty <- defIntro fname name <- baseName type <- optional $ resC ":" *> mustWork (term fname) term <- needRes "=" *> mustWork (term fname) optRes ";" - pure $ MkPDef qty name type term + either fatalError pure $ mkPDef attrs qty name $ PConcrete type term export -namespace_ : FileName -> Grammar True PNamespace -namespace_ fname = withLoc fname $ do - ns <- resC "namespace" *> qname; needRes "{" - decls <- nsInner; optRes ";" - pure $ MkPNamespace (ns.mods :< ns.base) decls +definition : FileName -> List PAttr -> Grammar True PDefinition +definition fname attrs = + try (postulate fname attrs) <|> concrete fname attrs + +export +nsname : Grammar True Mods +nsname = do ns <- qname; pure $ ns.mods :< ns.base + +export +pragma : FileName -> Grammar True PPragma +pragma fname = do + a <- attr' fname "#![" + either fatalError pure $ case a.name of + "log" => logArgs a.args a.loc + _ => Left $ + #"unrecognised pragma "\#{a.name}"\n"# ++ + #"known pragmas: ["log"]"# +where + levelOOB : Nat -> Either String a + levelOOB n = Left $ + "log level \{show n} out of bounds\n" ++ + "expected number in range 0–\{show maxLogLevel} inclusive" + + toLevel : Nat -> Either String LogLevel + toLevel lvl = maybe (levelOOB lvl) Right $ toLogLevel lvl + + unknownCat : String -> Either String a + unknownCat cat = Left $ + "unknown log category \{show cat}\n" ++ + "known categories: \{show $ ["all", "default"] ++ logCategories}" + + toCat : String -> Either String LogCategory + toCat cat = maybe (unknownCat cat) Right $ toLogCategory cat + + fromPair : PTerm -> Either String (String, Nat) + fromPair (Pair (V (MkPName [<] x) Nothing _) (Nat n _) _) = Right (x, n) + fromPair _ = Left "invalid argument to log pragma" + + logCatArg : (String, Nat) -> Either String Log.PushArg + logCatArg ("default", lvl) = [|SetDefault $ toLevel lvl|] + logCatArg ("all", lvl) = [|SetAll $ toLevel lvl|] + logCatArg (cat, lvl) = [|SetCat (toCat cat) (toLevel lvl)|] + + logArgs : List PTerm -> Loc -> Either String PPragma + logArgs [] _ = Left "missing arguments to log pragma" + logArgs [V "pop" Nothing _] loc = Right $ PLogPop loc + logArgs other loc = do + args <- traverse (logCatArg <=< fromPair) other + pure $ PLogPush args loc + + +export +decl : FileName -> Grammar True PDecl + +export +namespace_ : FileName -> List PAttr -> Grammar True PNamespace +namespace_ fname attrs = withLoc fname $ do + ns <- resC "namespace" *> nsname; needRes "{" + decls <- nsInner + either fatalError pure $ mkPNamespace attrs ns decls where nsInner : Grammar True (List PDecl) nsInner = [] <$ resC "}" <|> [|(assert_total decl fname <* commit) :: assert_total nsInner|] -decl fname = [|PDef $ definition fname|] <|> [|PNs $ namespace_ fname|] +export +declBody : FileName -> List PAttr -> Grammar True PDecl +declBody fname attrs = + [|PDef $ definition fname attrs|] <|> [|PNs $ namespace_ fname attrs|] + +-- decl : FileName -> Grammar True PDecl +decl fname = + (attrList fname >>= declBody fname) + <|> PPrag <$> pragma fname export load : FileName -> Grammar True PTopLevel @@ -580,7 +873,7 @@ topLevel : FileName -> Grammar True PTopLevel topLevel fname = load fname <|> [|PD $ decl fname|] export -input : FileName -> Grammar False (List PTopLevel) +input : FileName -> Grammar False PFile input fname = [] <$ eof <|> [|(topLevel fname <* commit) :: assert_total input fname|] @@ -589,5 +882,5 @@ lexParseTerm : FileName -> String -> Either Error PTerm lexParseTerm = lexParseWith . term export -lexParseInput : FileName -> String -> Either Error (List PTopLevel) +lexParseInput : FileName -> String -> Either Error PFile lexParseInput = lexParseWith . input diff --git a/lib/Quox/Parser/Syntax.idr b/lib/Quox/Parser/Syntax.idr index 335eb49..9197efe 100644 --- a/lib/Quox/Parser/Syntax.idr +++ b/lib/Quox/Parser/Syntax.idr @@ -3,6 +3,8 @@ module Quox.Parser.Syntax import public Quox.Loc import public Quox.Syntax import public Quox.Definition +import Quox.PrettyValExtra +import public Quox.Log import Derive.Prelude %hide TT.Name @@ -14,9 +16,9 @@ import Derive.Prelude public export data PatVar = Unused Loc | PV PBaseName Loc %name PatVar v -%runElab derive "PatVar" [Eq, Ord, Show] +%runElab derive "PatVar" [Eq, Ord, Show, PrettyVal] -export +export %inline Located PatVar where (Unused loc).loc = loc (PV _ loc).loc = loc @@ -38,17 +40,17 @@ record PQty where val : Qty loc_ : Loc %name PQty qty -%runElab derive "PQty" [Eq, Ord, Show] +%runElab derive "PQty" [Eq, Ord, Show, PrettyVal] -export Located PQty where q.loc = q.loc_ +export %inline Located PQty where q.loc = q.loc_ namespace PDim public export data PDim = K DimConst Loc | V PBaseName Loc %name PDim p, q - %runElab derive "PDim" [Eq, Ord, Show] + %runElab derive "PDim" [Eq, Ord, Show, PrettyVal] -export +export %inline Located PDim where (K _ loc).loc = loc (V _ loc).loc = loc @@ -56,7 +58,7 @@ Located PDim where public export data PTagVal = PT TagVal Loc %name PTagVal tag -%runElab derive "PTagVal" [Eq, Ord, Show] +%runElab derive "PTagVal" [Eq, Ord, Show, PrettyVal] namespace PTerm @@ -66,6 +68,8 @@ namespace PTerm data PTerm = TYPE Universe Loc + | IOState Loc + | Pi PQty PatVar PTerm PTerm Loc | Lam PatVar PTerm Loc | App PTerm PTerm Loc @@ -73,6 +77,7 @@ namespace PTerm | Sig PatVar PTerm PTerm Loc | Pair PTerm PTerm Loc | Case PQty PTerm (PatVar, PTerm) PCaseBody Loc + | Fst PTerm Loc | Snd PTerm Loc | Enum (List TagVal) Loc | Tag TagVal Loc @@ -81,8 +86,11 @@ namespace PTerm | DLam PatVar PTerm Loc | DApp PTerm PDim Loc - | Nat Loc - | Zero Loc | Succ PTerm Loc + | NAT Loc + | Nat Nat Loc | Succ PTerm Loc + + | STRING Loc -- "String" is a reserved word in idris + | Str String Loc | BOX PQty PTerm Loc | Box PTerm Loc @@ -93,6 +101,8 @@ namespace PTerm | Coe (PatVar, PTerm) PDim PDim PTerm Loc | Comp (PatVar, PTerm) PDim PDim PTerm PDim (PatVar, PTerm) (PatVar, PTerm) Loc + + | Let (PQty, PatVar, PTerm) PTerm Loc %name PTerm s, t public export @@ -103,33 +113,43 @@ namespace PTerm | CaseBox PatVar PTerm Loc %name PCaseBody body -%runElab deriveMutual ["PTerm", "PCaseBody"] [Eq, Ord, Show] + public export %inline + Zero : Loc -> PTerm + Zero = Nat 0 -export +%runElab deriveMutual ["PTerm", "PCaseBody"] [Eq, Ord, Show, PrettyVal] + +export %inline Located PTerm where - (TYPE _ loc).loc = loc - (Pi _ _ _ _ loc).loc = loc - (Lam _ _ loc).loc = loc - (App _ _ loc).loc = loc - (Sig _ _ _ loc).loc = loc - (Pair _ _ loc).loc = loc - (Case _ _ _ _ loc).loc = loc - (Enum _ loc).loc = loc - (Tag _ loc).loc = loc - (Eq _ _ _ loc).loc = loc - (DLam _ _ loc).loc = loc - (DApp _ _ loc).loc = loc - (Nat loc).loc = loc - (Zero loc).loc = loc - (Succ _ loc).loc = loc - (BOX _ _ loc).loc = loc - (Box _ loc).loc = loc - (V _ _ loc).loc = loc - (Ann _ _ loc).loc = loc - (Coe _ _ _ _ loc).loc = loc - (Comp _ _ _ _ _ _ _ loc).loc = loc + (TYPE _ loc).loc = loc + (IOState loc).loc = loc + (Pi _ _ _ _ loc).loc = loc + (Lam _ _ loc).loc = loc + (App _ _ loc).loc = loc + (Sig _ _ _ loc).loc = loc + (Pair _ _ loc).loc = loc + (Fst _ loc).loc = loc + (Snd _ loc).loc = loc + (Case _ _ _ _ loc).loc = loc + (Enum _ loc).loc = loc + (Tag _ loc).loc = loc + (Eq _ _ _ loc).loc = loc + (DLam _ _ loc).loc = loc + (DApp _ _ loc).loc = loc + (NAT loc).loc = loc + (Nat _ loc).loc = loc + (Succ _ loc).loc = loc + (STRING loc).loc = loc + (Str _ loc).loc = loc + (BOX _ _ loc).loc = loc + (Box _ loc).loc = loc + (V _ _ loc).loc = loc + (Ann _ _ loc).loc = loc + (Coe _ _ _ _ loc).loc = loc + (Comp _ _ _ _ _ _ _ loc).loc = loc + (Let _ _ loc).loc = loc -export +export %inline Located PCaseBody where (CasePair _ _ loc).loc = loc (CaseEnum _ loc).loc = loc @@ -137,18 +157,45 @@ Located PCaseBody where (CaseBox _ _ loc).loc = loc +public export +data PBody = PConcrete (Maybe PTerm) PTerm | PPostulate PTerm +%name PBody body +%runElab derive "PBody" [Eq, Ord, Show, PrettyVal] + + +public export +data PFail = + PSucceed +| PFailAny +| PFailMatch String +%runElab derive "PFail" [Eq, Ord, Show, PrettyVal] + public export record PDefinition where constructor MkPDef - qty : PQty - name : PBaseName - type : Maybe PTerm - term : PTerm - loc_ : Loc + qty : PQty + name : PBaseName + body : PBody + fail : PFail + main : Bool + scheme : Maybe String + loc_ : Loc %name PDefinition def -%runElab derive "PDefinition" [Eq, Ord, Show] +%runElab derive "PDefinition" [Eq, Ord, Show, PrettyVal] -export Located PDefinition where def.loc = def.loc_ +export %inline Located PDefinition where def.loc = def.loc_ + +public export +data PPragma = + PLogPush (List Log.PushArg) Loc + | PLogPop Loc +%name PPragma prag +%runElab derive "PPragma" [Eq, Ord, Show, PrettyVal] + +export %inline +Located PPragma where + (PLogPush _ loc).loc = loc + (PLogPop loc).loc = loc mutual public export @@ -156,35 +203,49 @@ mutual constructor MkPNamespace name : Mods decls : List PDecl + fail : PFail loc_ : Loc %name PNamespace ns public export data PDecl = - PDef PDefinition - | PNs PNamespace + PDef PDefinition + | PNs PNamespace + | PPrag PPragma %name PDecl decl -%runElab deriveMutual ["PNamespace", "PDecl"] [Eq, Ord, Show] +%runElab deriveMutual ["PNamespace", "PDecl"] [Eq, Ord, Show, PrettyVal] -export Located PNamespace where ns.loc = ns.loc_ +export %inline Located PNamespace where ns.loc = ns.loc_ -export +export %inline Located PDecl where - (PDef def).loc = def.loc - (PNs ns).loc = ns.loc + (PDef d).loc = d.loc + (PNs ns).loc = ns.loc + (PPrag prag).loc = prag.loc public export data PTopLevel = PD PDecl | PLoad String Loc %name PTopLevel t -%runElab derive "PTopLevel" [Eq, Ord, Show] +%runElab derive "PTopLevel" [Eq, Ord, Show, PrettyVal] -export +export %inline Located PTopLevel where (PD decl).loc = decl.loc (PLoad _ loc).loc = loc public export -fromNat : Nat -> Loc -> PTerm -fromNat 0 loc = Zero loc -fromNat (S k) loc = Succ (fromNat k loc) loc +record PAttr where + constructor PA + name : PBaseName + args : List PTerm + loc_ : Loc +%name PAttr attr +%runElab derive "PAttr" [Eq, Ord, Show, PrettyVal] + +export %inline Located PAttr where attr.loc = attr.loc_ + + +public export +PFile : Type +PFile = List PTopLevel diff --git a/lib/Quox/Pretty.idr b/lib/Quox/Pretty.idr index f90e5ec..606ec78 100644 --- a/lib/Quox/Pretty.idr +++ b/lib/Quox/Pretty.idr @@ -3,6 +3,7 @@ module Quox.Pretty import Quox.Loc import Quox.Name +import Control.Monad.ST.Extra import public Text.PrettyPrint.Bernardy import public Text.PrettyPrint.Bernardy.Core.Decorate import public Quox.EffExtra @@ -40,7 +41,7 @@ data HL | Dim | DVar | DVarErr | Qty | Universe | Syntax -| Tag +| Constant %runElab derive "HL" [Eq, Ord, Show] @@ -65,11 +66,12 @@ export %inline runPrettyWith : PPrec -> Flavor -> (HL -> Highlight) -> Nat -> Eff Pretty a -> a runPrettyWith prec flavor highlight indent act = - extract $ - evalStateAt PREC prec $ - runReaderAt FLAVOR flavor $ - runReaderAt HIGHLIGHT highlight $ - runReaderAt INDENT indent act + runST $ do + runEff act $ with Union.(::) + [handleStateSTRef !(newSTRef prec), + handleReaderConst flavor, + handleReaderConst highlight, + handleReaderConst indent] export %inline @@ -84,43 +86,65 @@ toSGR DVarErr = [SetForeground BrightGreen, SetStyle SingleUnderline] toSGR Qty = [SetForeground BrightMagenta] toSGR Universe = [SetForeground BrightRed] toSGR Syntax = [SetForeground BrightCyan] -toSGR Tag = [SetForeground BrightRed] +toSGR Constant = [SetForeground BrightRed] export %inline highlightSGR : HL -> Highlight highlightSGR h = MkHighlight (escapeSGR $ toSGR h) (escapeSGR [Reset]) +export %inline +toClass : HL -> String +toClass Delim = "dl" +toClass Free = "fr" +toClass TVar = "tv" +toClass TVarErr = "tv err" +toClass Dim = "dc" +toClass DVar = "dv" +toClass DVarErr = "dv err" +toClass Qty = "qt" +toClass Universe = "un" +toClass Syntax = "sy" +toClass Constant = "co" + +export %inline +highlightHtml : HL -> Highlight +highlightHtml h = MkHighlight #""# "" + + +export %inline +runPrettyHL : (HL -> Highlight) -> Eff Pretty a -> a +runPrettyHL f = runPrettyWith Outer Unicode f 2 export %inline runPretty : Eff Pretty a -> a -runPretty = runPrettyWith Outer Unicode noHighlight 2 - -export %inline -runPrettyColor : Eff Pretty a -> a -runPrettyColor = runPrettyWith Outer Unicode highlightSGR 2 +runPretty = runPrettyHL noHighlight export %inline -hl : {opts : _} -> HL -> Doc opts -> Eff Pretty (Doc opts) +hl : {opts : LayoutOpts} -> HL -> Doc opts -> Eff Pretty (Doc opts) hl h doc = asksAt HIGHLIGHT $ \f => decorate (f h) doc export %inline -indentD : {opts : _} -> Doc opts -> Eff Pretty (Doc opts) +indentD : {opts : LayoutOpts} -> Doc opts -> Eff Pretty (Doc opts) indentD doc = pure $ indent !(askAt INDENT) doc export %inline -hangD : {opts : _} -> Doc opts -> Doc opts -> Eff Pretty (Doc opts) +hangD : {opts : LayoutOpts} -> Doc opts -> Doc opts -> Eff Pretty (Doc opts) hangD d1 d2 = pure $ hangSep !(askAt INDENT) d1 d2 export %inline -hangDSingle : {opts : _} -> Doc opts -> Doc opts -> Eff Pretty (Doc opts) -hangDSingle d1 d2 = - pure $ ifMultiline (d1 <++> d2) (vappend d1 !(indentD d2)) +hangSingle : {opts : LayoutOpts} -> Nat -> Doc opts -> Doc opts -> Doc opts +hangSingle n d1 d2 = ifMultiline (d1 <++> d2) (vappend d1 (indent n d2)) + +export %inline +hangDSingle : {opts : LayoutOpts} -> Doc opts -> Doc opts -> + Eff Pretty (Doc opts) +hangDSingle d1 d2 = pure $ hangSingle !(askAt INDENT) d1 d2 export -tightDelims : {opts : _} -> (l, r : String) -> (inner : Doc opts) -> +tightDelims : {opts : LayoutOpts} -> (l, r : String) -> (inner : Doc opts) -> Eff Pretty (Doc opts) tightDelims l r inner = do l <- hl Delim $ text l @@ -128,7 +152,7 @@ tightDelims l r inner = do pure $ hcat [l, inner, r] export -looseDelims : {opts : _} -> (l, r : String) -> (inner : Doc opts) -> +looseDelims : {opts : LayoutOpts} -> (l, r : String) -> (inner : Doc opts) -> Eff Pretty (Doc opts) looseDelims l r inner = do l <- hl Delim $ text l @@ -138,39 +162,39 @@ looseDelims l r inner = do pure $ ifMultiline short long export %inline -parens : {opts : _} -> Doc opts -> Eff Pretty (Doc opts) +parens : {opts : LayoutOpts} -> Doc opts -> Eff Pretty (Doc opts) parens = tightDelims "(" ")" export %inline -bracks : {opts : _} -> Doc opts -> Eff Pretty (Doc opts) +bracks : {opts : LayoutOpts} -> Doc opts -> Eff Pretty (Doc opts) bracks = tightDelims "[" "]" export %inline -braces : {opts : _} -> Doc opts -> Eff Pretty (Doc opts) +braces : {opts : LayoutOpts} -> Doc opts -> Eff Pretty (Doc opts) braces = looseDelims "{" "}" export %inline -tightBraces : {opts : _} -> Doc opts -> Eff Pretty (Doc opts) +tightBraces : {opts : LayoutOpts} -> Doc opts -> Eff Pretty (Doc opts) tightBraces = tightDelims "{" "}" export %inline -parensIf : {opts : _} -> Bool -> Doc opts -> Eff Pretty (Doc opts) +parensIf : {opts : LayoutOpts} -> Bool -> Doc opts -> Eff Pretty (Doc opts) parensIf True = parens parensIf False = pure ||| uses hsep only if the whole list fits on one line export -sepSingle : {opts : _} -> List (Doc opts) -> Doc opts +sepSingle : {opts : LayoutOpts} -> List (Doc opts) -> Doc opts sepSingle xs = ifMultiline (hsep xs) (vsep xs) export -fillSep : {opts : _} -> List (Doc opts) -> Doc opts +fillSep : {opts : LayoutOpts} -> List (Doc opts) -> Doc opts fillSep [] = empty fillSep (x :: xs) = foldl (\x, y => sep [x, y]) x xs export -exceptLast : {opts : _} -> (Doc opts -> Doc opts) -> +exceptLast : {opts : LayoutOpts} -> (Doc opts -> Doc opts) -> List (Doc opts) -> List (Doc opts) exceptLast f [] = [] exceptLast f [x] = [x] @@ -185,11 +209,24 @@ parameters {opts : LayoutOpts} {auto _ : Foldable t} separateTight : Doc opts -> t (Doc opts) -> Doc opts separateTight d = sep . exceptLast (<+> d) . toList + export + hseparateTight : Doc opts -> t (Doc opts) -> Doc opts + hseparateTight d = hsep . exceptLast (<+> d) . toList + + export + vseparateTight : Doc opts -> t (Doc opts) -> Doc opts + vseparateTight d = vsep . exceptLast (<+> d) . toList + export fillSeparateTight : Doc opts -> t (Doc opts) -> Doc opts fillSeparateTight d = fillSep . exceptLast (<+> d) . toList +export %inline +pshow : {opts : LayoutOpts} -> Show a => a -> Doc opts +pshow = text . show + + export %inline ifUnicode : (uni, asc : Lazy a) -> Eff Pretty a ifUnicode uni asc = @@ -198,7 +235,7 @@ ifUnicode uni asc = Ascii => asc export %inline -parensIfM : {opts : _} -> PPrec -> Doc opts -> Eff Pretty (Doc opts) +parensIfM : {opts : LayoutOpts} -> PPrec -> Doc opts -> Eff Pretty (Doc opts) parensIfM d doc = parensIf (!(getAt PREC) > d) doc export %inline @@ -211,64 +248,73 @@ prettyName : Name -> Doc opts prettyName = text . toDots export -prettyFree : {opts : _} -> Name -> Eff Pretty (Doc opts) +prettyFree : {opts : LayoutOpts} -> Name -> Eff Pretty (Doc opts) prettyFree = hl Free . prettyName export prettyBind' : BindName -> Doc opts -prettyBind' = text . baseStr . name +prettyBind' = text . baseStr . val export -prettyTBind : {opts : _} -> BindName -> Eff Pretty (Doc opts) +prettyTBind : {opts : LayoutOpts} -> BindName -> Eff Pretty (Doc opts) prettyTBind = hl TVar . prettyBind' export -prettyDBind : {opts : _} -> BindName -> Eff Pretty (Doc opts) +prettyDBind : {opts : LayoutOpts} -> BindName -> Eff Pretty (Doc opts) prettyDBind = hl DVar . prettyBind' export %inline -typeD, arrowD, darrowD, timesD, lamD, eqndD, dlamD, annD, natD, -eqD, colonD, commaD, semiD, caseD, typecaseD, returnD, -ofD, dotD, zeroD, succD, coeD, compD, undD, cstD, pipeD : - {opts : _} -> Eff Pretty (Doc opts) +typeD, ioStateD, arrowD, darrowD, timesD, lamD, eqndD, dlamD, annD, natD, +stringD, eqD, colonD, commaD, semiD, atD, caseD, typecaseD, returnD, ofD, dotD, +zeroD, succD, coeD, compD, undD, cstD, pipeD, fstD, sndD, letD, inD : + {opts : LayoutOpts} -> Eff Pretty (Doc opts) typeD = hl Syntax . text =<< ifUnicode "★" "Type" -arrowD = hl Delim . text =<< ifUnicode "→" "->" -darrowD = hl Delim . text =<< ifUnicode "⇒" "=>" -timesD = hl Delim . text =<< ifUnicode "×" "**" +ioStateD = hl Syntax $ text "IOState" +arrowD = hl Syntax . text =<< ifUnicode "→" "->" +darrowD = hl Syntax . text =<< ifUnicode "⇒" "=>" +timesD = hl Syntax . text =<< ifUnicode "×" "**" lamD = hl Syntax . text =<< ifUnicode "λ" "fun" -eqndD = hl Delim . text =<< ifUnicode "≡" "==" +eqndD = hl Syntax . text =<< ifUnicode "≡" "==" dlamD = hl Syntax . text =<< ifUnicode "δ" "dfun" -annD = hl Delim . text =<< ifUnicode "∷" "::" +annD = hl Syntax . text =<< ifUnicode "∷" "::" natD = hl Syntax . text =<< ifUnicode "ℕ" "Nat" -eqD = hl Syntax $ text "Eq" -colonD = hl Delim $ text ":" -commaD = hl Delim $ text "," -semiD = hl Delim $ text ";" -caseD = hl Syntax $ text "case" -typecaseD = hl Syntax $ text "type-case" -ofD = hl Syntax $ text "of" -returnD = hl Syntax $ text "return" -dotD = hl Delim $ text "." -zeroD = hl Syntax $ text "zero" -succD = hl Syntax $ text "succ" -coeD = hl Syntax $ text "coe" -compD = hl Syntax $ text "comp" -undD = hl Syntax $ text "_" -cstD = hl Syntax $ text "=" -pipeD = hl Syntax $ text "|" +stringD = hl Syntax $ text "String" +eqD = hl Syntax $ text "Eq" +colonD = hl Syntax $ text ":" +commaD = hl Syntax $ text "," +semiD = hl Delim $ text ";" +atD = hl Delim $ text "@" +caseD = hl Syntax $ text "case" +typecaseD = hl Syntax $ text "type-case" +ofD = hl Syntax $ text "of" +returnD = hl Syntax $ text "return" +dotD = hl Delim $ text "." +zeroD = hl Constant $ text "zero" +succD = hl Constant $ text "succ" +coeD = hl Syntax $ text "coe" +compD = hl Syntax $ text "comp" +undD = hl Syntax $ text "_" +cstD = hl Syntax $ text "=" +pipeD = hl Delim $ text "|" +fstD = hl Syntax $ text "fst" +sndD = hl Syntax $ text "snd" +letD = hl Syntax $ text "let" +inD = hl Syntax $ text "in" export -prettyApp : {opts : _} -> Nat -> Doc opts -> List (Doc opts) -> Doc opts +prettyApp : {opts : LayoutOpts} -> Nat -> Doc opts -> + List (Doc opts) -> Doc opts prettyApp ind f args = - hsep (f :: args) - <|> hsep [f, vsep args] - <|> vsep (f :: map (indent ind) args) + ifMultiline + (hsep (f :: args)) + (f <++> vsep args <|> vsep (f :: map (indent ind) args)) export -prettyAppD : {opts : _} -> Doc opts -> List (Doc opts) -> Eff Pretty (Doc opts) +prettyAppD : {opts : LayoutOpts} -> Doc opts -> List (Doc opts) -> + Eff Pretty (Doc opts) prettyAppD f args = pure $ prettyApp !(askAt INDENT) f args @@ -288,7 +334,7 @@ quoteTag tag = "\"" ++ escapeString tag ++ "\"" export -prettyBounds : {opts : _} -> Bounds -> Eff Pretty (Doc opts) +prettyBounds : {opts : LayoutOpts} -> Bounds -> Eff Pretty (Doc opts) prettyBounds (MkBounds l1 c1 l2 c2) = hcat <$> sequence [hl TVar $ text $ show l1, colonD, @@ -297,8 +343,22 @@ prettyBounds (MkBounds l1 c1 l2 c2) = hl DVar $ text $ show c2, colonD] export -prettyLoc : {opts : _} -> Loc -> Eff Pretty (Doc opts) +prettyLoc : {opts : LayoutOpts} -> Loc -> Eff Pretty (Doc opts) prettyLoc (L NoLoc) = hcat <$> sequence [hl TVarErr "no location", colonD] prettyLoc (L (YesLoc file b)) = hcat <$> sequence [hl Free $ text file, colonD, prettyBounds b] + +export +prettyTag : {opts : _} -> String -> Eff Pretty (Doc opts) +prettyTag tag = hl Constant $ text $ "'" ++ quoteTag tag + +export +prettyStrLit : {opts : _} -> String -> Eff Pretty (Doc opts) +prettyStrLit s = + let s = concatMap esc1 $ unpack s in + hl Constant $ hcat ["\"", text s, "\""] +where + esc1 : Char -> String + esc1 '"' = "\""; esc1 '\\' = "\\" + esc1 c = singleton c diff --git a/lib/Quox/PrettyValExtra.idr b/lib/Quox/PrettyValExtra.idr new file mode 100644 index 0000000..8ef7366 --- /dev/null +++ b/lib/Quox/PrettyValExtra.idr @@ -0,0 +1,20 @@ +module Quox.PrettyValExtra + +import Data.DPair +import Derive.Prelude +import public Text.Show.Value +import public Text.Show.PrettyVal +import public Text.Show.PrettyVal.Derive + +%language ElabReflection + +%runElab derive "SnocList" [PrettyVal] + + +export %inline +PrettyVal a => PrettyVal (Subset a p) where + prettyVal (Element x _) = Con "Element" [prettyVal x, Con "_" []] + +export %inline +(forall x. PrettyVal (p x)) => PrettyVal (Exists p) where + prettyVal (Evidence _ p) = Con "Evidence" [Con "_" [], prettyVal p] diff --git a/lib/Quox/Reduce.idr b/lib/Quox/Reduce.idr deleted file mode 100644 index 4879e9f..0000000 --- a/lib/Quox/Reduce.idr +++ /dev/null @@ -1,751 +0,0 @@ -module Quox.Reduce - -import Quox.No -import Quox.Syntax -import Quox.Definition -import Quox.Displace -import Quox.Typing.Context -import Quox.Typing.Error -import Data.SnocVect -import Data.Maybe -import Data.List -import Control.Eff - -%default total - - -public export -Whnf : List (Type -> Type) -Whnf = [NameGen, Except Error] - -export -runWhnfWith : NameSuf -> Eff Whnf a -> (Either Error a, NameSuf) -runWhnfWith suf act = extract $ runStateAt GEN suf $ runExcept act - -export -runWhnf : Eff Whnf a -> Either Error a -runWhnf = fst . runWhnfWith 0 - - -public export -0 RedexTest : TermLike -> Type -RedexTest tm = {d, n : Nat} -> Definitions -> tm d n -> Bool - -public export -interface CanWhnf (0 tm : TermLike) (0 isRedex : RedexTest tm) | tm -where - whnf : {d, n : Nat} -> (defs : Definitions) -> - (ctx : WhnfContext d n) -> - tm d n -> Eff Whnf (Subset (tm d n) (No . isRedex defs)) - -public export %inline -whnf0 : {d, n : Nat} -> {0 isRedex : RedexTest tm} -> CanWhnf tm isRedex => - (defs : Definitions) -> WhnfContext d n -> tm d n -> Eff Whnf (tm d n) -whnf0 defs ctx t = fst <$> whnf defs ctx t - -public export -0 IsRedex, NotRedex : {isRedex : RedexTest tm} -> CanWhnf tm isRedex => - Definitions -> Pred (tm d n) -IsRedex defs = So . isRedex defs -NotRedex defs = No . isRedex defs - -public export -0 NonRedex : (tm : TermLike) -> {isRedex : RedexTest tm} -> - CanWhnf tm isRedex => (d, n : Nat) -> (defs : Definitions) -> Type -NonRedex tm d n defs = Subset (tm d n) (NotRedex defs) - -public export %inline -nred : {0 isRedex : RedexTest tm} -> (0 _ : CanWhnf tm isRedex) => - (t : tm d n) -> (0 nr : NotRedex defs t) => NonRedex tm d n defs -nred t = Element t nr - - -public export %inline -isLamHead : Elim {} -> Bool -isLamHead (Ann (Lam {}) (Pi {}) _) = True -isLamHead (Coe {}) = True -isLamHead _ = False - -public export %inline -isDLamHead : Elim {} -> Bool -isDLamHead (Ann (DLam {}) (Eq {}) _) = True -isDLamHead (Coe {}) = True -isDLamHead _ = False - -public export %inline -isPairHead : Elim {} -> Bool -isPairHead (Ann (Pair {}) (Sig {}) _) = True -isPairHead (Coe {}) = True -isPairHead _ = False - -public export %inline -isTagHead : Elim {} -> Bool -isTagHead (Ann (Tag {}) (Enum {}) _) = True -isTagHead (Coe {}) = True -isTagHead _ = False - -public export %inline -isNatHead : Elim {} -> Bool -isNatHead (Ann (Zero {}) (Nat {}) _) = True -isNatHead (Ann (Succ {}) (Nat {}) _) = True -isNatHead (Coe {}) = True -isNatHead _ = False - -public export %inline -isBoxHead : Elim {} -> Bool -isBoxHead (Ann (Box {}) (BOX {}) _) = True -isBoxHead (Coe {}) = True -isBoxHead _ = False - -public export %inline -isE : Term {} -> Bool -isE (E {}) = True -isE _ = False - -public export %inline -isAnn : Elim {} -> Bool -isAnn (Ann {}) = True -isAnn _ = False - -||| true if a term is syntactically a type. -public export %inline -isTyCon : Term {} -> Bool -isTyCon (TYPE {}) = True -isTyCon (Pi {}) = True -isTyCon (Lam {}) = False -isTyCon (Sig {}) = True -isTyCon (Pair {}) = False -isTyCon (Enum {}) = True -isTyCon (Tag {}) = False -isTyCon (Eq {}) = True -isTyCon (DLam {}) = False -isTyCon (Nat {}) = True -isTyCon (Zero {}) = False -isTyCon (Succ {}) = False -isTyCon (BOX {}) = True -isTyCon (Box {}) = False -isTyCon (E {}) = False -isTyCon (CloT {}) = False -isTyCon (DCloT {}) = False - -||| true if a term is syntactically a type, or a neutral. -public export %inline -isTyConE : Term {} -> Bool -isTyConE s = isTyCon s || isE s - -||| true if a term is syntactically a type. -public export %inline -isAnnTyCon : Elim {} -> Bool -isAnnTyCon (Ann ty (TYPE {}) _) = isTyCon ty -isAnnTyCon _ = False - -public export %inline -isK : Dim d -> Bool -isK (K {}) = True -isK _ = False - - -mutual - public export - isRedexE : RedexTest Elim - isRedexE defs (F {x, _}) {d, n} = - isJust $ lookupElim x defs {d, n} - isRedexE _ (B {}) = False - isRedexE defs (App {fun, _}) = - isRedexE defs fun || isLamHead fun - isRedexE defs (CasePair {pair, _}) = - isRedexE defs pair || isPairHead pair - isRedexE defs (CaseEnum {tag, _}) = - isRedexE defs tag || isTagHead tag - isRedexE defs (CaseNat {nat, _}) = - isRedexE defs nat || isNatHead nat - isRedexE defs (CaseBox {box, _}) = - isRedexE defs box || isBoxHead box - isRedexE defs (DApp {fun, arg, _}) = - isRedexE defs fun || isDLamHead fun || isK arg - isRedexE defs (Ann {tm, ty, _}) = - isE tm || isRedexT defs tm || isRedexT defs ty - isRedexE defs (Coe {val, _}) = - isRedexT defs val || not (isE val) - isRedexE defs (Comp {ty, r, _}) = - isRedexT defs ty || isK r - isRedexE defs (TypeCase {ty, ret, _}) = - isRedexE defs ty || isRedexT defs ret || isAnnTyCon ty - isRedexE _ (CloE {}) = True - isRedexE _ (DCloE {}) = True - - public export - isRedexT : RedexTest Term - isRedexT _ (CloT {}) = True - isRedexT _ (DCloT {}) = True - isRedexT defs (E {e, _}) = isAnn e || isRedexE defs e - isRedexT _ _ = False - - -public export -tycaseRhs : (k : TyConKind) -> TypeCaseArms d n -> - Maybe (ScopeTermN (arity k) d n) -tycaseRhs k arms = lookupPrecise k arms - -public export -tycaseRhsDef : Term d n -> (k : TyConKind) -> TypeCaseArms d n -> - ScopeTermN (arity k) d n -tycaseRhsDef def k arms = fromMaybe (SN def) $ tycaseRhs k arms - -public export -tycaseRhs0 : (k : TyConKind) -> TypeCaseArms d n -> - (0 eq : arity k = 0) => Maybe (Term d n) -tycaseRhs0 k arms {eq} with (tycaseRhs k arms) | (arity k) - tycaseRhs0 k arms {eq = Refl} | res | 0 = map (.term) res - -public export -tycaseRhsDef0 : Term d n -> (k : TyConKind) -> TypeCaseArms d n -> - (0 eq : arity k = 0) => Term d n -tycaseRhsDef0 def k arms = fromMaybe def $ tycaseRhs0 k arms - - - -private -weakDS : (by : Nat) -> DScopeTerm d n -> DScopeTerm d (by + n) -weakDS by (S names (Y body)) = S names $ Y $ weakT by body -weakDS by (S names (N body)) = S names $ N $ weakT by body - -private -dweakS : (by : Nat) -> ScopeTerm d n -> ScopeTerm (by + d) n -dweakS by (S names (Y body)) = S names $ Y $ dweakT by body -dweakS by (S names (N body)) = S names $ N $ dweakT by body - -private -coeScoped : {s : Nat} -> DScopeTerm d n -> Dim d -> Dim d -> Loc -> - ScopeTermN s d n -> ScopeTermN s d n -coeScoped ty p q loc (S names (Y body)) = - S names $ Y $ E $ Coe (weakDS s ty) p q body loc -coeScoped ty p q loc (S names (N body)) = - S names $ N $ E $ Coe ty p q body loc - - -export covering -CanWhnf Term Reduce.isRedexT - -export covering -CanWhnf Elim Reduce.isRedexE - -parameters {d, n : Nat} (defs : Definitions) (ctx : WhnfContext d n) - ||| performs the minimum work required to recompute the type of an elim. - ||| - ||| ⚠ **assumes the elim is already typechecked.** ⚠ - export covering - computeElimType : (e : Elim d n) -> (0 ne : No (isRedexE defs e)) => - Eff Whnf (Term d n) - computeElimType (F {x, u, loc}) = do - let Just def = lookup x defs | Nothing => throw $ NotInScope loc x - pure $ displace u def.type - computeElimType (B {i, _}) = pure $ ctx.tctx !! i - computeElimType (App {fun = f, arg = s, loc}) {ne} = do - Pi {arg, res, _} <- whnf0 defs ctx =<< computeElimType f {ne = noOr1 ne} - | t => throw $ ExpectedPi loc ctx.names t - pure $ sub1 res $ Ann s arg loc - computeElimType (CasePair {pair, ret, _}) = pure $ sub1 ret pair - computeElimType (CaseEnum {tag, ret, _}) = pure $ sub1 ret tag - computeElimType (CaseNat {nat, ret, _}) = pure $ sub1 ret nat - computeElimType (CaseBox {box, ret, _}) = pure $ sub1 ret box - computeElimType (DApp {fun = f, arg = p, loc}) {ne} = do - Eq {ty, _} <- whnf0 defs ctx =<< computeElimType f {ne = noOr1 ne} - | t => throw $ ExpectedEq loc ctx.names t - pure $ dsub1 ty p - computeElimType (Ann {ty, _}) = pure ty - computeElimType (Coe {ty, q, _}) = pure $ dsub1 ty q - computeElimType (Comp {ty, _}) = pure ty - computeElimType (TypeCase {ret, _}) = pure ret - -parameters {d, n : Nat} (defs : Definitions) (ctx : WhnfContext (S d) n) - ||| for π.(x : A) → B, returns (A, B); - ||| for an elim returns a pair of type-cases that will reduce to that; - ||| for other intro forms error - private covering - tycasePi : (t : Term (S d) n) -> (0 tnf : No (isRedexT defs t)) => - Eff Whnf (Term (S d) n, ScopeTerm (S d) n) - tycasePi (Pi {arg, res, _}) = pure (arg, res) - tycasePi (E e) {tnf} = do - ty <- computeElimType defs ctx e @{noOr2 tnf} - let loc = e.loc - narg = mnb "Arg"; nret = mnb "Ret" - arg = E $ typeCase1Y e ty KPi [< !narg, !nret] (BVT 1 loc) loc - res' = typeCase1Y e (Arr Zero arg ty loc) KPi [< !narg, !nret] - (BVT 0 loc) loc - res = SY [< !narg] $ E $ App (weakE 1 res') (BVT 0 loc) loc - pure (arg, res) - tycasePi t = throw $ ExpectedPi t.loc ctx.names t - - ||| for (x : A) × B, returns (A, B); - ||| for an elim returns a pair of type-cases that will reduce to that; - ||| for other intro forms error - private covering - tycaseSig : (t : Term (S d) n) -> (0 tnf : No (isRedexT defs t)) => - Eff Whnf (Term (S d) n, ScopeTerm (S d) n) - tycaseSig (Sig {fst, snd, _}) = pure (fst, snd) - tycaseSig (E e) {tnf} = do - ty <- computeElimType defs ctx e @{noOr2 tnf} - let loc = e.loc - nfst = mnb "Fst"; nsnd = mnb "Snd" - fst = E $ typeCase1Y e ty KSig [< !nfst, !nsnd] (BVT 1 loc) loc - snd' = typeCase1Y e (Arr Zero fst ty loc) KSig [< !nfst, !nsnd] - (BVT 0 loc) loc - snd = SY [< !nfst] $ E $ App (weakE 1 snd') (BVT 0 loc) loc - pure (fst, snd) - tycaseSig t = throw $ ExpectedSig t.loc ctx.names t - - ||| for [π. A], returns A; - ||| for an elim returns a type-case that will reduce to that; - ||| for other intro forms error - private covering - tycaseBOX : (t : Term (S d) n) -> (0 tnf : No (isRedexT defs t)) => - Eff Whnf (Term (S d) n) - tycaseBOX (BOX {ty, _}) = pure ty - tycaseBOX (E e) {tnf} = do - ty <- computeElimType defs ctx e @{noOr2 tnf} - pure $ E $ typeCase1Y e ty KBOX [< !(mnb "Ty")] (BVT 0 e.loc) e.loc - tycaseBOX t = throw $ ExpectedBOX t.loc ctx.names t - - ||| for Eq [i ⇒ A] l r, returns (A‹0/i›, A‹1/i›, A, l, r); - ||| for an elim returns five type-cases that will reduce to that; - ||| for other intro forms error - private covering - tycaseEq : (t : Term (S d) n) -> (0 tnf : No (isRedexT defs t)) => - Eff Whnf (Term (S d) n, Term (S d) n, DScopeTerm (S d) n, - Term (S d) n, Term (S d) n) - tycaseEq (Eq {ty, l, r, _}) = pure (ty.zero, ty.one, ty, l, r) - tycaseEq (E e) {tnf} = do - ty <- computeElimType defs ctx e @{noOr2 tnf} - let loc = e.loc - names = traverse' (\x => mnb x) [< "A0", "A1", "A", "L", "R"] - a0 = E $ typeCase1Y e ty KEq !names (BVT 4 loc) loc - a1 = E $ typeCase1Y e ty KEq !names (BVT 3 loc) loc - a' = typeCase1Y e (Eq0 ty a0 a1 loc) KEq !names (BVT 2 loc) loc - a = SY [< !(mnb "i")] $ E $ DApp (dweakE 1 a') (B VZ loc) loc - l = E $ typeCase1Y e a0 KEq !names (BVT 1 loc) loc - r = E $ typeCase1Y e a1 KEq !names (BVT 0 loc) loc - pure (a0, a1, a, l, r) - tycaseEq t = throw $ ExpectedEq t.loc ctx.names t - --- new block because the functions below might pass a different ctx --- into the ones above -parameters {d, n : Nat} (defs : Definitions) (ctx : WhnfContext d n) - ||| reduce a function application `App (Coe ty p q val) s loc` - private covering - piCoe : (ty : DScopeTerm d n) -> (p, q : Dim d) -> - (val, s : Term d n) -> Loc -> - Eff Whnf (Subset (Elim d n) (No . isRedexE defs)) - piCoe sty@(S [< i] ty) p q val s loc = do - -- (coe [i ⇒ π.(x : A) → B] @p @q t) s ⇝ - -- coe [i ⇒ B[𝒔‹i›/x] @p @q ((t ∷ (π.(x : A) → B)‹p/i›) 𝒔‹p›) - -- where 𝒔‹j› ≔ coe [i ⇒ A] @q @j s - -- - -- type-case is used to expose A,B if the type is neutral - let ctx1 = extendDim i ctx - Element ty tynf <- whnf defs ctx1 ty.term - (arg, res) <- tycasePi defs ctx1 ty - let s0 = CoeT i arg q p s s.loc - body = E $ App (Ann val (ty // one p) val.loc) (E s0) loc - s1 = CoeT i (arg // (BV 0 i.loc ::: shift 2)) (weakD 1 q) (BV 0 i.loc) - (s // shift 1) s.loc - whnf defs ctx $ CoeT i (sub1 res s1) p q body loc - - ||| reduce a pair elimination `CasePair pi (Coe ty p q val) ret body loc` - private covering - sigCoe : (qty : Qty) -> - (ty : DScopeTerm d n) -> (p, q : Dim d) -> (val : Term d n) -> - (ret : ScopeTerm d n) -> (body : ScopeTermN 2 d n) -> Loc -> - Eff Whnf (Subset (Elim d n) (No . isRedexE defs)) - sigCoe qty sty@(S [< i] ty) p q val ret body loc = do - -- caseπ (coe [i ⇒ (x : A) × B] @p @q s) return z ⇒ C of { (a, b) ⇒ e } - -- ⇝ - -- caseπ s ∷ ((x : A) × B)‹p/i› return z ⇒ C - -- of { (a, b) ⇒ - -- e[(coe [i ⇒ A] @p @q a)/a, - -- (coe [i ⇒ B[(coe [j ⇒ A‹j/i›] @p @i a)/x]] @p @q b)/b] } - -- - -- type-case is used to expose A,B if the type is neutral - let ctx1 = extendDim i ctx - Element ty tynf <- whnf defs ctx1 ty.term - (tfst, tsnd) <- tycaseSig defs ctx1 ty - let [< x, y] = body.names - a' = CoeT i (weakT 2 tfst) p q (BVT 1 noLoc) x.loc - tsnd' = tsnd.term // - (CoeT i (weakT 2 $ tfst // (B VZ noLoc ::: shift 2)) - (weakD 1 p) (B VZ noLoc) (BVT 1 noLoc) y.loc ::: shift 2) - b' = CoeT i tsnd' p q (BVT 0 noLoc) y.loc - whnf defs ctx $ CasePair qty (Ann val (ty // one p) val.loc) ret - (ST body.names $ body.term // (a' ::: b' ::: shift 2)) loc - - ||| reduce a dimension application `DApp (Coe ty p q val) r loc` - private covering - eqCoe : (ty : DScopeTerm d n) -> (p, q : Dim d) -> (val : Term d n) -> - (r : Dim d) -> Loc -> - Eff Whnf (Subset (Elim d n) (No . isRedexE defs)) - eqCoe sty@(S [< j] ty) p q val r loc = do - -- (coe [j ⇒ Eq [i ⇒ A] L R] @p @q eq) @r - -- ⇝ - -- comp [j ⇒ A‹r/i›] @p @q (eq ∷ (Eq [i ⇒ A] L R)‹p/j›) - -- @r { 0 j ⇒ L; 1 j ⇒ R } - let ctx1 = extendDim j ctx - Element ty tynf <- whnf defs ctx1 ty.term - (a0, a1, a, s, t) <- tycaseEq defs ctx1 ty - let a' = dsub1 a (weakD 1 r) - val' = E $ DApp (Ann val (ty // one p) val.loc) r loc - whnf defs ctx $ CompH j a' p q val' r j s j t loc - - ||| reduce a pair elimination `CaseBox pi (Coe ty p q val) ret body` - private covering - boxCoe : (qty : Qty) -> - (ty : DScopeTerm d n) -> (p, q : Dim d) -> (val : Term d n) -> - (ret : ScopeTerm d n) -> (body : ScopeTerm d n) -> Loc -> - Eff Whnf (Subset (Elim d n) (No . isRedexE defs)) - boxCoe qty sty@(S [< i] ty) p q val ret body loc = do - -- caseπ (coe [i ⇒ [ρ. A]] @p @q s) return z ⇒ C of { [a] ⇒ e } - -- ⇝ - -- caseπ s ∷ [ρ. A]‹p/i› return z ⇒ C - -- of { [a] ⇒ e[(coe [i ⇒ A] p q a)/a] } - let ctx1 = extendDim i ctx - Element ty tynf <- whnf defs ctx1 ty.term - ta <- tycaseBOX defs ctx1 ty - let a' = CoeT i (weakT 1 ta) p q (BVT 0 noLoc) body.name.loc - whnf defs ctx $ CaseBox qty (Ann val (ty // one p) val.loc) ret - (ST body.names $ body.term // (a' ::: shift 1)) loc - - -||| reduce a type-case applied to a type constructor -private covering -reduceTypeCase : {d, n : Nat} -> (defs : Definitions) -> WhnfContext d n -> - (ty : Term d n) -> (u : Universe) -> (ret : Term d n) -> - (arms : TypeCaseArms d n) -> (def : Term d n) -> - (0 _ : So (isTyCon ty)) => Loc -> - Eff Whnf (Subset (Elim d n) (No . isRedexE defs)) -reduceTypeCase defs ctx ty u ret arms def loc = case ty of - -- (type-case ★ᵢ ∷ _ return Q of { ★ ⇒ s; ⋯ }) ⇝ s ∷ Q - TYPE {} => - whnf defs ctx $ Ann (tycaseRhsDef0 def KTYPE arms) ret loc - - -- (type-case π.(x : A) → B ∷ ★ᵢ return Q of { (a → b) ⇒ s; ⋯ }) ⇝ - -- s[(A ∷ ★ᵢ)/a, ((λ x ⇒ B) ∷ 0.A → ★ᵢ)/b] ∷ Q - Pi {arg, res, loc = piLoc, _} => - let arg' = Ann arg (TYPE u noLoc) arg.loc - res' = Ann (Lam res res.loc) - (Arr Zero arg (TYPE u noLoc) arg.loc) res.loc - in - whnf defs ctx $ - Ann (subN (tycaseRhsDef def KPi arms) [< arg', res']) ret loc - - -- (type-case (x : A) × B ∷ ★ᵢ return Q of { (a × b) ⇒ s; ⋯ }) ⇝ - -- s[(A ∷ ★ᵢ)/a, ((λ x ⇒ B) ∷ 0.A → ★ᵢ)/b] ∷ Q - Sig {fst, snd, loc = sigLoc, _} => - let fst' = Ann fst (TYPE u noLoc) fst.loc - snd' = Ann (Lam snd snd.loc) - (Arr Zero fst (TYPE u noLoc) fst.loc) snd.loc - in - whnf defs ctx $ - Ann (subN (tycaseRhsDef def KSig arms) [< fst', snd']) ret loc - - -- (type-case {⋯} ∷ _ return Q of { {} ⇒ s; ⋯ }) ⇝ s ∷ Q - Enum {} => - whnf defs ctx $ Ann (tycaseRhsDef0 def KEnum arms) ret loc - - -- (type-case Eq [i ⇒ A] L R ∷ ★ᵢ return Q - -- of { Eq a₀ a₁ a l r ⇒ s; ⋯ }) ⇝ - -- s[(A‹0/i› ∷ ★ᵢ)/a₀, (A‹1/i› ∷ ★ᵢ)/a₁, - -- ((δ i ⇒ A) ∷ Eq [★ᵢ] A‹0/i› A‹1/i›)/a, - -- (L ∷ A‹0/i›)/l, (R ∷ A‹1/i›)/r] ∷ Q - Eq {ty = a, l, r, loc = eqLoc, _} => - let a0 = a.zero; a1 = a.one in - whnf defs ctx $ Ann - (subN (tycaseRhsDef def KEq arms) - [< Ann a0 (TYPE u noLoc) a.loc, Ann a1 (TYPE u noLoc) a.loc, - Ann (DLam a a.loc) (Eq0 (TYPE u noLoc) a0 a1 a.loc) a.loc, - Ann l a0 l.loc, Ann r a1 r.loc]) - ret loc - - -- (type-case ℕ ∷ _ return Q of { ℕ ⇒ s; ⋯ }) ⇝ s ∷ Q - Nat {} => - whnf defs ctx $ Ann (tycaseRhsDef0 def KNat arms) ret loc - - -- (type-case [π.A] ∷ ★ᵢ return Q of { [a] ⇒ s; ⋯ }) ⇝ s[(A ∷ ★ᵢ)/a] ∷ Q - BOX {ty = a, loc = boxLoc, _} => - whnf defs ctx $ Ann - (sub1 (tycaseRhsDef def KBOX arms) (Ann a (TYPE u noLoc) a.loc)) - ret loc - - -||| pushes a coercion inside a whnf-ed term -private covering -pushCoe : {d, n : Nat} -> (defs : Definitions) -> WhnfContext d n -> - BindName -> - (ty : Term (S d) n) -> (0 tynf : No (isRedexT defs ty)) => - Dim d -> Dim d -> - (s : Term d n) -> (0 snf : No (isRedexT defs s)) => Loc -> - Eff Whnf (NonRedex Elim d n defs) -pushCoe defs ctx i ty p q s loc = - if p == q then whnf defs ctx $ Ann s (ty // one q) loc else - case s of - -- (coe [_ ⇒ ★ᵢ] @_ @_ ty) ⇝ (ty ∷ ★ᵢ) - TYPE {} => pure $ nred $ Ann s (TYPE !(unwrapTYPE ty) ty.loc) loc - Pi {} => pure $ nred $ Ann s (TYPE !(unwrapTYPE ty) ty.loc) loc - Sig {} => pure $ nred $ Ann s (TYPE !(unwrapTYPE ty) ty.loc) loc - Enum {} => pure $ nred $ Ann s (TYPE !(unwrapTYPE ty) ty.loc) loc - Eq {} => pure $ nred $ Ann s (TYPE !(unwrapTYPE ty) ty.loc) loc - Nat {} => pure $ nred $ Ann s (TYPE !(unwrapTYPE ty) ty.loc) loc - BOX {} => pure $ nred $ Ann s (TYPE !(unwrapTYPE ty) ty.loc) loc - - -- just η expand it. then whnf for App will handle it later - -- this is how @xtt does it - -- - -- (coe [i ⇒ A] @p @q (λ x ⇒ s)) ⇝ - -- (λ y ⇒ (coe [i ⇒ A] @p @q (λ x ⇒ s)) y) ∷ A‹q/i› ⇝ ⋯ - lam@(Lam {body, _}) => do - let lam' = CoeT i ty p q lam loc - term' = LamY !(fresh body.name) - (E $ App (weakE 1 lam') (BVT 0 noLoc) loc) loc - type' = ty // one q - whnf defs ctx $ Ann term' type' loc - - -- (coe [i ⇒ (x : A) × B] @p @q (s, t)) ⇝ - -- (coe [i ⇒ A] @p @q s, - -- coe [i ⇒ B[(coe [j ⇒ A‹j/i›] @p @i s)/x]] @p @q t) - -- ∷ (x : A‹q/i›) × B‹q/i› - -- - -- can't use η here because... it doesn't exist - Pair {fst, snd, loc = pairLoc} => do - let Sig {fst = tfst, snd = tsnd, loc = sigLoc} = ty - | _ => throw $ ExpectedSig ty.loc (extendDim i ctx.names) ty - let fst' = E $ CoeT i tfst p q fst fst.loc - tfst' = tfst // (B VZ noLoc ::: shift 2) - tsnd' = sub1 tsnd $ - CoeT !(fresh i) tfst' (weakD 1 p) (B VZ noLoc) - (dweakT 1 fst) fst.loc - snd' = E $ CoeT i tsnd' p q snd snd.loc - pure $ - Element (Ann (Pair fst' snd' pairLoc) - (Sig (tfst // one q) (tsnd // one q) sigLoc) loc) Ah - - -- η expand, like for Lam - -- - -- (coe [i ⇒ A] @p @q (δ j ⇒ s)) ⇝ - -- (δ k ⇒ (coe [i ⇒ A] @p @q (δ j ⇒ s)) @k) ∷ A‹q/i› ⇝ ⋯ - dlam@(DLam {body, _}) => do - let dlam' = CoeT i ty p q dlam loc - term' = DLamY !(mnb "j") - (E $ DApp (dweakE 1 dlam') (B VZ noLoc) loc) loc - type' = ty // one q - whnf defs ctx $ Ann term' type' loc - - -- (coe [_ ⇒ {⋯}] @_ @_ t) ⇝ (t ∷ {⋯}) - Tag {tag, loc = tagLoc} => do - let Enum {cases, loc = enumLoc} = ty - | _ => throw $ ExpectedEnum ty.loc (extendDim i ctx.names) ty - pure $ Element (Ann (Tag tag tagLoc) (Enum cases enumLoc) loc) Ah - - -- (coe [_ ⇒ ℕ] @_ @_ n) ⇝ (n ∷ ℕ) - Zero {loc = zeroLoc} => do - pure $ Element (Ann (Zero zeroLoc) (Nat ty.loc) loc) Ah - Succ {p = pred, loc = succLoc} => do - pure $ Element (Ann (Succ pred succLoc) (Nat ty.loc) loc) Ah - - -- (coe [i ⇒ [π.A]] @p @q [s]) ⇝ - -- [coe [i ⇒ A] @p @q s] ∷ [π. A‹q/i›] - Box {val, loc = boxLoc} => do - let BOX {qty, ty = a, loc = tyLoc} = ty - | _ => throw $ ExpectedBOX ty.loc (extendDim i ctx.names) ty - pure $ Element - (Ann (Box (E $ CoeT i a p q val val.loc) boxLoc) - (BOX qty (a // one q) tyLoc) loc) - Ah - - E e => pure $ Element (CoeT i ty p q (E e) e.loc) (snf `orNo` Ah) -where - unwrapTYPE : Term (S d) n -> Eff Whnf Universe - unwrapTYPE (TYPE {l, _}) = pure l - unwrapTYPE ty = throw $ ExpectedTYPE ty.loc (extendDim i ctx.names) ty - - -export covering -CanWhnf Elim Reduce.isRedexE where - whnf defs ctx (F x u loc) with (lookupElim x defs) proof eq - _ | Just y = whnf defs ctx $ setLoc loc $ displace u y - _ | Nothing = pure $ Element (F x u loc) $ rewrite eq in Ah - - whnf _ _ (B i loc) = pure $ nred $ B i loc - - -- ((λ x ⇒ t) ∷ (π.x : A) → B) s ⇝ t[s∷A/x] ∷ B[s∷A/x] - whnf defs ctx (App f s appLoc) = do - Element f fnf <- whnf defs ctx f - case nchoose $ isLamHead f of - Left _ => case f of - Ann (Lam {body, _}) (Pi {arg, res, _}) floc => - let s = Ann s arg s.loc in - whnf defs ctx $ Ann (sub1 body s) (sub1 res s) appLoc - Coe ty p q val _ => piCoe defs ctx ty p q val s appLoc - Right nlh => pure $ Element (App f s appLoc) $ fnf `orNo` nlh - - -- case (s, t) ∷ (x : A) × B return p ⇒ C of { (a, b) ⇒ u } ⇝ - -- u[s∷A/a, t∷B[s∷A/x]] ∷ C[(s, t)∷((x : A) × B)/p] - whnf defs ctx (CasePair pi pair ret body caseLoc) = do - Element pair pairnf <- whnf defs ctx pair - case nchoose $ isPairHead pair of - Left _ => case pair of - Ann (Pair {fst, snd, _}) (Sig {fst = tfst, snd = tsnd, _}) pairLoc => - let fst = Ann fst tfst fst.loc - snd = Ann snd (sub1 tsnd fst) snd.loc - in - whnf defs ctx $ Ann (subN body [< fst, snd]) (sub1 ret pair) caseLoc - Coe ty p q val _ => do - sigCoe defs ctx pi ty p q val ret body caseLoc - Right np => - pure $ Element (CasePair pi pair ret body caseLoc) $ pairnf `orNo` np - - -- case 'a ∷ {a,…} return p ⇒ C of { 'a ⇒ u } ⇝ - -- u ∷ C['a∷{a,…}/p] - whnf defs ctx (CaseEnum pi tag ret arms caseLoc) = do - Element tag tagnf <- whnf defs ctx tag - case nchoose $ isTagHead tag of - Left _ => case tag of - Ann (Tag t _) (Enum ts _) _ => - let ty = sub1 ret tag in - case lookup t arms of - Just arm => whnf defs ctx $ Ann arm ty arm.loc - Nothing => throw $ MissingEnumArm caseLoc t (keys arms) - Coe ty p q val _ => - -- there is nowhere an equality can be hiding inside an enum type - whnf defs ctx $ - CaseEnum pi (Ann val (dsub1 ty q) val.loc) ret arms caseLoc - Right nt => - pure $ Element (CaseEnum pi tag ret arms caseLoc) $ tagnf `orNo` nt - - -- case zero ∷ ℕ return p ⇒ C of { zero ⇒ u; … } ⇝ - -- u ∷ C[zero∷ℕ/p] - -- - -- case succ n ∷ ℕ return p ⇒ C of { succ n', π.ih ⇒ u; … } ⇝ - -- u[n∷ℕ/n', (case n ∷ ℕ ⋯)/ih] ∷ C[succ n ∷ ℕ/p] - whnf defs ctx (CaseNat pi piIH nat ret zer suc caseLoc) = do - Element nat natnf <- whnf defs ctx nat - case nchoose $ isNatHead nat of - Left _ => - let ty = sub1 ret nat in - case nat of - Ann (Zero _) (Nat _) _ => - whnf defs ctx $ Ann zer ty zer.loc - Ann (Succ n succLoc) (Nat natLoc) _ => - let nn = Ann n (Nat natLoc) succLoc - tm = subN suc [< nn, CaseNat pi piIH nn ret zer suc caseLoc] - in - whnf defs ctx $ Ann tm ty caseLoc - Coe ty p q val _ => - -- same deal as Enum - whnf defs ctx $ - CaseNat pi piIH (Ann val (dsub1 ty q) val.loc) ret zer suc caseLoc - Right nn => pure $ - Element (CaseNat pi piIH nat ret zer suc caseLoc) $ natnf `orNo` nn - - -- case [t] ∷ [π.A] return p ⇒ C of { [x] ⇒ u } ⇝ - -- u[t∷A/x] ∷ C[[t] ∷ [π.A]/p] - whnf defs ctx (CaseBox pi box ret body caseLoc) = do - Element box boxnf <- whnf defs ctx box - case nchoose $ isBoxHead box of - Left _ => case box of - Ann (Box val boxLoc) (BOX q bty tyLoc) _ => - let ty = sub1 ret box in - whnf defs ctx $ Ann (sub1 body (Ann val bty val.loc)) ty caseLoc - Coe ty p q val _ => - boxCoe defs ctx pi ty p q val ret body caseLoc - Right nb => - pure $ Element (CaseBox pi box ret body caseLoc) $ boxnf `orNo` nb - - -- e : Eq (𝑗 ⇒ A) t u ⊢ e @0 ⇝ t ∷ A‹0/𝑗› - -- e : Eq (𝑗 ⇒ A) t u ⊢ e @1 ⇝ u ∷ A‹1/𝑗› - -- - -- ((δ 𝑖 ⇒ s) ∷ Eq (𝑗 ⇒ A) t u) @𝑘 ⇝ s‹𝑘/𝑖› ∷ A‹𝑘/𝑗› - whnf defs ctx (DApp f p appLoc) = do - Element f fnf <- whnf defs ctx f - case nchoose $ isDLamHead f of - Left _ => case f of - Ann (DLam {body, _}) (Eq {ty, l, r, _}) _ => - whnf defs ctx $ - Ann (endsOr (setLoc appLoc l) (setLoc appLoc r) (dsub1 body p) p) - (dsub1 ty p) appLoc - Coe ty p' q' val _ => - eqCoe defs ctx ty p' q' val p appLoc - Right ndlh => case p of - K e _ => do - Eq {l, r, ty, _} <- whnf0 defs ctx =<< computeElimType defs ctx f - | ty => throw $ ExpectedEq ty.loc ctx.names ty - whnf defs ctx $ - ends (Ann (setLoc appLoc l) ty.zero appLoc) - (Ann (setLoc appLoc r) ty.one appLoc) e - B {} => pure $ Element (DApp f p appLoc) $ fnf `orNo` ndlh `orNo` Ah - - -- e ∷ A ⇝ e - whnf defs ctx (Ann s a annLoc) = do - Element s snf <- whnf defs ctx s - case nchoose $ isE s of - Left _ => let E e = s in pure $ Element e $ noOr2 snf - Right ne => do - Element a anf <- whnf defs ctx a - pure $ Element (Ann s a annLoc) $ ne `orNo` snf `orNo` anf - - whnf defs ctx (Coe (S _ (N ty)) _ _ val coeLoc) = - whnf defs ctx $ Ann val ty coeLoc - whnf defs ctx (Coe (S [< i] ty) p q val coeLoc) = do - Element ty tynf <- whnf defs (extendDim i ctx) ty.term - Element val valnf <- whnf defs ctx val - pushCoe defs ctx i ty p q val coeLoc - - whnf defs ctx (Comp ty p q val r zero one compLoc) = - -- comp [A] @p @p s { ⋯ } ⇝ s ∷ A - if p == q then whnf defs ctx $ Ann val ty compLoc else - case nchoose (isK r) of - -- comp [A] @p @q s @0 { 0 j ⇒ t; ⋯ } ⇝ t‹q/j› ∷ A - -- comp [A] @p @q s @1 { 1 j ⇒ t; ⋯ } ⇝ t‹q/j› ∷ A - Left y => case r of - K Zero _ => whnf defs ctx $ Ann (dsub1 zero q) ty compLoc - K One _ => whnf defs ctx $ Ann (dsub1 one q) ty compLoc - Right nk => do - Element ty tynf <- whnf defs ctx ty - pure $ Element (Comp ty p q val r zero one compLoc) $ tynf `orNo` nk - - whnf defs ctx (TypeCase ty ret arms def tcLoc) = do - Element ty tynf <- whnf defs ctx ty - Element ret retnf <- whnf defs ctx ret - case nchoose $ isAnnTyCon ty of - Left y => - let Ann ty (TYPE u _) _ = ty in - reduceTypeCase defs ctx ty u ret arms def tcLoc - Right nt => pure $ - Element (TypeCase ty ret arms def tcLoc) (tynf `orNo` retnf `orNo` nt) - - whnf defs ctx (CloE (Sub el th)) = whnf defs ctx $ pushSubstsWith' id th el - whnf defs ctx (DCloE (Sub el th)) = whnf defs ctx $ pushSubstsWith' th id el - -export covering -CanWhnf Term Reduce.isRedexT where - whnf _ _ t@(TYPE {}) = pure $ nred t - whnf _ _ t@(Pi {}) = pure $ nred t - whnf _ _ t@(Lam {}) = pure $ nred t - whnf _ _ t@(Sig {}) = pure $ nred t - whnf _ _ t@(Pair {}) = pure $ nred t - whnf _ _ t@(Enum {}) = pure $ nred t - whnf _ _ t@(Tag {}) = pure $ nred t - whnf _ _ t@(Eq {}) = pure $ nred t - whnf _ _ t@(DLam {}) = pure $ nred t - whnf _ _ t@(Nat {}) = pure $ nred t - whnf _ _ t@(Zero {}) = pure $ nred t - whnf _ _ t@(Succ {}) = pure $ nred t - whnf _ _ t@(BOX {}) = pure $ nred t - whnf _ _ t@(Box {}) = pure $ nred t - - -- s ∷ A ⇝ s (in term context) - whnf defs ctx (E e) = do - Element e enf <- whnf defs ctx e - case nchoose $ isAnn e of - Left _ => let Ann {tm, _} = e in pure $ Element tm $ noOr1 $ noOr2 enf - Right na => pure $ Element (E e) $ na `orNo` enf - - whnf defs ctx (CloT (Sub tm th)) = whnf defs ctx $ pushSubstsWith' id th tm - whnf defs ctx (DCloT (Sub tm th)) = whnf defs ctx $ pushSubstsWith' th id tm diff --git a/lib/Quox/Scoped.idr b/lib/Quox/Scoped.idr new file mode 100644 index 0000000..ea575cf --- /dev/null +++ b/lib/Quox/Scoped.idr @@ -0,0 +1,59 @@ +module Quox.Scoped + +import public Quox.Var +import public Quox.Context + +import Derive.Prelude + +%language ElabReflection +%default total + + +public export +data ScopedBody : Nat -> (Nat -> Type) -> Nat -> Type where + Y : (body : f (s + n)) -> ScopedBody s f n + N : (body : f n) -> ScopedBody s f n +%name ScopedBody body + +export %inline %hint +EqScopedBody : (forall n. Eq (f n)) => Eq (ScopedBody s f n) +EqScopedBody = deriveEq + +export %inline %hint +ShowScopedBody : (forall n. Show (f n)) => Show (ScopedBody s f n) +ShowScopedBody = deriveShow + +||| a scoped term with names +public export +record Scoped (s : Nat) (f : Nat -> Type) (n : Nat) where + constructor S + names : BContext s + body : ScopedBody s f n +%name Scoped body + +export %inline +(forall n. Eq (f n)) => Eq (Scoped s f n) where + s == t = s.body == t.body + +export %inline %hint +ShowScoped : (forall n. Show (f n)) => Show (Scoped s f n) +ShowScoped = deriveShow + + +||| scope which ignores all its binders +public export %inline +SN : Located1 f => {s : Nat} -> f n -> Scoped s f n +SN body = S (replicate s $ BN Unused body.loc) $ N body + +||| scope which uses its binders +public export %inline +SY : BContext s -> f (s + n) -> Scoped s f n +SY ns = S ns . Y + +public export %inline +name : Scoped 1 f n -> BindName +name (S [< x] _) = x + +public export %inline +(.name) : Scoped 1 f n -> BindName +s.name = name s diff --git a/lib/Quox/Syntax.idr b/lib/Quox/Syntax.idr index 969661c..7ee6b44 100644 --- a/lib/Quox/Syntax.idr +++ b/lib/Quox/Syntax.idr @@ -6,4 +6,5 @@ import public Quox.Syntax.Qty import public Quox.Syntax.Shift import public Quox.Syntax.Subst import public Quox.Syntax.Term -import public Quox.Syntax.Var +import public Quox.Syntax.Builtin +import public Quox.Var diff --git a/lib/Quox/Syntax/Builtin.idr b/lib/Quox/Syntax/Builtin.idr new file mode 100644 index 0000000..09ac392 --- /dev/null +++ b/lib/Quox/Syntax/Builtin.idr @@ -0,0 +1,27 @@ +module Quox.Syntax.Builtin + +import Derive.Prelude +import Quox.PrettyValExtra +import Quox.Pretty +import Quox.Syntax.Term + + +%default total +%language ElabReflection + +public export +data Builtin += Main +%runElab derive "Builtin" [Eq, Ord, Show, PrettyVal] + +public export +builtinDesc : Builtin -> String +builtinDesc Main = "a function declared as #[main]" + +public export +builtinTypeDoc : {opts : LayoutOpts} -> Builtin -> Eff Pretty (Doc opts) +builtinTypeDoc Main = + prettyTerm [<] [<] $ + Pi One (IOState noLoc) + (SN $ Sig (Enum (fromList [!(ifUnicode "𝑎" "a")]) noLoc) + (SN (IOState noLoc)) noLoc) noLoc diff --git a/lib/Quox/Syntax/Dim.idr b/lib/Quox/Syntax/Dim.idr index 2f6666c..5f60a17 100644 --- a/lib/Quox/Syntax/Dim.idr +++ b/lib/Quox/Syntax/Dim.idr @@ -1,18 +1,16 @@ module Quox.Syntax.Dim -import Quox.Thin -import Quox.Syntax.Var +import Quox.Loc +import Quox.Name +import Quox.Var import Quox.Syntax.Subst import Quox.Pretty -import Quox.Name -import Quox.Loc import Quox.Context +import Quox.PrettyValExtra import Decidable.Equality import Control.Function import Derive.Prelude -import Data.DPair -import Data.SnocVect %default total %language ElabReflection @@ -21,7 +19,7 @@ import Data.SnocVect public export data DimConst = Zero | One %name DimConst e -%runElab derive "DimConst" [Eq, Ord, Show] +%runElab derive "DimConst" [Eq, Ord, Show, PrettyVal] ||| `ends l r e` returns `l` if `e` is `Zero`, or `r` if it is `One`. public export @@ -42,48 +40,38 @@ DecEq DimConst where public export data Dim : Nat -> Type where - K : DimConst -> Loc -> Dim 0 - B : Loc -> Dim 1 + K : DimConst -> Loc -> Dim d + B : Var d -> Loc -> Dim d %name Dim.Dim p, q %runElab deriveIndexed "Dim" [Eq, Ord, Show] -public export -DimT : Nat -> Type -DimT = Thinned Dim - -public export %inline -KT : DimConst -> Loc -> DimT d -KT e loc = Th zero $ K e loc - - ||| `endsOr l r x p` returns `ends l r ε` if `p` is a constant ε, and ||| `x` otherwise. public export endsOr : Lazy a -> Lazy a -> Lazy a -> Dim n -> a endsOr l r x (K e _) = ends l r e -endsOr l r x (B _) = x +endsOr l r x (B _ _) = x export Located (Dim d) where (K _ loc).loc = loc - (B loc).loc = loc + (B _ loc).loc = loc export Relocatable (Dim d) where setLoc loc (K e _) = K e loc - setLoc loc (B _) = B loc + setLoc loc (B i _) = B i loc -parameters {opts : LayoutOpts} - export - prettyDimConst : DimConst -> Eff Pretty (Doc opts) - prettyDimConst = hl Dim . text . ends "0" "1" +export +prettyDimConst : {opts : _} -> DimConst -> Eff Pretty (Doc opts) +prettyDimConst = hl Dim . text . ends "0" "1" - export - prettyDim : {d : Nat} -> BContext d -> DimT d -> Eff Pretty (Doc opts) - prettyDim names (Th _ (K e _)) = prettyDimConst e - prettyDim names (Th i (B _)) = prettyDBind $ names !!! i.fin +export +prettyDim : {opts : _} -> BContext d -> Dim d -> Eff Pretty (Doc opts) +prettyDim names (K e _) = prettyDimConst e +prettyDim names (B i _) = prettyDBind $ names !!! i public export %inline @@ -96,54 +84,57 @@ DSubst : Nat -> Nat -> Type DSubst = Subst Dim --- public export FromVar Dim where fromVarLoc = B +public export FromVar Dim where fromVarLoc = B --- export --- CanShift Dim where --- K e loc // _ = K e loc --- B i loc // by = B (i // by) loc +export +CanShift Dim where + K e loc // _ = K e loc + B i loc // by = B (i // by) loc -export %inline FromVar Dim where var = B - -export %inline +export CanSubstSelf Dim where - Th _ (K e loc) // _ = KT e loc - Th i (B loc) // th = get th i.fin + K e loc // _ = K e loc + B i loc // th = getLoc th i loc -export Uninhabited (B loc1 = K e loc2) where uninhabited _ impossible -export Uninhabited (K e loc1 = B loc2) where uninhabited _ impossible +export Uninhabited (B i loc1 = K e loc2) where uninhabited _ impossible +export Uninhabited (K e loc1 = B i loc2) where uninhabited _ impossible --- public export --- data Eqv : Dim d1 -> Dim d2 -> Type where --- EK : K e _ `Eqv` K e _ --- EB : i `Eqv` j -> B i _ `Eqv` B j _ +public export +data Eqv : Dim d1 -> Dim d2 -> Type where + EK : K e _ `Eqv` K e _ + EB : i `Eqv` j -> B i _ `Eqv` B j _ --- export Uninhabited (K e l1 `Eqv` B i l2) where uninhabited _ impossible --- export Uninhabited (B i l1 `Eqv` K e l2) where uninhabited _ impossible +export Uninhabited (K e l1 `Eqv` B i l2) where uninhabited _ impossible +export Uninhabited (B i l1 `Eqv` K e l2) where uninhabited _ impossible --- export --- injectiveB : B i loc1 `Eqv` B j loc2 -> i `Eqv` j --- injectiveB (EB e) = e +export +injectiveB : B i loc1 `Eqv` B j loc2 -> i `Eqv` j +injectiveB (EB e) = e --- export --- injectiveK : K e loc1 `Eqv` K f loc2 -> e = f --- injectiveK EK = Refl +export +injectiveK : K e loc1 `Eqv` K f loc2 -> e = f +injectiveK EK = Refl --- public export --- decEqv : Dec2 Dim.Eqv --- decEqv (K e _) (K f _) = case decEq e f of --- Yes Refl => Yes EK --- No n => No $ n . injectiveK --- decEqv (B i _) (B j _) = case decEqv i j of --- Yes y => Yes $ EB y --- No n => No $ \(EB y) => n y --- decEqv (B _ _) (K _ _) = No absurd --- decEqv (K _ _) (B _ _) = No absurd +public export +decEqv : Dec2 Dim.Eqv +decEqv (K e _) (K f _) = case decEq e f of + Yes Refl => Yes EK + No n => No $ n . injectiveK +decEqv (B i _) (B j _) = case decEqv i j of + Yes y => Yes $ EB y + No n => No $ \(EB y) => n y +decEqv (B _ _) (K _ _) = No absurd +decEqv (K _ _) (B _ _) = No absurd ||| abbreviation for a bound variable like `BV 4` instead of ||| `B (VS (VS (VS (VS VZ))))` public export %inline -BV : (i : Fin d) -> (loc : Loc) -> DimT d -BV i loc = Th (one' i) $ B loc +BV : (i : Nat) -> (0 _ : LT i d) => (loc : Loc) -> Dim d +BV i loc = B (V i) loc + + +export +weakD : (by : Nat) -> Dim d -> Dim (by + d) +weakD by p = p // shift by diff --git a/lib/Quox/Syntax/DimEq.idr b/lib/Quox/Syntax/DimEq.idr index aeb7a2b..885eebd 100644 --- a/lib/Quox/Syntax/DimEq.idr +++ b/lib/Quox/Syntax/DimEq.idr @@ -1,19 +1,17 @@ module Quox.Syntax.DimEq -import public Quox.Syntax.Var +import public Quox.Var import public Quox.Syntax.Dim import public Quox.Syntax.Subst import public Quox.Context import Quox.Pretty import Quox.Name -import Quox.Thin -import Quox.FinExtra +import Quox.FreeVars import Data.Maybe import Data.Nat import Data.DPair import Data.Fun.Graph -import Data.SnocVect import Decidable.Decidable import Decidable.Equality import Derive.Prelude @@ -24,7 +22,7 @@ import Derive.Prelude public export DimEq' : Nat -> Type -DimEq' = Context (Maybe . DimT) +DimEq' = Context (Maybe . Dim) public export @@ -32,12 +30,7 @@ data DimEq : Nat -> Type where ZeroIsOne : DimEq d C : (eqs : DimEq' d) -> DimEq d %name DimEq eqs -%runElab deriveIndexed "DimEq" [Eq] - -export -Show (DimEq d) where - showPrec d ZeroIsOne = "ZeroIsOne" - showPrec d (C eq') = showCon d "C" $ showArg eq' @{ShowTelRelevant} +%runElab deriveIndexed "DimEq" [Eq, Ord, Show] public export @@ -66,10 +59,15 @@ Traversable (IfConsistent eqs) where traverse f Nothing = pure Nothing traverse f (Just x) = Just <$> f x +public export +ifConsistentElse : Applicative f => (eqs : DimEq d) -> + f a -> f () -> f (IfConsistent eqs a) +ifConsistentElse ZeroIsOne yes no = Nothing <$ no +ifConsistentElse (C _) yes no = Just <$> yes + public export ifConsistent : Applicative f => (eqs : DimEq d) -> f a -> f (IfConsistent eqs a) -ifConsistent ZeroIsOne act = pure Nothing -ifConsistent (C _) act = Just <$> act +ifConsistent eqs act = ifConsistentElse eqs act (pure ()) public export toMaybe : IfConsistent eqs a -> Maybe a @@ -78,13 +76,13 @@ toMaybe (Just x) = Just x export -fromGround' : Context' DimConst d -> DimEq' d -fromGround' [<] = [<] -fromGround' (ctx :< e) = fromGround' ctx :< Just (KT e noLoc) +fromGround' : BContext d -> Context' DimConst d -> DimEq' d +fromGround' [<] [<] = [<] +fromGround' (xs :< x) (ctx :< e) = fromGround' xs ctx :< Just (K e x.loc) export -fromGround : Context' DimConst d -> DimEq d -fromGround = C . fromGround' +fromGround : BContext d -> Context' DimConst d -> DimEq d +fromGround = C .: fromGround' public export %inline @@ -102,40 +100,39 @@ new = C new' public export %inline -get' : DimEq' d -> Fin d -> Maybe (DimT d) +get' : DimEq' d -> Var d -> Maybe (Dim d) get' = getWith $ \p, by => map (// by) p public export %inline -getShift' : Shift len out -> DimEq' len -> Fin len -> Maybe (DimT out) +getVar : DimEq' d -> Var d -> Loc -> Dim d +getVar eqs i loc = fromMaybe (B i loc) $ get' eqs i + +public export %inline +getShift' : Shift len out -> DimEq' len -> Var len -> Maybe (Dim out) getShift' = getShiftWith $ \p, by => map (// by) p public export %inline -get : {d : Nat} -> DimEq' d -> DimT d -> DimT d -get eqs p@(Th _ (K {})) = p -get eqs p@(Th i (B _)) = fromMaybe p $ get' eqs i.fin +get : DimEq' d -> Dim d -> Dim d +get _ (K e loc) = K e loc +get eqs (B i loc) = getVar eqs i loc public export %inline -equal : {d : Nat} -> DimEq d -> (p, q : DimT d) -> Bool +equal : DimEq d -> (p, q : Dim d) -> Bool equal ZeroIsOne p q = True equal (C eqs) p q = get eqs p == get eqs q -infixl 7 : DimEq d -> Maybe (DimT d) -> DimEq (S d) +(: Maybe (Dim d) -> DimEq (S d) ZeroIsOne : Fin d -> DimT d -> Bool -isVar i (Th j (B _)) = i == j.fin -isVar i (Th _ (K {})) = False - -private %inline -ifVar : {d : Nat} -> Fin d -> DimT d -> Maybe (DimT d) -> Maybe (DimT d) -ifVar i p = map $ \q => if isVar i q then p else q +ifVar : Var d -> Dim d -> Maybe (Dim d) -> Maybe (Dim d) +ifVar i p = map $ \q => if q == B i noLoc then p else q -- (using decEq instead of (==) because of the proofs below) private %inline @@ -144,45 +141,43 @@ checkConst e f eqs = if isYes $ e `decEq` f then C eqs else ZeroIsOne export -setConst : {d : Nat} -> Fin d -> DimConst -> Loc -> DimEq' d -> DimEq d -setConst FZ e loc (eqs :< Nothing) = - C $ eqs :< Just (KT e loc) -setConst FZ e _ (eqs :< Just (Th _ (K f loc))) = - checkConst e f $ eqs :< Just (KT f loc) -setConst FZ e loc (eqs :< Just (Th j (B _))) = - setConst j.fin e loc eqs : DimConst -> Loc -> DimEq' d -> DimEq d +setConst VZ e loc (eqs :< Nothing) = + C $ eqs :< Just (K e loc) +setConst VZ e _ (eqs :< Just (K f loc)) = + checkConst e f $ eqs :< Just (K f loc) +setConst VZ e loc (eqs :< Just (B i _)) = + setConst i e loc eqs : - (i, j : Fin d) -> (0 _ : i `LT` j) -> Loc -> DimEq' d -> DimEq d - setVar' FZ (FS i) LTZ loc (eqs :< Nothing) = - C eqs : i then BV j jloc else BV i loc) - setVar' (FS i) (FS j) (LTS lt) loc (eqs :< p) = - setVar' i j lt loc eqs : (0 _ : i `LT` j) -> Loc -> DimEq' d -> DimEq d + setVar' VZ (VS i) LTZ loc (eqs :< Nothing) = + C eqs : i then B j jloc else B i loc) + setVar' (VS i) (VS j) (LTS lt) loc (eqs :< p) = + setVar' i j lt loc eqs : (i, j : Fin d) -> Loc -> Loc -> DimEq' d -> DimEq d - setVar i j li lj eqs with (compareP i j) - setVar i j li lj eqs | IsLT lt = setVar' i j lt lj eqs - setVar i i li lj eqs | IsEQ = C eqs - setVar i j li lj eqs | IsGT gt = setVar' j i gt li eqs + setVar : (i, j : Var d) -> Loc -> Loc -> DimEq' d -> DimEq d + setVar i j li lj eqs with (compareP i j) | (compare i.nat j.nat) + setVar i j li lj eqs | IsLT lt | LT = setVar' i j lt lj eqs + setVar i i li lj eqs | IsEQ | EQ = C eqs + setVar i j li lj eqs | IsGT gt | GT = setVar' j i gt li eqs export %inline -set : {d : Nat} -> (p, q : DimT d) -> DimEq d -> DimEq d +set : (p, q : Dim d) -> DimEq d -> DimEq d set _ _ ZeroIsOne = ZeroIsOne -set (Th _ (K e _)) (Th _ (K f _)) (C eqs) = checkConst e f eqs -set (Th _ (K e el)) (Th j (B _)) (C eqs) = setConst j.fin e el eqs -set (Th i (B _)) (Th _ (K e el)) (C eqs) = setConst i.fin e el eqs -set (Th i (B il)) (Th j (B jl)) (C eqs) = setVar i.fin j.fin il jl eqs +set (K e eloc) (K f floc) (C eqs) = checkConst e f eqs +set (K e eloc) (B i iloc) (C eqs) = setConst i e eloc eqs +set (B i iloc) (K e eloc) (C eqs) = setConst i e eloc eqs +set (B i iloc) (B j jloc) (C eqs) = setVar i j iloc jloc eqs public export %inline @@ -190,99 +185,116 @@ Split : Nat -> Type Split d = (DimEq' d, DSubst (S d) d) export %inline -split1 : {d : Nat} -> DimConst -> Loc -> DimEq' (S d) -> Maybe (Split d) -split1 e loc eqs = case setConst 0 e loc eqs of +split1 : DimConst -> Loc -> DimEq' (S d) -> Maybe (Split d) +split1 e loc eqs = case setConst VZ e loc eqs of ZeroIsOne => Nothing - C (eqs :< _) => Just (eqs, id (B loc) :< KT e loc) + C (eqs :< _) => Just (eqs, K e loc ::: id) export %inline -split : {d : Nat} -> Loc -> DimEq' (S d) -> List (Split d) -split loc eqs = toList (split1 Zero loc eqs) <+> toList (split1 One loc eqs) +split1' : DimConst -> Loc -> DimEq' (S d) -> List (Split d) +split1' e loc eqs = toList $ split1 e loc eqs + +export %inline +split : Loc -> DimEq' (S d) -> Bool -> List (Split d) +split loc eqs False = split1' Zero loc eqs +split loc eqs True = split1' Zero loc eqs <+> split1' One loc eqs export -splits' : {d : Nat} -> Loc -> DimEq' d -> List (DSubst d 0) -splits' _ [<] = [[<]] -splits' loc eqs@(_ :< _) = - [th . ph | (eqs', th) <- split loc eqs, ph <- splits' loc eqs'] +splits' : Loc -> DimEq' d -> FreeVars d -> List (DSubst d 0) +splits' _ [<] _ = [id] +splits' loc eqs@(_ :< _) us = do + let (us, u) = uncons us + (eqs', th) <- split loc eqs u + ph <- splits' loc eqs' us + pure $ th . ph ||| the Loc is put into each of the DimConsts export %inline -splits : {d : Nat} -> Loc -> DimEq d -> List (DSubst d 0) -splits _ ZeroIsOne = [] -splits loc (C eqs) = splits' loc eqs +splits : Loc -> DimEq d -> FreeVars d -> List (DSubst d 0) +splits _ ZeroIsOne _ = [] +splits loc (C eqs) fvs = splits' loc eqs fvs --- private --- 0 newGetShift : (d : Nat) -> (i : Fin d) -> (by : Shift d d') -> --- getShift' by (new' {d}) i = Nothing --- newGetShift (S d) FZ by = Refl --- newGetShift (S d) (FS i) by = newGetShift d i (ssDown by) +private +0 newGetShift : (d : Nat) -> (i : Var d) -> (by : Shift d d') -> + getShift' by (new' {d}) i = Nothing +newGetShift (S d) VZ by = Refl +newGetShift (S d) (VS i) by = newGetShift d i (ssDown by) --- export --- 0 newGet' : (d : Nat) -> (i : Fin d) -> get' (new' {d}) i = Nothing --- newGet' d i = newGetShift d i SZ +export +0 newGet' : (d : Nat) -> (i : Var d) -> get' (new' {d}) i = Nothing +newGet' d i = newGetShift d i SZ --- export --- 0 newGet : (d : Nat) -> (p : Dim d) -> get (new' {d}) p = p --- newGet d (K e _) = Refl --- newGet d (B i _) = rewrite newGet' d i in Refl +export +0 newGet : (d : Nat) -> (p : Dim d) -> get (new' {d}) p = p +newGet d (K e _) = Refl +newGet d (B i _) = rewrite newGet' d i in Refl --- export --- 0 setSelf : (p : Dim d) -> (eqs : DimEq d) -> set p p eqs = eqs --- setSelf p ZeroIsOne = Refl --- setSelf (K Zero _) (C eqs) = Refl --- setSelf (K One _) (C eqs) = Refl --- setSelf (B i _) (C eqs) with (compareP i i) | (compare i.nat i.nat) --- _ | IsLT lt | LT = absurd lt --- _ | IsEQ | EQ = Refl --- _ | IsGT gt | GT = absurd gt +export +0 setSelf : (p : Dim d) -> (eqs : DimEq d) -> set p p eqs = eqs +setSelf p ZeroIsOne = Refl +setSelf (K Zero _) (C eqs) = Refl +setSelf (K One _) (C eqs) = Refl +setSelf (B i _) (C eqs) with (compareP i i) | (compare i.nat i.nat) + _ | IsLT lt | LT = absurd lt + _ | IsEQ | EQ = Refl + _ | IsGT gt | GT = absurd gt -parameters {opts : LayoutOpts} - private - prettyDVars : {d : Nat} -> BContext d -> Eff Pretty (SnocList (Doc opts)) - prettyDVars = traverse prettyDBind . toSnocList' +private %inline +dimEqPrec : BContext d -> Maybe (DimEq' d) -> PPrec +dimEqPrec vars eqs = + if length vars <= 1 && maybe True null eqs then Arg else Outer - private - prettyCst : {d : Nat} -> BContext d -> DimT d -> DimT d -> Eff Pretty (Doc opts) - prettyCst dnames p q = - hsep <$> sequence [prettyDim dnames p, cstD, prettyDim dnames q] +private +prettyDVars' : {opts : _} -> BContext d -> Eff Pretty (SnocList (Doc opts)) +prettyDVars' = traverse prettyDBind . toSnocList' - private - prettyCsts : {d : Nat} -> BContext d -> DimEq' d -> - Eff Pretty (SnocList (Doc opts)) - prettyCsts [<] [<] = pure [<] - prettyCsts dnames (eqs :< Nothing) = prettyCsts (tail dnames) eqs - prettyCsts dnames (eqs :< Just q) = - [|prettyCsts (tail dnames) eqs :< - prettyCst dnames (BV 0 noLoc) (weak 1 q)|] +export +prettyDVars : {opts : _} -> BContext d -> Eff Pretty (Doc opts) +prettyDVars vars = + parensIfM (dimEqPrec vars Nothing) $ + fillSeparateTight !commaD $ !(prettyDVars' vars) - export - prettyDimEq' : {d : Nat} -> BContext d -> DimEq' d -> Eff Pretty (Doc opts) - prettyDimEq' dnames eqs = do - vars <- prettyDVars dnames - eqs <- prettyCsts dnames eqs - let prec = if length vars <= 1 && null eqs then Arg else Outer - parensIfM prec $ fillSeparateTight !commaD $ toList vars ++ toList eqs +private +prettyCst : {opts : _} -> BContext d -> Dim d -> Dim d -> Eff Pretty (Doc opts) +prettyCst dnames p q = + hsep <$> sequence [prettyDim dnames p, cstD, prettyDim dnames q] - export - prettyDimEq : {d : Nat} -> BContext d -> DimEq d -> Eff Pretty (Doc opts) - prettyDimEq dnames ZeroIsOne = do - vars <- prettyDVars dnames - cst <- prettyCst [<] (KT Zero noLoc) (KT One noLoc) - pure $ separateTight !commaD $ vars :< cst - prettyDimEq dnames (C eqs) = prettyDimEq' dnames eqs +private +prettyCsts : {opts : _} -> BContext d -> DimEq' d -> + Eff Pretty (SnocList (Doc opts)) +prettyCsts [<] [<] = pure [<] +prettyCsts dnames (eqs :< Nothing) = prettyCsts (tail dnames) eqs +prettyCsts dnames (eqs :< Just q) = + [|prettyCsts (tail dnames) eqs :< prettyCst dnames (BV 0 noLoc) (weakD 1 q)|] + +export +prettyDimEq' : {opts : _} -> BContext d -> DimEq' d -> Eff Pretty (Doc opts) +prettyDimEq' vars eqs = do + vars' <- prettyDVars' vars + eqs' <- prettyCsts vars eqs + parensIfM (dimEqPrec vars (Just eqs)) $ + fillSeparateTight !commaD $ vars' ++ eqs' + +export +prettyDimEq : {opts : _} -> BContext d -> DimEq d -> Eff Pretty (Doc opts) +prettyDimEq dnames ZeroIsOne = do + vars <- prettyDVars' dnames + cst <- prettyCst [<] (K Zero noLoc) (K One noLoc) + pure $ separateTight !commaD $ vars :< cst +prettyDimEq dnames (C eqs) = prettyDimEq' dnames eqs public export -wf' : {d : Nat} -> DimEq' d -> Bool -wf' [<] = True -wf' (eqs :< Nothing) = wf' eqs -wf' (eqs :< Just (Th _ (K {}))) = wf' eqs -wf' (eqs :< Just (Th i (B _))) = isNothing (get' eqs i.fin) && wf' eqs +wf' : DimEq' d -> Bool +wf' [<] = True +wf' (eqs :< Nothing) = wf' eqs +wf' (eqs :< Just (K e _)) = wf' eqs +wf' (eqs :< Just (B i _)) = isNothing (get' eqs i) && wf' eqs public export -wf : {d : Nat} -> DimEq d -> Bool +wf : DimEq d -> Bool wf ZeroIsOne = True wf (C eqs) = wf' eqs diff --git a/lib/Quox/Syntax/Qty.idr b/lib/Quox/Syntax/Qty.idr index 1aa0ba0..d0d3d79 100644 --- a/lib/Quox/Syntax/Qty.idr +++ b/lib/Quox/Syntax/Qty.idr @@ -6,6 +6,7 @@ module Quox.Syntax.Qty import Quox.Pretty import Quox.Decidable +import Quox.PrettyValExtra import Data.DPair import Derive.Prelude @@ -20,7 +21,7 @@ import Derive.Prelude ||| - ω (or #): don't care. an ω variable *can* also be used 0/1 time public export data Qty = Zero | One | Any -%runElab derive "Qty" [Eq, Ord, Show] +%runElab derive "Qty" [Eq, Ord, Show, PrettyVal] %name Qty.Qty pi, rh @@ -78,26 +79,16 @@ lub p q = if p == q then p else Any ||| to maintain subject reduction, only 0 or 1 can occur ||| for the subject of a typing judgment. see @qtt, §2.3 for more detail public export -isSubj : Qty -> Bool -isSubj Zero = True -isSubj One = True -isSubj Any = False - -public export -SQty : Type -SQty = Subset Qty $ So . isSubj - -public export %inline -szero, sone : SQty -szero = Element Zero Oh -sone = Element One Oh +data SQty = SZero | SOne +%runElab derive "SQty" [Eq, Ord, Show, PrettyVal] +%name Qty.SQty sg ||| "σ ⨴ π" ||| -||| σ ⨭ π is 0 if either of σ or π are, otherwise it is σ. +||| σ ⨴ π is 0 if either of σ or π are, otherwise it is σ. public export subjMult : SQty -> Qty -> SQty -subjMult _ Zero = szero +subjMult _ Zero = SZero subjMult sg _ = sg @@ -105,23 +96,59 @@ subjMult sg _ = sg ||| quantity of 1, so the only distinction is whether it is present ||| at runtime at all or not public export -isGlobal : Qty -> Bool -isGlobal Zero = True -isGlobal One = False -isGlobal Any = True +data GQty = GZero | GAny +%runElab derive "GQty" [Eq, Ord, Show, PrettyVal] +%name GQty rh public export -GQty : Type -GQty = Subset Qty $ So . isGlobal - -public export -gzero, gany : GQty -gzero = Element Zero Oh -gany = Element Any Oh +toGlobal : Qty -> Maybe GQty +toGlobal Zero = Just GZero +toGlobal Any = Just GAny +toGlobal One = Nothing ||| when checking a definition, a 0 definition is checked at 0, ||| but an ω definition is checked at 1 since ω isn't a subject quantity public export %inline globalToSubj : GQty -> SQty -globalToSubj (Element Zero _) = szero -globalToSubj (Element Any _) = sone +globalToSubj GZero = SZero +globalToSubj GAny = SOne + + +public export +DecEq Qty where + decEq Zero Zero = Yes Refl + decEq Zero One = No $ \case _ impossible + decEq Zero Any = No $ \case _ impossible + decEq One Zero = No $ \case _ impossible + decEq One One = Yes Refl + decEq One Any = No $ \case _ impossible + decEq Any Zero = No $ \case _ impossible + decEq Any One = No $ \case _ impossible + decEq Any Any = Yes Refl + +public export +DecEq SQty where + decEq SZero SZero = Yes Refl + decEq SZero SOne = No $ \case _ impossible + decEq SOne SZero = No $ \case _ impossible + decEq SOne SOne = Yes Refl + +public export +DecEq GQty where + decEq GZero GZero = Yes Refl + decEq GZero GAny = No $ \case _ impossible + decEq GAny GZero = No $ \case _ impossible + decEq GAny GAny = Yes Refl + + +namespace SQty + public export %inline + (.qty) : SQty -> Qty + (SZero).qty = Zero + (SOne).qty = One + +namespace GQty + public export %inline + (.qty) : GQty -> Qty + (GZero).qty = Zero + (GAny).qty = Any diff --git a/lib/Quox/Syntax/Shift.idr b/lib/Quox/Syntax/Shift.idr index c519883..ddc5a15 100644 --- a/lib/Quox/Syntax/Shift.idr +++ b/lib/Quox/Syntax/Shift.idr @@ -1,11 +1,11 @@ module Quox.Syntax.Shift -import public Quox.Syntax.Var -import public Quox.Thin +import public Quox.Var import Data.Nat import Data.So -import Data.DPair +import Data.Singleton +import Syntax.PreorderReasoning %default total @@ -148,6 +148,25 @@ weakViaNat s by = %transform "Shift.weak" Shift.weak = weakViaNat +export +getFrom : {to : Nat} -> Shift from to -> Singleton from +getFrom SZ = Val to +getFrom (SS by) = getFrom by + +private +0 getFromViaNatProof : (by : Shift from to) -> from = to `minus` by.nat +getFromViaNatProof by = Calc $ + |~ from + ~~ minus (by.nat + from) by.nat ..<(minusPlus {}) + ~~ minus to by.nat ..<(cong (flip minus by.nat) (shiftDiff by)) + +private +getFromViaNat : {to : Nat} -> Shift from to -> Singleton from +getFromViaNat by = rewrite getFromViaNatProof by in Val _ + +%transform "Shift.getFrom" Shift.getFrom = getFromViaNat + + public export shift : Shift from to -> Var from -> Var to shift SZ i = i @@ -180,11 +199,12 @@ by . SS bz = SS $ by . bz private 0 compNatProof : (by : Shift from mid) -> (bz : Shift mid to) -> to = by.nat + bz.nat + from -compNatProof by bz = - trans (shiftDiff bz) $ - trans (cong (bz.nat +) (shiftDiff by)) $ - trans (plusAssociative bz.nat by.nat from) $ - cong (+ from) (plusCommutative bz.nat by.nat) +compNatProof by bz = Calc $ + |~ to + ~~ bz.nat + mid ...(shiftDiff {}) + ~~ bz.nat + (by.nat + from) ...(cong (bz.nat +) (shiftDiff {})) + ~~ bz.nat + by.nat + from ...(plusAssociative {}) + ~~ by.nat + bz.nat + from ...(cong (+ from) (plusCommutative {})) private %inline compViaNat' : (by : Shift from mid) -> (bz : Shift mid to) -> @@ -207,7 +227,7 @@ compViaNatCorrect by (SS bz) = %transform "Shift.(.)" Shift.(.) = compViaNat -infixl 8 // +export infixl 8 // public export interface CanShift f where (//) : f from -> Shift from to -> f to @@ -222,15 +242,3 @@ namespace CanShift public export %inline [Const] CanShift (\_ => a) where x // _ = x - - -export -shiftOPE : {mask : Nat} -> (0 ope : OPE m n mask) -> - Shift n n' -> Subset Nat (OPE m n') -shiftOPE ope SZ = Element _ ope -shiftOPE ope (SS by) = - let Element _ ope = shiftOPE ope by in Element _ $ drop ope - -export -CanShift (Thinned f) where - Th ope tm // by = Th (shiftOPE ope by).snd tm diff --git a/lib/Quox/Syntax/Subst.idr b/lib/Quox/Syntax/Subst.idr index 8137b02..1e14d4d 100644 --- a/lib/Quox/Syntax/Subst.idr +++ b/lib/Quox/Syntax/Subst.idr @@ -1,11 +1,13 @@ module Quox.Syntax.Subst -import Quox.Thin -import Quox.Loc +import public Quox.Syntax.Shift +import Quox.Var +import Quox.Name -import Data.DPair +import Data.Nat import Data.List import Data.SnocVect +import Data.Singleton import Derive.Prelude %default total @@ -13,159 +15,155 @@ import Derive.Prelude public export -Subst : (Nat -> Type) -> Nat -> Nat -> Type -Subst env from to = SnocVect from (Lazy (Thinned env to)) +data Subst : (Nat -> Type) -> Nat -> Nat -> Type where + Shift : Shift from to -> Subst env from to + (:::) : (t : Lazy (env to)) -> Subst env from to -> Subst env (S from) to +%name Subst th, ph, ps +export infixr 7 !::: +||| in case the automatic laziness insertion gets confused public export -Subst2 : (Nat -> Nat -> Type) -> Nat -> Nat -> Nat -> Type -Subst2 env d from to = SnocVect from (Lazy (Thinned2 env d to)) +(!:::) : env to -> Subst env from to -> Subst env (S from) to +t !::: ts = t ::: ts + + +private +Repr : (Nat -> Type) -> Nat -> Type +Repr f to = (List (f to), Nat) + +private +repr : Subst f from to -> Repr f to +repr (Shift by) = ([], by.nat) +repr (t ::: th) = let (ts, i) = repr th in (t::ts, i) + + +export Eq (f to) => Eq (Subst f from to) where (==) = (==) `on` repr +export Ord (f to) => Ord (Subst f from to) where compare = compare `on` repr +export Show (f to) => Show (Subst f from to) where show = show . repr + + +export infixl 8 // +public export +interface FromVar term => CanSubstSelf term where + (//) : term from -> Lazy (Subst term from to) -> term to public export -get : Subst env f t -> Fin f -> Thinned env t -get (sx :< x) FZ = x -get (sx :< x) (FS i) = get sx i +getLoc : FromVar term => Subst term from to -> Var from -> Loc -> term to +getLoc (Shift by) i loc = fromVarLoc (shift by i) loc +getLoc (t ::: th) VZ _ = t +getLoc (t ::: th) (VS i) loc = getLoc th i loc public export -interface FromVar (0 term : Nat -> Type) where - var : Loc -> term 1 - -public export -0 FromVar2 : (Nat -> Nat -> Type) -> Type -FromVar2 t = FromVar (t 0) - -public export -varT : FromVar term => Fin n -> Loc -> Thinned term n -varT i loc = Th (one' i) (var loc) - -public export -varT2 : FromVar2 term => Fin n -> Loc -> Thinned2 term d n -varT2 i loc = Th2 zero (one' i) (var loc) - -infixl 8 // -namespace CanSubstSelf - public export - interface FromVar term => CanSubstSelf term where - (//) : {f : Nat} -> Thinned term f -> Subst term f t -> Thinned term t - -namespace CanSubstSelf2 - public export - interface FromVar2 term => CanSubstSelf2 term where - (//) : {f : Nat} -> Thinned2 term d f -> - Subst2 term d f t -> Thinned2 term d t - -public export -(.) : {mid : Nat} -> CanSubstSelf f => - Subst f from mid -> Subst f mid to -> Subst f from to -th . ph = map (\(Delay x) => x // ph) th - -infixr 9 .% - -public export -(.%) : {mid : Nat} -> CanSubstSelf2 f => - Subst2 f d from mid -> Subst2 f d mid to -> Subst2 f d from to -th .% ph = map (\(Delay x) => x // ph) th - - -public export -tabulate : (n : Nat) -> SnocVect n (Fin n) -tabulate n = go n id where - go : (n : Nat) -> (Fin n -> Fin n') -> SnocVect n (Fin n') - go 0 f = [<] - go (S n) f = go n (f . FS) :< f FZ - -public export -id : FromVar term => {n : Nat} -> (under : Nat) -> Loc -> - Subst term n (n + under) -id under loc = - map (\i => delay $ varT (weakenN under i) loc) (tabulate n) - -public export -id2 : FromVar2 term => {n : Nat} -> Loc -> Subst2 term d n n -id2 loc = map (\i => delay $ varT2 i loc) $ tabulate n - -export -select : {n, mask : Nat} -> (0 ope : OPE m n mask) -> - SnocVect n a -> SnocVect m a -select ope sx with %syntactic (view ope) - select _ [<] | StopV = [<] - select _ (sx :< x) | DropV _ ope = select ope sx - select _ (sx :< x) | KeepV _ ope = select ope sx :< x - -export -opeToFins : {n, mask : Nat} -> - (0 ope : OPE m n mask) -> SnocVect m (Fin n) -opeToFins ope = select ope $ tabulate n - -export -shift : FromVar term => {from : Nat} -> - (n : Nat) -> Loc -> Subst term from (n + from) -shift n loc = map (\i => delay $ varT (shift n i) loc) $ tabulate from - -public export -pushN : CanSubstSelf term => {to : Nat} -> (by : Nat) -> - Subst term from to -> Loc -> Subst term (by + from) (by + to) -pushN by th loc = - rewrite plusCommutative by from in - (th . shift by loc) ++ id to loc - -public export %inline -push : CanSubstSelf f => {to : Nat} -> - Subst f from to -> Loc -> Subst f (S from) (S to) -push = pushN 1 +CanSubstSelf Var where + i // Shift by = shift by i + VZ // (t ::: th) = t + VS i // (t ::: th) = i // th public export %inline -one : Thinned f n -> Subst f 1 n -one x = [< x] +shift : (by : Nat) -> Subst env from (by + from) +shift by = Shift $ fromNat by + +public export %inline +shift0 : (by : Nat) -> Subst env 0 by +shift0 by = rewrite sym $ plusZeroRightNeutral by in Shift $ fromNat by + + +public export +(.) : CanSubstSelf f => Subst f from mid -> Subst f mid to -> Subst f from to +Shift by . Shift bz = Shift $ by . bz +Shift SZ . ph = ph +Shift (SS by) . (t ::: th) = Shift by . th +(t ::: th) . ph = (t // ph) ::: (th . ph) + +public export %inline +id : Subst f n n +id = shift 0 + +public export +traverse : Applicative m => + (f to -> m (g to)) -> Subst f from to -> m (Subst g from to) +traverse f (Shift by) = pure $ Shift by +traverse f (t ::: th) = [|f t !::: traverse f th|] + +-- not in terms of traverse because this map can maintain laziness better +public export +map : (f to -> g to) -> Subst f from to -> Subst g from to +map f (Shift by) = Shift by +map f (t ::: th) = f t ::: map f th + + +public export %inline +push : CanSubstSelf f => Loc -> Subst f from to -> Subst f (S from) (S to) +push loc th = fromVarLoc VZ loc ::: (th . shift 1) + +-- [fixme] a better way to do this? +public export +pushN : CanSubstSelf f => (s : Nat) -> Loc -> + Subst f from to -> Subst f (s + from) (s + to) +pushN 0 _ th = th +pushN (S s) loc th = + rewrite plusSuccRightSucc s from in + rewrite plusSuccRightSucc s to in + pushN s loc $ fromVarLoc VZ loc ::: (th . shift 1) + +public export +drop1 : Subst f (S from) to -> Subst f from to +drop1 (Shift by) = Shift $ ssDown by +drop1 (t ::: th) = th + + +public export +fromSnocVect : SnocVect s (f n) -> Subst f (s + n) n +fromSnocVect [<] = id +fromSnocVect (xs :< x) = x ::: fromSnocVect xs + +public export %inline +one : f n -> Subst f (S n) n +one x = fromSnocVect [< x] -||| whether two substitutions with the same codomain have the same domain export -cmpShape : SnocVect m a -> SnocVect n a -> Either Ordering (m = n) -cmpShape [<] [<] = Right Refl -cmpShape [<] (sx :< _) = Left LT -cmpShape (sx :< _) [<] = Left GT -cmpShape (sx :< _) (sy :< _) = cong S <$> cmpShape sx sy +getFrom : {to : Nat} -> Subst _ from to -> Singleton from +getFrom (Shift by) = getFrom by +getFrom (t ::: th) = [|S $ getFrom th|] + + +||| whether two substitutions with the same codomain have the same shape +||| (the same number of terms and the same shift at the end). if so, they +||| also have the same domain +export +cmpShape : Subst env from1 to -> Subst env from2 to -> + Either Ordering (from1 = from2) +cmpShape (Shift by) (Shift bz) = cmpLen by bz +cmpShape (Shift _) (_ ::: _) = Left LT +cmpShape (_ ::: _) (Shift _) = Left GT +cmpShape (_ ::: th) (_ ::: ph) = map (\x => cong S x) $ cmpShape th ph public export record WithSubst tm env n where constructor Sub term : tm from - subst : Subst env from n + subst : Lazy (Subst env from n) -{- export -(forall n. Eq (env n), forall n. Eq (tm n)) => -Eq (WithSubst tm env n) where +(Eq (env n), forall n. Eq (tm n)) => Eq (WithSubst tm env n) where Sub t1 s1 == Sub t2 s2 = case cmpShape s1 s2 of Left _ => False - Right Refl => - t1 == t2 && concat @{All} (zipWith ((==) `on` force) s1 s2) + Right Refl => t1 == t2 && s1 == s2 export -(forall n. Ord (env n), forall n. Ord (tm n)) => -Ord (WithSubst tm env n) where +(Ord (env n), forall n. Ord (tm n)) => Ord (WithSubst tm env n) where Sub t1 s1 `compare` Sub t2 s2 = case cmpShape s1 s2 of Left o => o - Right Refl => - compare t1 t2 <+> concat (zipWith (compare `on` force) s1 s2) + Right Refl => compare (t1, s1) (t2, s2) export %hint -ShowWithSubst : {n : Nat} -> - (forall n. Show (env n), forall n. Show (tm n)) => +ShowWithSubst : (Show (env n), forall n. Show (tm n)) => Show (WithSubst tm env n) -ShowWithSubst = deriveShow where - Show (Lazy (Thinned env n)) where showPrec d = showPrec d . force --} - - -public export -record WithSubst2 tm env d n where - constructor Sub2 - term : tm d from - subst : Subst2 env d from n +ShowWithSubst = deriveShow diff --git a/lib/Quox/Syntax/Term.idr b/lib/Quox/Syntax/Term.idr index 2ac69a4..b7e4054 100644 --- a/lib/Quox/Syntax/Term.idr +++ b/lib/Quox/Syntax/Term.idr @@ -3,4 +3,3 @@ module Quox.Syntax.Term import public Quox.Syntax.Term.Base import public Quox.Syntax.Term.Subst import public Quox.Syntax.Term.Pretty -import public Quox.Syntax.Term.Tighten diff --git a/lib/Quox/Syntax/Term/Base.idr b/lib/Quox/Syntax/Term/Base.idr index e024e41..5457b83 100644 --- a/lib/Quox/Syntax/Term/Base.idr +++ b/lib/Quox/Syntax/Term/Base.idr @@ -1,7 +1,7 @@ module Quox.Syntax.Term.Base -import public Quox.Thin -import public Quox.Syntax.Var +import public Quox.Var +import public Quox.Scoped import public Quox.Syntax.Shift import public Quox.Syntax.Subst import public Quox.Syntax.Qty @@ -19,6 +19,9 @@ import Data.Maybe import Data.Nat import public Data.So import Data.String +import public Data.SortedMap +import public Data.SortedMap.Dependent +import public Data.SortedSet import Derive.Prelude %default total @@ -44,344 +47,406 @@ TagVal : Type TagVal = String -||| type-checkable terms, which consists of types and constructor forms. -||| -||| first argument `d` is dimension scope size; second `n` is term scope size -public export -data Term : (d, n : Nat) -> Type -%name Term s, t, r +mutual + public export + TSubst : TSubstLike + TSubst d = Subst $ \n => Elim d n -||| inferrable terms, which consists of elimination forms like application and -||| `case` (as well as other terms with an annotation) -||| -||| first argument `d` is dimension scope size; second `n` is term scope size -public export -data Elim : (d, n : Nat) -> Type -%name Elim e, f + ||| first argument `d` is dimension scope size; + ||| second `n` is term scope size + public export + data Term : (d, n : Nat) -> Type where + ||| type of types + TYPE : (l : Universe) -> (loc : Loc) -> Term d n + + ||| IO state token. this is a builtin because otherwise #[main] being a + ||| builtin makes no sense + IOState : (loc : Loc) -> Term d n + + ||| function type + Pi : (qty : Qty) -> (arg : Term d n) -> + (res : ScopeTerm d n) -> (loc : Loc) -> Term d n + ||| function term + Lam : (body : ScopeTerm d n) -> (loc : Loc) -> Term d n + + ||| pair type + Sig : (fst : Term d n) -> (snd : ScopeTerm d n) -> (loc : Loc) -> Term d n + ||| pair value + Pair : (fst, snd : Term d n) -> (loc : Loc) -> Term d n + + ||| enumeration type + Enum : (cases : SortedSet TagVal) -> (loc : Loc) -> Term d n + ||| enumeration value + Tag : (tag : TagVal) -> (loc : Loc) -> Term d n + + ||| equality type + Eq : (ty : DScopeTerm d n) -> (l, r : Term d n) -> (loc : Loc) -> Term d n + ||| equality term + DLam : (body : DScopeTerm d n) -> (loc : Loc) -> Term d n + + ||| natural numbers (temporary until 𝐖 gets added) + NAT : (loc : Loc) -> Term d n + Nat : (val : Nat) -> (loc : Loc) -> Term d n + Succ : (p : Term d n) -> (loc : Loc) -> Term d n + + ||| strings + STRING : (loc : Loc) -> Term d n + Str : (str : String) -> (loc : Loc) -> Term d n + + ||| "box" (package a value up with a certain quantity) + BOX : (qty : Qty) -> (ty : Term d n) -> (loc : Loc) -> Term d n + Box : (val : Term d n) -> (loc : Loc) -> Term d n + + Let : (qty : Qty) -> (rhs : Elim d n) -> + (body : ScopeTerm d n) -> (loc : Loc) -> Term d n + + ||| elimination + E : (e : Elim d n) -> Term d n + + ||| term closure/suspended substitution + CloT : WithSubst (Term d) (Elim d) n -> Term d n + ||| dimension closure/suspended substitution + DCloT : WithSubst (\d => Term d n) Dim d -> Term d n + %name Term s, t, r + + ||| first argument `d` is dimension scope size, second `n` is term scope size + public export + data Elim : (d, n : Nat) -> Type where + ||| free variable, possibly with a displacement (see @crude, or @mugen for a + ||| more abstract and formalised take) + ||| + ||| e.g. if f : ★₀ → ★₁, then f¹ : ★₁ → ★₂ + F : (x : Name) -> (u : Universe) -> (loc : Loc) -> Elim d n + ||| bound variable + B : (i : Var n) -> (loc : Loc) -> Elim d n + + ||| term application + App : (fun : Elim d n) -> (arg : Term d n) -> (loc : Loc) -> Elim d n + + ||| pair destruction + ||| + ||| `CasePair 𝜋 𝑒 ([𝑟], 𝐴) ([𝑥, 𝑦], 𝑡)` is + ||| `𝐜𝐚𝐬𝐞 𝜋 · 𝑒 𝐫𝐞𝐭𝐮𝐫𝐧 𝑟 ⇒ 𝐴 𝐨𝐟 { (𝑥, 𝑦) ⇒ 𝑡 }` + CasePair : (qty : Qty) -> (pair : Elim d n) -> + (ret : ScopeTerm d n) -> + (body : ScopeTermN 2 d n) -> + (loc : Loc) -> + Elim d n + + ||| first element of a pair. only works in non-linear contexts. + Fst : (pair : Elim d n) -> (loc : Loc) -> Elim d n + + ||| second element of a pair. only works in non-linear contexts. + Snd : (pair : Elim d n) -> (loc : Loc) -> Elim d n + + ||| enum matching + CaseEnum : (qty : Qty) -> (tag : Elim d n) -> + (ret : ScopeTerm d n) -> + (arms : CaseEnumArms d n) -> + (loc : Loc) -> + Elim d n + + ||| nat matching + CaseNat : (qty, qtyIH : Qty) -> (nat : Elim d n) -> + (ret : ScopeTerm d n) -> + (zero : Term d n) -> + (succ : ScopeTermN 2 d n) -> + (loc : Loc) -> + Elim d n + + ||| unboxing + CaseBox : (qty : Qty) -> (box : Elim d n) -> + (ret : ScopeTerm d n) -> + (body : ScopeTerm d n) -> + (loc : Loc) -> + Elim d n + + ||| dim application + DApp : (fun : Elim d n) -> (arg : Dim d) -> (loc : Loc) -> Elim d n + + ||| type-annotated term + Ann : (tm, ty : Term d n) -> (loc : Loc) -> Elim d n + + ||| coerce a value along a type equality, or show its coherence + ||| [@xtt; §2.1.1] + Coe : (ty : DScopeTerm d n) -> (p, q : Dim d) -> + (val : Term d n) -> (loc : Loc) -> Elim d n + + ||| "generalised composition" [@xtt; §2.1.2] + Comp : (ty : Term d n) -> (p, q : Dim d) -> + (val : Term d n) -> (r : Dim d) -> + (zero, one : DScopeTerm d n) -> (loc : Loc) -> Elim d n + + ||| match on types. needed for b.s. of coercions [@xtt; §2.2] + TypeCase : (ty : Elim d n) -> (ret : Term d n) -> + (arms : TypeCaseArms d n) -> (def : Term d n) -> + (loc : Loc) -> + Elim d n + + ||| term closure/suspended substitution + CloE : WithSubst (Elim d) (Elim d) n -> Elim d n + ||| dimension closure/suspended substitution + DCloE : WithSubst (\d => Elim d n) Dim d -> Elim d n + %name Elim e, f + + public export + CaseEnumArms : TermLike + CaseEnumArms d n = SortedMap TagVal (Term d n) + + public export + TypeCaseArms : TermLike + TypeCaseArms d n = SortedDMap TyConKind (\k => TypeCaseArmBody k d n) + + public export + TypeCaseArm : TermLike + TypeCaseArm d n = (k ** TypeCaseArmBody k d n) + + public export + TypeCaseArmBody : TyConKind -> TermLike + TypeCaseArmBody k = ScopeTermN (arity k) -public export -ScopeTermN : Nat -> TermLike -ScopeTermN s d n = ScopedN s (\n => Term d n) n + public export + ScopeTermN, DScopeTermN : Nat -> TermLike + ScopeTermN s d n = Scoped s (Term d) n + DScopeTermN s d n = Scoped s (\d => Term d n) d -public export -DScopeTermN : Nat -> TermLike -DScopeTermN s d n = ScopedN s (\d => Term d n) d + public export + ScopeTerm, DScopeTerm : TermLike + ScopeTerm = ScopeTermN 1 + DScopeTerm = DScopeTermN 1 -public export -ScopeTerm : TermLike -ScopeTerm = ScopeTermN 1 +mutual + export %hint + EqTerm : Eq (Term d n) + EqTerm = assert_total {a = Eq (Term d n)} deriveEq -public export -DScopeTerm : TermLike -DScopeTerm = DScopeTermN 1 + export %hint + EqElim : Eq (Elim d n) + EqElim = assert_total {a = Eq (Elim d n)} deriveEq +mutual + export %hint + ShowTerm : Show (Term d n) + ShowTerm = assert_total {a = Show (Term d n)} deriveShow -public export -TermT : TermLike -TermT = Thinned2 (\d, n => Term d n) - -public export -ElimT : TermLike -ElimT = Thinned2 (\d, n => Elim d n) - - -public export -DimArg : TermLike -DimArg d n = Dim d - - -data Term where - ||| type of types - TYPE : (l : Universe) -> (loc : Loc) -> Term 0 0 - - ||| function type - Pi : Qty -> Subterms [Term, ScopeTerm] d n -> Loc -> Term d n - ||| function value - Lam : ScopeTerm d n -> Loc -> Term d n - - ||| pair type - Sig : Subterms [Term, ScopeTerm] d n -> Loc -> Term d n - ||| pair value - Pair : Subterms [Term, Term] d n -> Loc -> Term d n - - ||| enum type - Enum : List TagVal -> Loc -> Term 0 0 - ||| enum value - Tag : TagVal -> Loc -> Term 0 0 - - ||| equality type - Eq : Subterms [DScopeTerm, Term, Term] d n -> Loc -> Term d n - ||| equality value - DLam : DScopeTerm d n -> Loc -> Term d n - - ||| natural numbers (temporary until 𝐖 gets added) - Nat : Loc -> Term 0 0 - Zero : Loc -> Term 0 0 - Succ : Term d n -> Loc -> Term 0 0 - - ||| package a value with a quantity - ||| e.g. a value of [ω. A], when unpacked, can be used ω times, - ||| even if the box itself is linear - BOX : Qty -> Term d n -> Loc -> Term d n - Box : Term d n -> Loc -> Term d n - - E : Elim d n -> Term d n - - ||| term closure/suspended substitution - CloT : WithSubst2 Term Elim d n -> Term d n - ||| dimension closure/suspended substitution - DCloT : WithSubst (\d => Term d n) Dim d -> Term d n - -public export -data Elim where - ||| free variable, possibly with a displacement (see @crude, or @mugen for a - ||| more abstract and formalised take) - ||| - ||| e.g. if f : ★₀ → ★₁, then f¹ : ★₁ → ★₂ - F : Name -> Universe -> Loc -> Elim 0 0 - ||| bound variable - B : Loc -> Elim 0 1 - - ||| term application - App : Subterms [Elim, Term] d n -> Loc -> Elim d n - - ||| pair match - ||| - the subterms are, in order: [head, return type, body] - ||| - the quantity is that of the head, and since pairs only have one - ||| constructor, can be 0 - CasePair : Qty -> Subterms [Elim, ScopeTerm, ScopeTermN 2] d n -> - Loc -> Elim d n - - ||| enum match - CaseEnum : Qty -> (arms : List TagVal) -> - Subterms (Elim :: ScopeTerm :: (Term <$ arms)) d n -> - Loc -> Elim d n - - ||| nat match - CaseNat : Qty -> Qty -> - Subterms [Elim, ScopeTerm, Term, ScopeTermN 2] d n -> - Loc -> Elim d n - - ||| box match - CaseBox : Qty -> Subterms [Elim, ScopeTerm, ScopeTerm] d n -> Loc -> Elim d n - - ||| dim application - DApp : Subterms [Elim, DimArg] d n -> Loc -> Elim d n - - ||| type-annotated term - Ann : Subterms [Term, Term] d n -> Loc -> Elim d n - - ||| coerce a value along a type equality, or show its coherence - ||| [@xtt; §2.1.1] - Coe : Subterms [DScopeTerm, DimArg, DimArg, Term] d n -> - Loc -> Elim d n - - ||| "generalised composition" [@xtt; §2.1.2] - Comp : Subterms [Term, DimArg, DimArg, Term, - DimArg, DScopeTerm, DScopeTerm] d n -> - Loc -> Elim d n - - ||| match on types. needed for b.s. of coercions [@xtt; §2.2] - TypeCase : Subterms [Elim, Term, -- head, type - Term, -- ★ - ScopeTermN 2, -- pi - ScopeTermN 2, -- sig - Term, -- enum - ScopeTermN 5, -- eq - Term, -- nat - ScopeTerm -- box - ] d n -> Loc -> Elim d n - - ||| term closure/suspended substitution - CloE : WithSubst2 Elim Elim d n -> Elim d n - ||| dimension closure/suspended substitution - DCloE : WithSubst (\d => Elim d n) Dim d -> Elim d n - - --- this kills the idris ☹ --- export %hint --- EqTerm : Eq (Term d n) - --- export %hint --- EqElim : Eq (Elim d n) - --- EqTerm = deriveEq --- EqElim = deriveEq - - --- mutual --- export %hint --- ShowTerm : Show (Term d n) --- ShowTerm = assert_total {a = Show (Term d n)} deriveShow - --- export %hint --- ShowElim : Show (Elim d n) --- ShowElim = assert_total {a = Show (Elim d n)} deriveShow - --- ||| scope which ignores all its binders --- public export %inline --- SN : {s : Nat} -> f n -> Scoped s f n --- SN = S (replicate s $ BN Unused noLoc) . N - --- ||| scope which uses its binders --- public export %inline --- SY : BContext s -> f (s + n) -> Scoped s f n --- SY ns = S ns . Y - --- public export %inline --- name : Scoped 1 f n -> BindName --- name (S [< x] _) = x - --- public export %inline --- (.name) : Scoped 1 f n -> BindName --- s.name = name s - --- ||| more convenient Pi --- public export %inline --- PiY : (qty : Qty) -> (x : BindName) -> --- (arg : Term d n) -> (res : Term d (S n)) -> (loc : Loc) -> Term d n --- PiY {qty, x, arg, res, loc} = Pi {qty, arg, res = SY [< x] res, loc} - --- ||| more convenient Lam --- public export %inline --- LamY : (x : BindName) -> (body : Term d (S n)) -> (loc : Loc) -> Term d n --- LamY {x, body, loc} = Lam {body = SY [< x] body, loc} - --- public export %inline --- LamN : (body : Term d n) -> (loc : Loc) -> Term d n --- LamN {body, loc} = Lam {body = SN body, loc} - --- ||| non dependent function type --- public export %inline --- Arr : (qty : Qty) -> (arg, res : Term d n) -> (loc : Loc) -> Term d n --- Arr {qty, arg, res, loc} = Pi {qty, arg, res = SN res, loc} - --- ||| more convenient Sig --- public export %inline --- SigY : (x : BindName) -> (fst : Term d n) -> --- (snd : Term d (S n)) -> (loc : Loc) -> Term d n --- SigY {x, fst, snd, loc} = Sig {fst, snd = SY [< x] snd, loc} - --- ||| non dependent pair type --- public export %inline --- And : (fst, snd : Term d n) -> (loc : Loc) -> Term d n --- And {fst, snd, loc} = Sig {fst, snd = SN snd, loc} - --- ||| more convenient Eq --- public export %inline --- EqY : (i : BindName) -> (ty : Term (S d) n) -> --- (l, r : Term d n) -> (loc : Loc) -> Term d n --- EqY {i, ty, l, r, loc} = Eq {ty = SY [< i] ty, l, r, loc} - --- ||| more convenient DLam --- public export %inline --- DLamY : (i : BindName) -> (body : Term (S d) n) -> (loc : Loc) -> Term d n --- DLamY {i, body, loc} = DLam {body = SY [< i] body, loc} - --- public export %inline --- DLamN : (body : Term d n) -> (loc : Loc) -> Term d n --- DLamN {body, loc} = DLam {body = SN body, loc} - --- ||| non dependent equality type --- public export %inline --- Eq0 : (ty, l, r : Term d n) -> (loc : Loc) -> Term d n --- Eq0 {ty, l, r, loc} = Eq {ty = SN ty, l, r, loc} - - -||| same as `F` but as a term -public export %inline -FT : Name -> Universe -> Loc -> Term 0 0 -FT x u loc = E $ F x u loc - -||| abbreviation for a bound variable like `BV 4` instead of -||| `B (VS (VS (VS (VS VZ))))` -public export %inline -BV : (i : Fin n) -> (loc : Loc) -> ElimT d n -BV i loc = Th2 zero (one' i) $ B loc - -||| same as `BV` but as a term -public export %inline -BVT : (i : Fin n) -> (loc : Loc) -> TermT d n -BVT i loc = Th2 zero (one' i) $ E $ B loc - -public export -makeNat : Nat -> Loc -> Term 0 0 -makeNat 0 loc = Zero loc -makeNat (S k) loc = Succ (makeNat k loc) loc + export %hint + ShowElim : Show (Elim d n) + ShowElim = assert_total {a = Show (Elim d n)} deriveShow export Located (Elim d n) where - (F _ _ loc).loc = loc - (B loc).loc = loc - (App _ loc).loc = loc - (CasePair _ _ loc).loc = loc - (CaseEnum _ _ _ loc).loc = loc - (CaseNat _ _ _ loc).loc = loc - (CaseBox _ _ loc).loc = loc - (DApp _ loc).loc = loc - (Ann _ loc).loc = loc - (Coe _ loc).loc = loc - (Comp _ loc).loc = loc - (TypeCase _ loc).loc = loc - (CloE (Sub2 e _)).loc = e.loc - (DCloE (Sub e _)).loc = e.loc + (F _ _ loc).loc = loc + (B _ loc).loc = loc + (App _ _ loc).loc = loc + (CasePair _ _ _ _ loc).loc = loc + (Fst _ loc).loc = loc + (Snd _ loc).loc = loc + (CaseEnum _ _ _ _ loc).loc = loc + (CaseNat _ _ _ _ _ _ loc).loc = loc + (CaseBox _ _ _ _ loc).loc = loc + (DApp _ _ loc).loc = loc + (Ann _ _ loc).loc = loc + (Coe _ _ _ _ loc).loc = loc + (Comp _ _ _ _ _ _ _ loc).loc = loc + (TypeCase _ _ _ _ loc).loc = loc + (CloE (Sub e _)).loc = e.loc + (DCloE (Sub e _)).loc = e.loc export Located (Term d n) where (TYPE _ loc).loc = loc - (Pi _ _ loc).loc = loc + (IOState loc).loc = loc + (Pi _ _ _ loc).loc = loc (Lam _ loc).loc = loc - (Sig _ loc).loc = loc - (Pair _ loc).loc = loc + (Sig _ _ loc).loc = loc + (Pair _ _ loc).loc = loc (Enum _ loc).loc = loc (Tag _ loc).loc = loc - (Eq _ loc).loc = loc + (Eq _ _ _ loc).loc = loc (DLam _ loc).loc = loc - (Nat loc).loc = loc - (Zero loc).loc = loc + (NAT loc).loc = loc + (Nat _ loc).loc = loc + (STRING loc).loc = loc + (Str _ loc).loc = loc (Succ _ loc).loc = loc (BOX _ _ loc).loc = loc (Box _ loc).loc = loc + (Let _ _ _ loc).loc = loc (E e).loc = e.loc - (CloT (Sub2 t _)).loc = t.loc + (CloT (Sub t _)).loc = t.loc (DCloT (Sub t _)).loc = t.loc +export +Located1 f => Located (ScopedBody s f n) where + (Y t).loc = t.loc + (N t).loc = t.loc + +export +Located1 f => Located (Scoped s f n) where + t.loc = t.body.loc + export Relocatable (Elim d n) where - setLoc loc (F x u _) = F x u loc - setLoc loc (B _) = B loc - setLoc loc (App ts _) = App ts loc - setLoc loc (CasePair qty ts _) = CasePair qty ts loc - setLoc loc (CaseEnum qty arms ts _) = CaseEnum qty arms ts loc - setLoc loc (CaseNat qty qtyIH ts _) = CaseNat qty qtyIH ts loc - setLoc loc (CaseBox qty ts _) = CaseBox qty ts loc - setLoc loc (DApp ts _) = DApp ts loc - setLoc loc (Ann ts _) = Ann ts loc - setLoc loc (Coe ts _) = Coe ts loc - setLoc loc (Comp ts _) = Comp ts loc - setLoc loc (TypeCase ts _) = TypeCase ts loc - setLoc loc (CloE (Sub2 term subst)) = CloE $ Sub2 (setLoc loc term) subst - setLoc loc (DCloE (Sub term subst)) = DCloE $ Sub (setLoc loc term) subst + setLoc loc (F x u _) = F x u loc + setLoc loc (B i _) = B i loc + setLoc loc (App fun arg _) = App fun arg loc + setLoc loc (CasePair qty pair ret body _) = + CasePair qty pair ret body loc + setLoc loc (Fst pair _) = Fst pair loc + setLoc loc (Snd pair _) = Fst pair loc + setLoc loc (CaseEnum qty tag ret arms _) = + CaseEnum qty tag ret arms loc + setLoc loc (CaseNat qty qtyIH nat ret zero succ _) = + CaseNat qty qtyIH nat ret zero succ loc + setLoc loc (CaseBox qty box ret body _) = + CaseBox qty box ret body loc + setLoc loc (DApp fun arg _) = + DApp fun arg loc + setLoc loc (Ann tm ty _) = + Ann tm ty loc + setLoc loc (Coe ty p q val _) = + Coe ty p q val loc + setLoc loc (Comp ty p q val r zero one _) = + Comp ty p q val r zero one loc + setLoc loc (TypeCase ty ret arms def _) = + TypeCase ty ret arms def loc + setLoc loc (CloE (Sub term subst)) = + CloE $ Sub (setLoc loc term) subst + setLoc loc (DCloE (Sub term subst)) = + DCloE $ Sub (setLoc loc term) subst export Relocatable (Term d n) where - setLoc loc (TYPE l _) = TYPE l loc - setLoc loc (Pi qty ts _) = Pi qty ts loc - setLoc loc (Lam body _) = Lam body loc - setLoc loc (Sig ts _) = Sig ts loc - setLoc loc (Pair ts _) = Pair ts loc - setLoc loc (Enum cases _) = Enum cases loc - setLoc loc (Tag tag _) = Tag tag loc - setLoc loc (Eq ts _) = Eq ts loc - setLoc loc (DLam body _) = DLam body loc - setLoc loc (Nat _) = Nat loc - setLoc loc (Zero _) = Zero loc - setLoc loc (Succ p _) = Succ p loc - setLoc loc (BOX qty ty _) = BOX qty ty loc - setLoc loc (Box val _) = Box val loc - setLoc loc (E e) = E $ setLoc loc e - setLoc loc (CloT (Sub2 term subst)) = CloT $ Sub2 (setLoc loc term) subst + setLoc loc (TYPE l _) = TYPE l loc + setLoc loc (IOState _) = IOState loc + setLoc loc (Pi qty arg res _) = Pi qty arg res loc + setLoc loc (Lam body _) = Lam body loc + setLoc loc (Sig fst snd _) = Sig fst snd loc + setLoc loc (Pair fst snd _) = Pair fst snd loc + setLoc loc (Enum cases _) = Enum cases loc + setLoc loc (Tag tag _) = Tag tag loc + setLoc loc (Eq ty l r _) = Eq ty l r loc + setLoc loc (DLam body _) = DLam body loc + setLoc loc (NAT _) = NAT loc + setLoc loc (Nat n _) = Nat n loc + setLoc loc (Succ p _) = Succ p loc + setLoc loc (STRING _) = STRING loc + setLoc loc (Str s _) = Str s loc + setLoc loc (BOX qty ty _) = BOX qty ty loc + setLoc loc (Box val _) = Box val loc + setLoc loc (Let qty rhs body _) = Let qty rhs body loc + setLoc loc (E e) = E $ setLoc loc e + setLoc loc (CloT (Sub term subst)) = CloT $ Sub (setLoc loc term) subst setLoc loc (DCloT (Sub term subst)) = DCloT $ Sub (setLoc loc term) subst + +export +Relocatable1 f => Relocatable (ScopedBody s f n) where + setLoc loc (Y body) = Y $ setLoc loc body + setLoc loc (N body) = N $ setLoc loc body + +export +Relocatable1 f => Relocatable (Scoped s f n) where + setLoc loc (S names body) = S (setLoc loc <$> names) (setLoc loc body) + + +||| more convenient Pi +public export %inline +PiY : (qty : Qty) -> (x : BindName) -> + (arg : Term d n) -> (res : Term d (S n)) -> (loc : Loc) -> Term d n +PiY {qty, x, arg, res, loc} = Pi {qty, arg, res = SY [< x] res, loc} + +||| more convenient Lam +public export %inline +LamY : (x : BindName) -> (body : Term d (S n)) -> (loc : Loc) -> Term d n +LamY {x, body, loc} = Lam {body = SY [< x] body, loc} + +public export %inline +LamN : (body : Term d n) -> (loc : Loc) -> Term d n +LamN {body, loc} = Lam {body = SN body, loc} + +||| non dependent function type +public export %inline +Arr : (qty : Qty) -> (arg, res : Term d n) -> (loc : Loc) -> Term d n +Arr {qty, arg, res, loc} = Pi {qty, arg, res = SN res, loc} + +||| more convenient Sig +public export %inline +SigY : (x : BindName) -> (fst : Term d n) -> + (snd : Term d (S n)) -> (loc : Loc) -> Term d n +SigY {x, fst, snd, loc} = Sig {fst, snd = SY [< x] snd, loc} + +||| non dependent pair type +public export %inline +And : (fst, snd : Term d n) -> (loc : Loc) -> Term d n +And {fst, snd, loc} = Sig {fst, snd = SN snd, loc} + +||| more convenient Eq +public export %inline +EqY : (i : BindName) -> (ty : Term (S d) n) -> + (l, r : Term d n) -> (loc : Loc) -> Term d n +EqY {i, ty, l, r, loc} = Eq {ty = SY [< i] ty, l, r, loc} + +||| more convenient DLam +public export %inline +DLamY : (i : BindName) -> (body : Term (S d) n) -> (loc : Loc) -> Term d n +DLamY {i, body, loc} = DLam {body = SY [< i] body, loc} + +public export %inline +DLamN : (body : Term d n) -> (loc : Loc) -> Term d n +DLamN {body, loc} = DLam {body = SN body, loc} + +||| more convenient Coe +public export %inline +CoeY : (i : BindName) -> (ty : Term (S d) n) -> + (p, q : Dim d) -> (val : Term d n) -> (loc : Loc) -> Elim d n +CoeY {i, ty, p, q, val, loc} = Coe {ty = SY [< i] ty, p, q, val, loc} + +||| non dependent equality type +public export %inline +Eq0 : (ty, l, r : Term d n) -> (loc : Loc) -> Term d n +Eq0 {ty, l, r, loc} = Eq {ty = SN ty, l, r, loc} + +||| same as `F` but as a term +public export %inline +FT : Name -> Universe -> Loc -> Term d n +FT x u loc = E $ F x u loc + +||| same as `B` but as a term +public export %inline +BT : Var n -> (loc : Loc) -> Term d n +BT i loc = E $ B i loc + +||| abbreviation for a bound variable like `BV 4` instead of +||| `B (VS (VS (VS (VS VZ))))` +public export %inline +BV : (i : Nat) -> (0 _ : LT i n) => (loc : Loc) -> Elim d n +BV i loc = B (V i) loc + +||| same as `BV` but as a term +public export %inline +BVT : (i : Nat) -> (0 _ : LT i n) => (loc : Loc) -> Term d n +BVT i loc = E $ BV i loc + +public export %inline +Zero : Loc -> Term d n +Zero = Nat 0 + +public export %inline +enum : List TagVal -> Loc -> Term d n +enum ts loc = Enum (SortedSet.fromList ts) loc + +public export %inline +typeCase : Elim d n -> Term d n -> + List (TypeCaseArm d n) -> Term d n -> Loc -> Elim d n +typeCase ty ret arms def loc = TypeCase ty ret (fromList arms) def loc + +public export %inline +typeCase1Y : Elim d n -> Term d n -> + (k : TyConKind) -> BContext (arity k) -> Term d (arity k + n) -> + (loc : Loc) -> + {default (NAT loc) def : Term d n} -> + Elim d n +typeCase1Y ty ret k ns body loc = typeCase ty ret [(k ** SY ns body)] def loc diff --git a/lib/Quox/Syntax/Term/Pretty.idr b/lib/Quox/Syntax/Term/Pretty.idr index a8a4c83..36d9320 100644 --- a/lib/Quox/Syntax/Term/Pretty.idr +++ b/lib/Quox/Syntax/Term/Pretty.idr @@ -18,11 +18,11 @@ prettyUniverse = hl Universe . text . show export -prettyTerm : {opts : _} -> BContext d -> BContext n -> TermT d n -> +prettyTerm : {opts : _} -> BContext d -> BContext n -> Term d n -> Eff Pretty (Doc opts) export -prettyElim : {opts : _} -> BContext d -> BContext n -> ElimT d n -> +prettyElim : {opts : _} -> BContext d -> BContext n -> Elim d n -> Eff Pretty (Doc opts) private @@ -30,14 +30,6 @@ BTelescope : Nat -> Nat -> Type BTelescope = Telescope' BindName -private -subscript : String -> String -subscript = pack . map sub . unpack where - sub : Char -> Char - sub c = case c of - '0' => '₀'; '1' => '₁'; '2' => '₂'; '3' => '₃'; '4' => '₄' - '5' => '₅'; '6' => '₆'; '7' => '₇'; '8' => '₈'; '9' => '₉'; _ => c - private superscript : String -> String superscript = pack . map sup . unpack where @@ -209,8 +201,7 @@ prettyTArg dnames tnames s = private prettyDArg : {opts : _} -> BContext d -> Dim d -> Eff Pretty (Doc opts) -prettyDArg dnames p = - map (text "@" <+>) $ withPrec Arg $ prettyDim dnames p +prettyDArg dnames p = [|atD <+> withPrec Arg (prettyDim dnames p)|] private splitApps : Elim d n -> (Elim d n, List (Either (Dim d) (Term d n))) @@ -238,7 +229,6 @@ prettyDTApps dnames tnames f xs = do private record CaseArm opts d n where constructor MkCaseArm - {0 dinner, ninner : Nat} pat : Doc opts dbinds : BTelescope d dinner -- 🍴 tbinds : BTelescope n ninner @@ -251,12 +241,11 @@ parameters {opts : LayoutOpts} (dnames : BContext d) (tnames : BContext n) body <- withPrec Outer $ assert_total prettyTerm (dnames . dbinds) (tnames . tbinds) body header <- (pat <++>) <$> darrowD - pure $ hsep [header, body] <|> vsep [header, !(indentD body)] + pure $ ifMultiline (header <++> body) (vsep [header, !(indentD body)]) private - prettyCaseBody : List (CaseArm opts d n) -> Eff Pretty (Doc opts) - prettyCaseBody xs = - braces . separateTight !semiD =<< traverse prettyCaseArm xs + prettyCaseBody : List (CaseArm opts d n) -> Eff Pretty (List (Doc opts)) + prettyCaseBody xs = traverse prettyCaseArm xs private prettyCompPat : {opts : _} -> DimConst -> BindName -> Eff Pretty (Doc opts) @@ -283,16 +272,12 @@ layoutComp typq val r arms = do [typq, [val, r <++> lb], map (indent ind) arms, [rb]]) -export -prettyTag : {opts : _} -> String -> Eff Pretty (Doc opts) -prettyTag tag = hl Tag $ text $ "'" ++ quoteTag tag - export prettyEnum : {opts : _} -> List String -> Eff Pretty (Doc opts) prettyEnum cases = tightBraces =<< fillSeparateTight !commaD <$> - traverse (hl Tag . Doc.text . quoteTag) cases + traverse (hl Constant . Doc.text . quoteTag) cases private prettyCaseRet : {opts : _} -> @@ -303,7 +288,7 @@ prettyCaseRet dnames tnames body = withPrec Outer $ case body of S [< x] (Y tm) => do header <- [|prettyTBind x <++> darrowD|] body <- assert_total prettyTerm dnames (tnames :< x) tm - pure $ hsep [header, body] <|> vsep [header, !(indentD body)] + hangDSingle header body private prettyCase_ : {opts : _} -> @@ -311,10 +296,16 @@ prettyCase_ : {opts : _} -> Doc opts -> Elim d n -> ScopeTerm d n -> List (CaseArm opts d n) -> Eff Pretty (Doc opts) prettyCase_ dnames tnames intro head ret body = do - head <- assert_total prettyElim dnames tnames head - ret <- prettyCaseRet dnames tnames ret - body <- prettyCaseBody dnames tnames body - parensIfM Outer $ sep [intro <++> head, !returnD <++> ret, !ofD <++> body] + head <- withPrec Outer $ assert_total prettyElim dnames tnames head + ret <- prettyCaseRet dnames tnames ret + bodys <- prettyCaseBody dnames tnames body + return <- returnD; of_ <- ofD + lb <- hl Delim "{"; rb <- hl Delim "}"; semi <- semiD + ind <- askAt INDENT + parensIfM Outer $ ifMultiline + (hsep [intro, head, return, ret, of_, lb, hseparateTight semi bodys, rb]) + (vsep [intro <++> head, return <++> ret, of_ <++> lb, + indent ind $ vseparateTight semi bodys, rb]) private prettyCase : {opts : _} -> @@ -325,6 +316,62 @@ prettyCase dnames tnames qty head ret body = prettyCase_ dnames tnames ![|caseD <+> prettyQty qty|] head ret body +private +LetBinder : Nat -> Nat -> Type +LetBinder d n = (Qty, BindName, Elim d n) + +private +LetExpr : Nat -> Nat -> Nat -> Type +LetExpr d n n' = (Telescope (LetBinder d) n n', Term d n') + +-- [todo] factor out this and the untyped version somehow +export +splitLet : Telescope (LetBinder d) n n' -> Term d n' -> Exists (LetExpr d n) +splitLet ys t@(Let qty rhs body _) = + splitLet (ys :< (qty, body.name, rhs)) (assert_smaller t body.term) +splitLet ys t = + Evidence _ (ys, t) + +private covering +prettyLets : {opts : LayoutOpts} -> + BContext d -> BContext a -> Telescope (LetBinder d) a b -> + Eff Pretty (SnocList (Doc opts)) +prettyLets dnames xs lets = snd <$> go lets where + peelAnn : forall d, n. Elim d n -> Maybe (Term d n, Term d n) + peelAnn (Ann tm ty _) = Just (tm, ty) + peelAnn e = Nothing + + letHeader : Qty -> BindName -> Eff Pretty (Doc opts) + letHeader qty x = do + lett <- [|letD <+> prettyQty qty|] + x <- prettyTBind x + pure $ lett <++> x + + letBody : forall n. BContext n -> + Doc opts -> Elim d n -> Eff Pretty (Doc opts) + letBody tnames hdr e = case peelAnn e of + Just (tm, ty) => do + ty <- withPrec Outer $ assert_total prettyTerm dnames tnames ty + tm <- withPrec Outer $ assert_total prettyTerm dnames tnames tm + colon <- colonD; eq <- cstD; d <- askAt INDENT + pure $ hangSingle d (hangSingle d hdr (colon <++> ty)) (eq <++> tm) + Nothing => do + e <- withPrec Outer $ assert_total prettyElim dnames tnames e + eq <- cstD; d <- askAt INDENT + inn <- inD + pure $ ifMultiline + (hsep [hdr, eq, e, inn]) + (vsep [hdr, indent d $ hsep [eq, e, inn]]) + + go : forall b. Telescope (LetBinder d) a b -> + Eff Pretty (BContext b, SnocList (Doc opts)) + go [<] = pure (xs, [<]) + go (lets :< (qty, x, rhs)) = do + (ys, docs) <- go lets + doc <- letBody ys !(letHeader qty x) rhs + pure (ys :< x, docs :< doc) + + private isDefaultDir : Dim d -> Dim d -> Bool isDefaultDir (K Zero _) (K One _) = True @@ -342,6 +389,7 @@ prettyTyCasePat : {opts : _} -> (k : TyConKind) -> BContext (arity k) -> Eff Pretty (Doc opts) prettyTyCasePat KTYPE [<] = typeD +prettyTyCasePat KIOState [<] = ioStateD prettyTyCasePat KPi [< a, b] = parens . hsep =<< sequence [prettyTBind a, arrowD, prettyTBind b] prettyTyCasePat KSig [< a, b] = @@ -350,6 +398,7 @@ prettyTyCasePat KEnum [<] = hl Syntax $ text "{}" prettyTyCasePat KEq [< a0, a1, a, l, r] = hsep <$> sequence (eqD :: map prettyTBind [a0, a1, a, l, r]) prettyTyCasePat KNat [<] = natD +prettyTyCasePat KString [<] = stringD prettyTyCasePat KBOX [< a] = bracks =<< prettyTBind a @@ -383,13 +432,13 @@ prettyDisp u = map Just $ hl Universe =<< ifUnicode (text $ superscript $ show u) (text $ "^" ++ show u) -prettyTerm dnames tnames (TYPE l _) = - case !(askAt FLAVOR) of - Unicode => do - star <- hl Syntax "★" - level <- hl Universe $ text $ superscript $ show l - pure $ hcat [star, level] - Ascii => [|hl Syntax "Type" <++> hl Universe (text $ show l)|] +prettyTerm dnames tnames (TYPE l _) = do + type <- hl Syntax . text =<< ifUnicode "★" "Type" + level <- prettyDisp l + pure $ maybe type (type <+>) level + +prettyTerm dnames tnames (IOState _) = + ioStateD prettyTerm dnames tnames (Pi qty arg res _) = parensIfM Outer =<< do @@ -426,35 +475,31 @@ prettyTerm dnames tnames (Enum cases _) = prettyTerm dnames tnames (Tag tag _) = prettyTag tag -prettyTerm dnames tnames (Eq (S _ (N ty)) l r _) = do - l <- withPrec InEq $ prettyTerm dnames tnames l - r <- withPrec InEq $ prettyTerm dnames tnames r - ty <- withPrec InEq $ prettyTerm dnames tnames ty - pure $ sep [l <++> !eqndD, r <++> !colonD, ty] +prettyTerm dnames tnames (Eq (S _ (N ty)) l r _) = + parensIfM Eq =<< do + l <- withPrec InEq $ prettyTerm dnames tnames l + r <- withPrec InEq $ prettyTerm dnames tnames r + ty <- withPrec InEq $ prettyTerm dnames tnames ty + pure $ sep [l <++> !eqndD, r <++> !colonD, ty] -prettyTerm dnames tnames (Eq ty l r _) = do - ty <- prettyTypeLine dnames tnames ty - l <- withPrec Arg $ prettyTerm dnames tnames l - r <- withPrec Arg $ prettyTerm dnames tnames r - prettyAppD !eqD [ty, l, r] +prettyTerm dnames tnames (Eq ty l r _) = + parensIfM App =<< do + ty <- prettyTypeLine dnames tnames ty + l <- withPrec Arg $ prettyTerm dnames tnames l + r <- withPrec Arg $ prettyTerm dnames tnames r + prettyAppD !eqD [ty, l, r] prettyTerm dnames tnames s@(DLam {}) = prettyLambda dnames tnames s -prettyTerm dnames tnames (Nat _) = natD -prettyTerm dnames tnames (Zero _) = hl Syntax "0" -prettyTerm dnames tnames (Succ p _) = do - succD <- succD - let succ : Doc opts -> Eff Pretty (Doc opts) - succ t = prettyAppD succD [t] - toNat : Term d n -> Eff Pretty (Either (Doc opts) Nat) - toNat s with (pushSubsts' s) - _ | Zero _ = pure $ Right 0 - _ | Succ d _ = bitraverse succ (pure . S) =<< - toNat (assert_smaller s d) - _ | s' = map Left . withPrec Arg $ - prettyTerm dnames tnames $ assert_smaller s s' - either succ (hl Syntax . text . show . S) =<< toNat p +prettyTerm dnames tnames (NAT _) = natD +prettyTerm dnames tnames (Nat n _) = hl Syntax $ pshow n +prettyTerm dnames tnames (Succ p _) = + parensIfM App =<< + prettyAppD !succD [!(withPrec Arg $ prettyTerm dnames tnames p)] + +prettyTerm dnames tnames (STRING _) = stringD +prettyTerm dnames tnames (Str s _) = prettyStrLit s prettyTerm dnames tnames (BOX qty ty _) = bracks . hcat =<< @@ -464,7 +509,18 @@ prettyTerm dnames tnames (BOX qty ty _) = prettyTerm dnames tnames (Box val _) = bracks =<< withPrec Outer (prettyTerm dnames tnames val) -prettyTerm dnames tnames (E e) = prettyElim dnames tnames e +prettyTerm dnames tnames (Let qty rhs body _) = do + let Evidence _ (lets, body) = splitLet [< (qty, body.name, rhs)] body.term + heads <- prettyLets dnames tnames lets + let tnames = tnames . map (\(_, x, _) => x) lets + body <- withPrec Outer $ assert_total prettyTerm dnames tnames body + let lines = toList $ heads :< body + pure $ ifMultiline (hsep lines) (vsep lines) + +prettyTerm dnames tnames (E e) = + case the (Elim d n) (pushSubsts' e) of + Ann tm _ _ => assert_total prettyTerm dnames tnames tm + _ => assert_total prettyElim dnames tnames e prettyTerm dnames tnames t0@(CloT (Sub t ph)) = prettyTerm dnames tnames $ assert_smaller t0 $ pushSubstsWith' id ph t @@ -491,6 +547,16 @@ prettyElim dnames tnames (CasePair qty pair ret body _) = do prettyCase dnames tnames qty pair ret [MkCaseArm pat [<] [< x, y] body.term] +prettyElim dnames tnames (Fst pair _) = + parensIfM App =<< do + pair <- prettyTArg dnames tnames (E pair) + prettyAppD !fstD [pair] + +prettyElim dnames tnames (Snd pair _) = + parensIfM App =<< do + pair <- prettyTArg dnames tnames (E pair) + prettyAppD !sndD [pair] + prettyElim dnames tnames (CaseEnum qty tag ret arms _) = do arms <- for (SortedMap.toList arms) $ \(tag, body) => pure $ MkCaseArm !(prettyTag tag) [<] [<] body @@ -501,7 +567,7 @@ prettyElim dnames tnames (CaseNat qty qtyIH nat ret zero succ _) = do [< p, ih] = succ.names spat0 <- [|succD <++> prettyTBind p|] ihpat0 <- map hcat $ sequence [prettyQty qtyIH, dotD, prettyTBind ih] - spat <- if ih.name == Unused + spat <- if ih.val == Unused then pure spat0 else pure $ hsep [spat0 <+> !commaD, ihpat0] let sarm = MkCaseArm spat [<] [< p, ih] succ.term @@ -517,35 +583,31 @@ prettyElim dnames tnames e@(DApp {}) = prettyDTApps dnames tnames f xs prettyElim dnames tnames (Ann tm ty _) = - parensIfM Outer =<< - hangDSingle !(withPrec AnnL [|prettyTerm dnames tnames tm <++> annD|]) - !(withPrec Outer (prettyTerm dnames tnames ty)) + case the (Term d n) (pushSubsts' tm) of + E e => assert_total prettyElim dnames tnames e + _ => do + tm <- withPrec AnnL $ assert_total prettyTerm dnames tnames tm + ty <- withPrec Outer $ assert_total prettyTerm dnames tnames ty + parensIfM Outer =<< hangDSingle (tm <++> !annD) ty prettyElim dnames tnames (Coe ty p q val _) = - parensIfM App =<< - if isDefaultDir p q then do - ty <- prettyTypeLine dnames tnames ty - val <- prettyTArg dnames tnames val - prettyAppD !coeD [ty, val] - else do - ty <- prettyTypeLine dnames tnames ty - p <- prettyDArg dnames p - q <- prettyDArg dnames q - val <- prettyTArg dnames tnames val - prettyAppD !coeD [ty, sep [p, q], val] + parensIfM App =<< do + ty <- prettyTypeLine dnames tnames ty + p <- prettyDArg dnames p + q <- prettyDArg dnames q + val <- prettyTArg dnames tnames val + prettyAppD !coeD [ty, sep [p, q], val] prettyElim dnames tnames e@(Comp ty p q val r zero one _) = parensIfM App =<< do - ty <- prettyTypeLine dnames tnames $ assert_smaller e $ SN ty + ty <- assert_total $ prettyTypeLine dnames tnames $ SN ty pq <- sep <$> sequence [prettyDArg dnames p, prettyDArg dnames q] val <- prettyTArg dnames tnames val r <- prettyDArg dnames r arm0 <- [|prettyCompArm dnames tnames Zero zero <+> semiD|] arm1 <- prettyCompArm dnames tnames One one ind <- askAt INDENT - if isDefaultDir p q - then layoutComp [ty] val r [arm0, arm1] - else layoutComp [ty, pq] val r [arm0, arm1] + layoutComp [ty, pq] val r [arm0, arm1] prettyElim dnames tnames (TypeCase ty ret arms def _) = do arms <- for (toList arms) $ \(k ** body) => do diff --git a/lib/Quox/Syntax/Term/Subst.idr b/lib/Quox/Syntax/Term/Subst.idr index 8d2b8b1..67927c3 100644 --- a/lib/Quox/Syntax/Term/Subst.idr +++ b/lib/Quox/Syntax/Term/Subst.idr @@ -2,462 +2,383 @@ module Quox.Syntax.Term.Subst import Quox.No import Quox.Syntax.Term.Base -import Quox.Syntax.Subst - import Data.SnocVect -import Data.Singleton %default total +namespace CanDSubst + public export + interface CanDSubst (0 tm : TermLike) where + (//) : tm d1 n -> Lazy (DSubst d1 d2) -> tm d2 n -infixl 8 /// +||| does the minimal reasonable work: +||| - deletes the closure around an atomic constant like `TYPE` +||| - deletes an identity substitution +||| - composes (lazily) with an existing top-level dim-closure +||| - otherwise, wraps in a new closure +export +CanDSubst Term where + s // Shift SZ = s + TYPE l loc // _ = TYPE l loc + DCloT (Sub s ph) // th = DCloT $ Sub s $ ph . th + s // th = DCloT $ Sub s th -parameters {0 f : Nat -> Nat -> Type} - private - th0 : f 0 0 -> Thinned2 f d n - th0 = Th2 zero zero +private +subDArgs : Elim d1 n -> DSubst d1 d2 -> Elim d2 n +subDArgs (DApp f d loc) th = DApp (subDArgs f th) (d // th) loc +subDArgs e th = DCloE $ Sub e th - private - th1 : {d, n : Nat} -> f d n -> Thinned2 f d n - th1 = Th2 id' id' +||| does the minimal reasonable work: +||| - deletes the closure around a term variable +||| - deletes an identity substitution +||| - composes (lazily) with an existing top-level dim-closure +||| - immediately looks up bound variables in a +||| top-level sequence of dimension applications +||| - otherwise, wraps in a new closure +export +CanDSubst Elim where + e // Shift SZ = e + F x u loc // _ = F x u loc + B i loc // _ = B i loc + e@(DApp {}) // th = subDArgs e th + DCloE (Sub e ph) // th = DCloE $ Sub e $ ph . th + e // th = DCloE $ Sub e th -private dsubTerm : {d1, d2, n : Nat} -> Term d1 n -> DSubst d1 d2 -> TermT d2 n -private dsubElim : {d1, d2, n : Nat} -> Elim d1 n -> DSubst d1 d2 -> ElimT d2 n +namespace DSubst.ScopeTermN + export %inline + (//) : ScopeTermN s d1 n -> Lazy (DSubst d1 d2) -> + ScopeTermN s d2 n + S ns (Y body) // th = S ns $ Y $ body // th + S ns (N body) // th = S ns $ N $ body // th -dsubTerm (TYPE l loc) th = th0 $ TYPE l loc -dsubTerm (Enum strs loc) th = th0 $ Enum strs loc -dsubTerm (Tag str loc) th = th0 $ Tag str loc -dsubTerm (Nat loc) th = th0 $ Nat loc -dsubTerm (Zero loc) th = th0 $ Zero loc -dsubTerm (E e) th = - let Th2 dope tope e' = dsubElim e th in - Th2 dope tope $ E e' -dsubTerm (DCloT (Sub t ph)) th = th1 $ DCloT $ Sub t $ ph . th -dsubTerm t th = th1 $ DCloT $ Sub t th +namespace DSubst.DScopeTermN + export %inline + (//) : {s : Nat} -> + DScopeTermN s d1 n -> Lazy (DSubst d1 d2) -> + DScopeTermN s d2 n + S ns (Y body) // th = S ns $ Y $ body // pushN s (locs $ toList' ns) th + S ns (N body) // th = S ns $ N $ body // th -dsubElim (F x l loc) th = th0 $ F x l loc -dsubElim (B loc) th = Th2 zero id' $ B loc -dsubElim (DCloE (Sub e ph)) th = th1 $ DCloE $ Sub e $ ph . th -dsubElim e th = th1 $ DCloE $ Sub e th -mutual - namespace Term - export - (///) : {d1, d2, n : Nat} -> TermT d1 n -> DSubst d1 d2 -> TermT d2 n - Th2 dope tope term /// th = - let Val tscope = appOpe n tope; Val dscope = appOpe d1 dope - Th2 dope' tope' term' = dsubTerm term (select dope th) - in - Th2 dope' (tope . tope') term' +export %inline FromVar (Elim d) where fromVarLoc = B +export %inline FromVar (Term d) where fromVarLoc = E .: fromVarLoc - namespace Elim - export - (///) : {d1, d2, n : Nat} -> ElimT d1 n -> DSubst d1 d2 -> ElimT d2 n - Th2 dope tope elim /// th = - let Val tscope = appOpe n tope; Val dscope = appOpe d1 dope - Th2 dope' tope' elim' = dsubElim elim (select dope th) - in - Th2 dope' (tope . tope') elim' + +||| does the minimal reasonable work: +||| - deletes the closure around a *free* name +||| - deletes an identity substitution +||| - composes (lazily) with an existing top-level closure +||| - immediately looks up a bound variable +||| - otherwise, wraps in a new closure +export +CanSubstSelf (Elim d) where + F x u loc // _ = F x u loc + B i loc // th = getLoc th i loc + CloE (Sub e ph) // th = assert_total CloE $ Sub e $ ph . th + e // th = case force th of + Shift SZ => e + th => CloE $ Sub e th + +namespace CanTSubst + public export + interface CanTSubst (0 tm : TermLike) where + (//) : tm d n1 -> Lazy (TSubst d n1 n2) -> tm d n2 + +||| does the minimal reasonable work: +||| - deletes the closure around an atomic constant like `TYPE` +||| - deletes an identity substitution +||| - composes (lazily) with an existing top-level closure +||| - goes inside `E` in case it is a simple variable or something +||| - otherwise, wraps in a new closure +export +CanTSubst Term where + TYPE l loc // _ = TYPE l loc + E e // th = E $ e // th + CloT (Sub s ph) // th = CloT $ Sub s $ ph . th + s // th = case force th of + Shift SZ => s + th => CloT $ Sub s th + +namespace ScopeTermN + export %inline + (//) : {s : Nat} -> + ScopeTermN s d n1 -> Lazy (TSubst d n1 n2) -> + ScopeTermN s d n2 + S ns (Y body) // th = S ns $ Y $ body // pushN s (locs $ toList' ns) th + S ns (N body) // th = S ns $ N $ body // th + +namespace DScopeTermN + export %inline + (//) : {s : Nat} -> + DScopeTermN s d n1 -> Lazy (TSubst d n1 n2) -> DScopeTermN s d n2 + S ns (Y body) // th = S ns $ Y $ body // map (// shift s) th + S ns (N body) // th = S ns $ N $ body // th + +export %inline CanShift (Term d) where s // by = s // Shift by +export %inline CanShift (Elim d) where e // by = e // Shift by + +export %inline CanShift (flip Term n) where s // by = s // Shift by +export %inline CanShift (flip Elim n) where e // by = e // Shift by + +export %inline +{s : Nat} -> CanShift (ScopeTermN s d) where + b // by = b // Shift by + + +export %inline +comp : DSubst d1 d2 -> TSubst d1 n1 mid -> TSubst d2 mid n2 -> TSubst d2 n1 n2 +comp th ps ph = map (// th) ps . ph + + +public export %inline +dweakT : (by : Nat) -> Term d n -> Term (by + d) n +dweakT by t = t // shift by + +public export %inline +dweakS : (by : Nat) -> ScopeTermN s d n -> ScopeTermN s (by + d) n +dweakS by t = t // shift by + +public export %inline +dweakDS : {s : Nat} -> (by : Nat) -> + DScopeTermN s d n -> DScopeTermN s (by + d) n +dweakDS by t = t // shift by + +public export %inline +dweakE : (by : Nat) -> Elim d n -> Elim (by + d) n +dweakE by t = t // shift by + + +public export %inline +weakT : (by : Nat) -> Term d n -> Term d (by + n) +weakT by t = t // shift by + +public export %inline +weakS : {s : Nat} -> (by : Nat) -> ScopeTermN s d n -> ScopeTermN s d (by + n) +weakS by t = t // shift by + +public export %inline +weakDS : {s : Nat} -> (by : Nat) -> + DScopeTermN s d n -> DScopeTermN s d (by + n) +weakDS by t = t // shift by + +public export %inline +weakE : (by : Nat) -> Elim d n -> Elim d (by + n) +weakE by t = t // shift by + + +parameters {auto _ : CanShift f} {s : Nat} + export %inline + getTerm : ScopedBody s f n -> f (s + n) + getTerm (Y b) = b + getTerm (N b) = b // fromNat s + + export %inline + (.term) : Scoped s f n -> f (s + n) + t.term = getTerm t.body + +namespace ScopeTermBody + export %inline + getTerm0 : ScopedBody 0 f n -> f n + getTerm0 (Y b) = b + getTerm0 (N b) = b + +namespace ScopeTermN + export %inline + (.term0) : Scoped 0 f n -> f n + t.term0 = getTerm0 t.body + +export %inline +subN : ScopeTermN s d n -> SnocVect s (Elim d n) -> Term d n +subN (S _ (Y body)) es = body // fromSnocVect es +subN (S _ (N body)) _ = body + +export %inline +sub1 : ScopeTerm d n -> Elim d n -> Term d n +sub1 t e = subN t [< e] + +export %inline +dsubN : DScopeTermN s d n -> SnocVect s (Dim d) -> Term d n +dsubN (S _ (Y body)) ps = body // fromSnocVect ps +dsubN (S _ (N body)) _ = body + +export %inline +dsub1 : DScopeTerm d n -> Dim d -> Term d n +dsub1 t p = dsubN t [< p] + + +public export %inline +(.zero) : (body : DScopeTerm d n) -> {default body.loc loc : Loc} -> Term d n +body.zero = dsub1 body $ K Zero loc + +public export %inline +(.one) : (body : DScopeTerm d n) -> {default body.loc loc : Loc} -> Term d n +body.one = dsub1 body $ K One loc public export -TSubst : Nat -> Nat -> Nat -> Type -TSubst = Subst2 Elim +0 CloTest : TermLike -> Type +CloTest tm = forall d, n. tm d n -> Bool +public export +interface PushSubsts (0 tm : TermLike) (0 isClo : CloTest tm) | tm where + pushSubstsWith : DSubst d1 d2 -> TSubst d2 n1 n2 -> + tm d1 n1 -> Subset (tm d2 n2) (No . isClo) -public export %inline FromVar (Elim 0) where var = B +public export +0 NotClo : {isClo : CloTest tm} -> PushSubsts tm isClo => Pred (tm d n) +NotClo = No . isClo -export CanSubstSelf2 Elim +public export +0 NonClo : (tm : TermLike) -> {isClo : CloTest tm} -> + PushSubsts tm isClo => TermLike +NonClo tm d n = Subset (tm d n) NotClo -private subTerm : {d, n1, n2 : Nat} -> Term d n1 -> TSubst d n1 n2 -> TermT d n2 -private subElim : {d, n1, n2 : Nat} -> Elim d n1 -> TSubst d n1 n2 -> ElimT d n2 +public export %inline +nclo : {isClo : CloTest tm} -> (0 _ : PushSubsts tm isClo) => + (t : tm d n) -> (0 nc : NotClo t) => NonClo tm d n +nclo t = Element t nc -subTerm (TYPE l loc) th = th0 $ TYPE l loc -subTerm (Nat loc) th = th0 $ Nat loc -subTerm (Zero loc) th = th0 $ Zero loc -subTerm (E e) th = let Th2 dope tope e' = subElim e th in Th2 dope tope $ E e' -subTerm (CloT (Sub2 s ph)) th = th1 $ CloT $ Sub2 s $ ph .% th -subTerm s th = th1 $ CloT $ Sub2 s th +parameters {0 isClo : CloTest tm} {auto _ : PushSubsts tm isClo} + ||| if the input term has any top-level closures, push them under one layer of + ||| syntax + export %inline + pushSubsts : tm d n -> NonClo tm d n + pushSubsts s = pushSubstsWith id id s -subElim (F x k loc) th = th0 $ F x k loc -subElim (B loc) [< e] = e -subElim (CloE (Sub2 e ph)) th = th1 $ CloE $ Sub2 e $ ph .% th -subElim e th = th1 $ CloE $ Sub2 e th + export %inline + pushSubstsWith' : DSubst d1 d2 -> TSubst d2 n1 n2 -> tm d1 n1 -> tm d2 n2 + pushSubstsWith' th ph x = fst $ pushSubstsWith th ph x + export %inline + pushSubsts' : tm d n -> tm d n + pushSubsts' s = fst $ pushSubsts s +mutual + public export + isCloT : CloTest Term + isCloT (CloT {}) = True + isCloT (DCloT {}) = True + isCloT (E e) = isCloE e + isCloT _ = False + + public export + isCloE : CloTest Elim + isCloE (CloE {}) = True + isCloE (DCloE {}) = True + isCloE _ = False export -CanSubstSelf2 Elim where - Th2 dope tope elim // th = - let - th' = select tope th - in - ?sube2 +PushSubsts Elim Subst.isCloE where + pushSubstsWith th ph (F x u loc) = + nclo $ F x u loc + pushSubstsWith th ph (B i loc) = + let res = getLoc ph i loc in + case nchoose $ isCloE res of + Left yes => assert_total pushSubsts res + Right no => Element res no + pushSubstsWith th ph (App f s loc) = + nclo $ App (f // th // ph) (s // th // ph) loc + pushSubstsWith th ph (CasePair pi p r b loc) = + nclo $ CasePair pi (p // th // ph) (r // th // ph) (b // th // ph) loc + pushSubstsWith th ph (Fst pair loc) = + nclo $ Fst (pair // th // ph) loc + pushSubstsWith th ph (Snd pair loc) = + nclo $ Snd (pair // th // ph) loc + pushSubstsWith th ph (CaseEnum pi t r arms loc) = + nclo $ CaseEnum pi (t // th // ph) (r // th // ph) + (map (\b => b // th // ph) arms) loc + pushSubstsWith th ph (CaseNat pi pi' n r z s loc) = + nclo $ CaseNat pi pi' (n // th // ph) (r // th // ph) + (z // th // ph) (s // th // ph) loc + pushSubstsWith th ph (CaseBox pi x r b loc) = + nclo $ CaseBox pi (x // th // ph) (r // th // ph) (b // th // ph) loc + pushSubstsWith th ph (DApp f d loc) = + nclo $ DApp (f // th // ph) (d // th) loc + pushSubstsWith th ph (Ann s a loc) = + nclo $ Ann (s // th // ph) (a // th // ph) loc + pushSubstsWith th ph (Coe ty p q val loc) = + nclo $ Coe (ty // th // ph) (p // th) (q // th) (val // th // ph) loc + pushSubstsWith th ph (Comp ty p q val r zero one loc) = + nclo $ Comp (ty // th // ph) (p // th) (q // th) + (val // th // ph) (r // th) + (zero // th // ph) (one // th // ph) loc + pushSubstsWith th ph (TypeCase ty ret arms def loc) = + nclo $ TypeCase (ty // th // ph) (ret // th // ph) + (map (\t => t // th // ph) arms) (def // th // ph) loc + pushSubstsWith th ph (CloE (Sub e ps)) = + pushSubstsWith th (comp th ps ph) e + pushSubstsWith th ph (DCloE (Sub e ps)) = + pushSubstsWith (ps . th) ph e --- namespace CanDSubst --- public export --- interface CanDSubst (0 tm : TermLike) where --- (//) : {d1 : Nat} -> Thinned2 tm d1 n -> Lazy (DSubst d1 d2) -> --- Thinned2 tm d2 n - --- ||| does the minimal reasonable work: --- ||| - deletes the closure around an atomic constant like `TYPE` --- ||| - deletes an identity substitution --- ||| - composes (lazily) with an existing top-level dim-closure --- ||| - otherwise, wraps in a new closure --- export --- CanDSubst Term where --- Th2 _ _ (TYPE l loc) // _ = Th2 zero zero $ TYPE l loc --- Th2 i j (DCloT (Sub s ph)) // th = --- Th2 ?i' j $ DCloT $ Sub s $ ph . ?th' --- Th2 i j s // th = ?sdf -- DCloT $ Sub s th - --- -- private --- -- subDArgs : Elim d1 n -> DSubst d1 d2 -> Elim d2 n --- -- subDArgs (DApp f d loc) th = DApp (subDArgs f th) (d // th) loc --- -- subDArgs e th = DCloE $ Sub e th - --- -- ||| does the minimal reasonable work: --- -- ||| - deletes the closure around a term variable --- -- ||| - deletes an identity substitution --- -- ||| - composes (lazily) with an existing top-level dim-closure --- -- ||| - immediately looks up bound variables in a --- -- ||| top-level sequence of dimension applications --- -- ||| - otherwise, wraps in a new closure --- -- export --- -- CanDSubst Elim where --- -- e // Shift SZ = e --- -- F x u loc // _ = F x u loc --- -- B i loc // _ = B i loc --- -- e@(DApp {}) // th = subDArgs e th --- -- DCloE (Sub e ph) // th = DCloE $ Sub e $ ph . th --- -- e // th = DCloE $ Sub e th - --- -- namespace DSubst.ScopeTermN --- -- export %inline --- -- (//) : ScopeTermN s d1 n -> Lazy (DSubst d1 d2) -> --- -- ScopeTermN s d2 n --- -- S ns (Y body) // th = S ns $ Y $ body // th --- -- S ns (N body) // th = S ns $ N $ body // th - --- -- namespace DSubst.DScopeTermN --- -- export %inline --- -- (//) : {s : Nat} -> --- -- DScopeTermN s d1 n -> Lazy (DSubst d1 d2) -> --- -- DScopeTermN s d2 n --- -- S ns (Y body) // th = S ns $ Y $ body // pushN s th --- -- S ns (N body) // th = S ns $ N $ body // th +export +PushSubsts Term Subst.isCloT where + pushSubstsWith th ph (TYPE l loc) = + nclo $ TYPE l loc + pushSubstsWith th ph (IOState loc) = + nclo $ IOState loc + pushSubstsWith th ph (Pi qty a body loc) = + nclo $ Pi qty (a // th // ph) (body // th // ph) loc + pushSubstsWith th ph (Lam body loc) = + nclo $ Lam (body // th // ph) loc + pushSubstsWith th ph (Sig a b loc) = + nclo $ Sig (a // th // ph) (b // th // ph) loc + pushSubstsWith th ph (Pair s t loc) = + nclo $ Pair (s // th // ph) (t // th // ph) loc + pushSubstsWith th ph (Enum tags loc) = + nclo $ Enum tags loc + pushSubstsWith th ph (Tag tag loc) = + nclo $ Tag tag loc + pushSubstsWith th ph (Eq ty l r loc) = + nclo $ Eq (ty // th // ph) (l // th // ph) (r // th // ph) loc + pushSubstsWith th ph (DLam body loc) = + nclo $ DLam (body // th // ph) loc + pushSubstsWith _ _ (NAT loc) = + nclo $ NAT loc + pushSubstsWith _ _ (Nat n loc) = + nclo $ Nat n loc + pushSubstsWith th ph (Succ n loc) = + nclo $ Succ (n // th // ph) loc + pushSubstsWith _ _ (STRING loc) = + nclo $ STRING loc + pushSubstsWith _ _ (Str s loc) = + nclo $ Str s loc + pushSubstsWith th ph (BOX pi ty loc) = + nclo $ BOX pi (ty // th // ph) loc + pushSubstsWith th ph (Box val loc) = + nclo $ Box (val // th // ph) loc + pushSubstsWith th ph (E e) = + let Element e nc = pushSubstsWith th ph e in nclo $ E e + pushSubstsWith th ph (Let qty rhs body loc) = + nclo $ Let qty (rhs // th // ph) (body // th // ph) loc + pushSubstsWith th ph (CloT (Sub s ps)) = + pushSubstsWith th (comp th ps ph) s + pushSubstsWith th ph (DCloT (Sub s ps)) = + pushSubstsWith (ps . th) ph s --- -- export %inline FromVar (Elim d) where fromVarLoc = B --- -- export %inline FromVar (Term d) where fromVarLoc = E .: fromVar +||| heterogeneous comp, in terms of Comp and Coe +public export %inline +CompH' : (ty : DScopeTerm d n) -> (p, q : Dim d) -> (val : Term d n) -> + (r : Dim d) -> (zero, one : DScopeTerm d n) -> (loc : Loc) -> Elim d n +CompH' {ty, p, q, val, r, zero, one, loc} = + let ty' = SY ty.names $ ty.term // (B VZ ty.name.loc ::: shift 2) in + Comp { + ty = dsub1 ty q, p, q, + val = E $ Coe ty p q val val.loc, r, + zero = SY zero.names $ E $ + Coe ty' (B VZ zero.loc) (weakD 1 q) zero.term zero.loc, + one = SY one.names $ E $ + Coe ty' (B VZ one.loc) (weakD 1 q) one.term one.loc, + loc + } - --- -- ||| does the minimal reasonable work: --- -- ||| - deletes the closure around a *free* name --- -- ||| - deletes an identity substitution --- -- ||| - composes (lazily) with an existing top-level closure --- -- ||| - immediately looks up a bound variable --- -- ||| - otherwise, wraps in a new closure --- -- export --- -- CanSubstSelf (Elim d) where --- -- F x u loc // _ = F x u loc --- -- B i loc // th = getLoc th i loc --- -- CloE (Sub e ph) // th = assert_total CloE $ Sub e $ ph . th --- -- e // th = case force th of --- -- Shift SZ => e --- -- th => CloE $ Sub e th - --- -- namespace CanTSubst --- -- public export --- -- interface CanTSubst (0 tm : TermLike) where --- -- (//) : tm d n1 -> Lazy (TSubst d n1 n2) -> tm d n2 - --- -- ||| does the minimal reasonable work: --- -- ||| - deletes the closure around an atomic constant like `TYPE` --- -- ||| - deletes an identity substitution --- -- ||| - composes (lazily) with an existing top-level closure --- -- ||| - goes inside `E` in case it is a simple variable or something --- -- ||| - otherwise, wraps in a new closure --- -- export --- -- CanTSubst Term where --- -- TYPE l loc // _ = TYPE l loc --- -- E e // th = E $ e // th --- -- CloT (Sub s ph) // th = CloT $ Sub s $ ph . th --- -- s // th = case force th of --- -- Shift SZ => s --- -- th => CloT $ Sub s th - --- -- namespace ScopeTermN --- -- export %inline --- -- (//) : {s : Nat} -> --- -- ScopeTermN s d n1 -> Lazy (TSubst d n1 n2) -> --- -- ScopeTermN s d n2 --- -- S ns (Y body) // th = S ns $ Y $ body // pushN s th --- -- S ns (N body) // th = S ns $ N $ body // th - --- -- namespace DScopeTermN --- -- export %inline --- -- (//) : {s : Nat} -> --- -- DScopeTermN s d n1 -> Lazy (TSubst d n1 n2) -> DScopeTermN s d n2 --- -- S ns (Y body) // th = S ns $ Y $ body // map (// shift s) th --- -- S ns (N body) // th = S ns $ N $ body // th - --- -- export %inline CanShift (Term d) where s // by = s // Shift by --- -- export %inline CanShift (Elim d) where e // by = e // Shift by - --- -- export %inline --- -- {s : Nat} -> CanShift (ScopeTermN s d) where --- -- b // by = b // Shift by - - --- -- export %inline --- -- comp : DSubst d1 d2 -> TSubst d1 n1 mid -> TSubst d2 mid n2 -> TSubst d2 n1 n2 --- -- comp th ps ph = map (// th) ps . ph - - --- -- public export %inline --- -- dweakT : (by : Nat) -> Term d n -> Term (by + d) n --- -- dweakT by t = t // shift by - --- -- public export %inline --- -- dweakE : (by : Nat) -> Elim d n -> Elim (by + d) n --- -- dweakE by t = t // shift by - - --- -- public export %inline --- -- weakT : (by : Nat) -> Term d n -> Term d (by + n) --- -- weakT by t = t // shift by - --- -- public export %inline --- -- weakE : (by : Nat) -> Elim d n -> Elim d (by + n) --- -- weakE by t = t // shift by - - --- -- parameters {s : Nat} --- -- namespace ScopeTermBody --- -- export %inline --- -- (.term) : ScopedBody s (Term d) n -> Term d (s + n) --- -- (Y b).term = b --- -- (N b).term = weakT s b - --- -- namespace ScopeTermN --- -- export %inline --- -- (.term) : ScopeTermN s d n -> Term d (s + n) --- -- t.term = t.body.term - --- -- namespace DScopeTermBody --- -- export %inline --- -- (.term) : ScopedBody s (\d => Term d n) d -> Term (s + d) n --- -- (Y b).term = b --- -- (N b).term = dweakT s b - --- -- namespace DScopeTermN --- -- export %inline --- -- (.term) : DScopeTermN s d n -> Term (s + d) n --- -- t.term = t.body.term - - --- -- export %inline --- -- subN : ScopeTermN s d n -> SnocVect s (Elim d n) -> Term d n --- -- subN (S _ (Y body)) es = body // fromSnocVect es --- -- subN (S _ (N body)) _ = body - --- -- export %inline --- -- sub1 : ScopeTerm d n -> Elim d n -> Term d n --- -- sub1 t e = subN t [< e] - --- -- export %inline --- -- dsubN : DScopeTermN s d n -> SnocVect s (Dim d) -> Term d n --- -- dsubN (S _ (Y body)) ps = body // fromSnocVect ps --- -- dsubN (S _ (N body)) _ = body - --- -- export %inline --- -- dsub1 : DScopeTerm d n -> Dim d -> Term d n --- -- dsub1 t p = dsubN t [< p] - - --- -- public export %inline --- -- (.zero) : DScopeTerm d n -> {default noLoc loc : Loc} -> Term d n --- -- body.zero = dsub1 body $ K Zero loc - --- -- public export %inline --- -- (.one) : DScopeTerm d n -> {default noLoc loc : Loc} -> Term d n --- -- body.one = dsub1 body $ K One loc - - --- -- public export --- -- 0 CloTest : TermLike -> Type --- -- CloTest tm = forall d, n. tm d n -> Bool - --- -- interface PushSubsts (0 tm : TermLike) (0 isClo : CloTest tm) | tm where --- -- pushSubstsWith : DSubst d1 d2 -> TSubst d2 n1 n2 -> --- -- tm d1 n1 -> Subset (tm d2 n2) (No . isClo) - --- -- public export --- -- 0 NotClo : {isClo : CloTest tm} -> PushSubsts tm isClo => Pred (tm d n) --- -- NotClo = No . isClo - --- -- public export --- -- 0 NonClo : (tm : TermLike) -> {isClo : CloTest tm} -> --- -- PushSubsts tm isClo => TermLike --- -- NonClo tm d n = Subset (tm d n) NotClo - --- -- public export %inline --- -- nclo : {isClo : CloTest tm} -> (0 _ : PushSubsts tm isClo) => --- -- (t : tm d n) -> (0 nc : NotClo t) => NonClo tm d n --- -- nclo t = Element t nc - --- -- parameters {0 isClo : CloTest tm} {auto _ : PushSubsts tm isClo} --- -- ||| if the input term has any top-level closures, push them under one layer of --- -- ||| syntax --- -- export %inline --- -- pushSubsts : tm d n -> NonClo tm d n --- -- pushSubsts s = pushSubstsWith id id s - --- -- export %inline --- -- pushSubstsWith' : DSubst d1 d2 -> TSubst d2 n1 n2 -> tm d1 n1 -> tm d2 n2 --- -- pushSubstsWith' th ph x = fst $ pushSubstsWith th ph x - --- -- export %inline --- -- pushSubsts' : tm d n -> tm d n --- -- pushSubsts' s = fst $ pushSubsts s - --- -- mutual --- -- public export --- -- isCloT : CloTest Term --- -- isCloT (CloT {}) = True --- -- isCloT (DCloT {}) = True --- -- isCloT (E e) = isCloE e --- -- isCloT _ = False - --- -- public export --- -- isCloE : CloTest Elim --- -- isCloE (CloE {}) = True --- -- isCloE (DCloE {}) = True --- -- isCloE _ = False - --- -- mutual --- -- export --- -- PushSubsts Term Subst.isCloT where --- -- pushSubstsWith th ph (TYPE l loc) = --- -- nclo $ TYPE l loc --- -- pushSubstsWith th ph (Pi qty a body loc) = --- -- nclo $ Pi qty (a // th // ph) (body // th // ph) loc --- -- pushSubstsWith th ph (Lam body loc) = --- -- nclo $ Lam (body // th // ph) loc --- -- pushSubstsWith th ph (Sig a b loc) = --- -- nclo $ Sig (a // th // ph) (b // th // ph) loc --- -- pushSubstsWith th ph (Pair s t loc) = --- -- nclo $ Pair (s // th // ph) (t // th // ph) loc --- -- pushSubstsWith th ph (Enum tags loc) = --- -- nclo $ Enum tags loc --- -- pushSubstsWith th ph (Tag tag loc) = --- -- nclo $ Tag tag loc --- -- pushSubstsWith th ph (Eq ty l r loc) = --- -- nclo $ Eq (ty // th // ph) (l // th // ph) (r // th // ph) loc --- -- pushSubstsWith th ph (DLam body loc) = --- -- nclo $ DLam (body // th // ph) loc --- -- pushSubstsWith _ _ (Nat loc) = --- -- nclo $ Nat loc --- -- pushSubstsWith _ _ (Zero loc) = --- -- nclo $ Zero loc --- -- pushSubstsWith th ph (Succ n loc) = --- -- nclo $ Succ (n // th // ph) loc --- -- pushSubstsWith th ph (BOX pi ty loc) = --- -- nclo $ BOX pi (ty // th // ph) loc --- -- pushSubstsWith th ph (Box val loc) = --- -- nclo $ Box (val // th // ph) loc --- -- pushSubstsWith th ph (E e) = --- -- let Element e nc = pushSubstsWith th ph e in nclo $ E e --- -- pushSubstsWith th ph (CloT (Sub s ps)) = --- -- pushSubstsWith th (comp th ps ph) s --- -- pushSubstsWith th ph (DCloT (Sub s ps)) = --- -- pushSubstsWith (ps . th) ph s - --- -- export --- -- PushSubsts Elim Subst.isCloE where --- -- pushSubstsWith th ph (F x u loc) = --- -- nclo $ F x u loc --- -- pushSubstsWith th ph (B i loc) = --- -- let res = getLoc ph i loc in --- -- case nchoose $ isCloE res of --- -- Left yes => assert_total pushSubsts res --- -- Right no => Element res no --- -- pushSubstsWith th ph (App f s loc) = --- -- nclo $ App (f // th // ph) (s // th // ph) loc --- -- pushSubstsWith th ph (CasePair pi p r b loc) = --- -- nclo $ CasePair pi (p // th // ph) (r // th // ph) (b // th // ph) loc --- -- pushSubstsWith th ph (CaseEnum pi t r arms loc) = --- -- nclo $ CaseEnum pi (t // th // ph) (r // th // ph) --- -- (map (\b => b // th // ph) arms) loc --- -- pushSubstsWith th ph (CaseNat pi pi' n r z s loc) = --- -- nclo $ CaseNat pi pi' (n // th // ph) (r // th // ph) --- -- (z // th // ph) (s // th // ph) loc --- -- pushSubstsWith th ph (CaseBox pi x r b loc) = --- -- nclo $ CaseBox pi (x // th // ph) (r // th // ph) (b // th // ph) loc --- -- pushSubstsWith th ph (DApp f d loc) = --- -- nclo $ DApp (f // th // ph) (d // th) loc --- -- pushSubstsWith th ph (Ann s a loc) = --- -- nclo $ Ann (s // th // ph) (a // th // ph) loc --- -- pushSubstsWith th ph (Coe ty p q val loc) = --- -- nclo $ Coe (ty // th // ph) (p // th) (q // th) (val // th // ph) loc --- -- pushSubstsWith th ph (Comp ty p q val r zero one loc) = --- -- nclo $ Comp (ty // th // ph) (p // th) (q // th) --- -- (val // th // ph) (r // th) --- -- (zero // th // ph) (one // th // ph) loc --- -- pushSubstsWith th ph (TypeCase ty ret arms def loc) = --- -- nclo $ TypeCase (ty // th // ph) (ret // th // ph) --- -- (map (\t => t // th // ph) arms) (def // th // ph) loc --- -- pushSubstsWith th ph (CloE (Sub e ps)) = --- -- pushSubstsWith th (comp th ps ph) e --- -- pushSubstsWith th ph (DCloE (Sub e ps)) = --- -- pushSubstsWith (ps . th) ph e - - --- -- private %inline --- -- CompHY : (ty : DScopeTerm d n) -> (p, q : Dim d) -> (val : Term d n) -> --- -- (r : Dim d) -> (zero, one : DScopeTerm d n) -> (loc : Loc) -> Elim d n --- -- CompHY {ty, p, q, val, r, zero, one, loc} = --- -- let ty' = SY ty.names $ ty.term // (B VZ ty.loc ::: shift 2) in --- -- Comp { --- -- ty = dsub1 ty q, p, q, --- -- val = E $ Coe ty p q val val.loc, r, --- -- -- [fixme] better locations for these vars? --- -- zero = SY zero.names $ E $ --- -- Coe ty' (B VZ zero.loc) (weakD 1 q) zero.term zero.loc, --- -- one = SY one.names $ E $ --- -- Coe ty' (B VZ one.loc) (weakD 1 q) one.term one.loc, --- -- loc --- -- } - --- -- public export %inline --- -- CompH' : (ty : DScopeTerm d n) -> --- -- (p, q : Dim d) -> (val : Term d n) -> (r : Dim d) -> --- -- (zero : DScopeTerm d n) -> --- -- (one : DScopeTerm d n) -> --- -- (loc : Loc) -> --- -- Elim d n --- -- CompH' {ty, p, q, val, r, zero, one, loc} = --- -- case dsqueeze ty of --- -- S _ (N ty) => Comp {ty, p, q, val, r, zero, one, loc} --- -- S _ (Y _) => CompHY {ty, p, q, val, r, zero, one, loc} - --- -- ||| heterogeneous composition, using Comp and Coe (and subst) --- -- ||| --- -- ||| comp [i ⇒ A] @p @q s @r { 0 j ⇒ t₀; 1 j ⇒ t₁ } --- -- ||| ≔ --- -- ||| comp [A‹q/i›] @p @q (coe [i ⇒ A] @p @q s) @r { --- -- ||| 0 j ⇒ coe [i ⇒ A] @j @q t₀; --- -- ||| 1 j ⇒ coe [i ⇒ A] @j @q t₁ --- -- ||| } --- -- public export %inline --- -- CompH : (i : BindName) -> (ty : Term (S d) n) -> --- -- (p, q : Dim d) -> (val : Term d n) -> (r : Dim d) -> --- -- (j0 : BindName) -> (zero : Term (S d) n) -> --- -- (j1 : BindName) -> (one : Term (S d) n) -> --- -- (loc : Loc) -> --- -- Elim d n --- -- CompH {i, ty, p, q, val, r, j0, zero, j1, one, loc} = --- -- CompH' {ty = SY [< i] ty, p, q, val, r, --- -- zero = SY [< j0] zero, one = SY [< j0] one, loc} +||| heterogeneous comp, in terms of Comp and Coe +public export %inline +CompH : (i : BindName) -> (ty : Term (S d) n) -> + (p, q : Dim d) -> (val : Term d n) -> (r : Dim d) -> + (j0 : BindName) -> (zero : Term (S d) n) -> + (j1 : BindName) -> (one : Term (S d) n) -> + (loc : Loc) -> Elim d n +CompH {i, ty, p, q, val, r, j0, zero, j1, one, loc} = + CompH' {ty = SY [< i] ty, p, q, val, r, + zero = SY [< j0] zero, one = SY [< j1] one, loc} diff --git a/lib/Quox/Syntax/Term/Tighten.idr b/lib/Quox/Syntax/Term/Tighten.idr deleted file mode 100644 index 931ac65..0000000 --- a/lib/Quox/Syntax/Term/Tighten.idr +++ /dev/null @@ -1,334 +0,0 @@ -module Quox.Syntax.Term.Tighten - -import Quox.Syntax.Term.Base -import Quox.Syntax.Subst -import public Quox.OPE - -%default total - - -export -Tighten (Shift f) where - -- `OPE m n` is a spicy `m ≤ n`, - -- and `Shift f n` is a (different) spicy `f ≤ n` - -- so the value is `f ≤ m` (as a `Shift`), if that is the case - tighten _ SZ = Nothing - tighten Id by = Just by - tighten (Drop p) (SS by) = tighten p by - tighten (Keep p) (SS by) = [|SS $ tighten p by|] - - -export -Tighten Dim where - tighten p (K e loc) = pure $ K e loc - tighten p (B i loc) = B <$> tighten p i <*> pure loc - - -export -tightenSub : (forall m, n. OPE m n -> env n -> Maybe (env m)) -> - OPE t1 t2 -> Subst env f t2 -> Maybe (Subst env f t1) -tightenSub f p (Shift by) = [|Shift $ tighten p by|] -tightenSub f p (t ::: th) = [|f p t !::: tightenSub f p th|] - -export -Tighten env => Tighten (Subst env f) where - tighten p th = tightenSub tighten p th - - -export -tightenScope : (forall m, n. OPE m n -> f n -> Maybe (f m)) -> - {s : Nat} -> OPE m n -> Scoped s f n -> Maybe (Scoped s f m) -tightenScope f p (S names (Y body)) = SY names <$> f (keepN s p) body -tightenScope f p (S names (N body)) = S names . N <$> f p body - -export -tightenDScope : {0 f : Nat -> Nat -> Type} -> - (forall m, n, k. OPE m n -> f n k -> Maybe (f m k)) -> - OPE m n -> Scoped s (f n) k -> Maybe (Scoped s (f m) k) -tightenDScope f p (S names (Y body)) = SY names <$> f p body -tightenDScope f p (S names (N body)) = S names . N <$> f p body - - -mutual - private - tightenT : OPE n1 n2 -> Term d n2 -> Maybe (Term d n1) - tightenT p (TYPE l loc) = pure $ TYPE l loc - tightenT p (Pi qty arg res loc) = - Pi qty <$> tightenT p arg <*> tightenS p res <*> pure loc - tightenT p (Lam body loc) = - Lam <$> tightenS p body <*> pure loc - tightenT p (Sig fst snd loc) = - Sig <$> tightenT p fst <*> tightenS p snd <*> pure loc - tightenT p (Pair fst snd loc) = - Pair <$> tightenT p fst <*> tightenT p snd <*> pure loc - tightenT p (Enum cases loc) = - pure $ Enum cases loc - tightenT p (Tag tag loc) = - pure $ Tag tag loc - tightenT p (Eq ty l r loc) = - Eq <$> tightenDS p ty <*> tightenT p l <*> tightenT p r <*> pure loc - tightenT p (DLam body loc) = - DLam <$> tightenDS p body <*> pure loc - tightenT p (Nat loc) = - pure $ Nat loc - tightenT p (Zero loc) = - pure $ Zero loc - tightenT p (Succ s loc) = - Succ <$> tightenT p s <*> pure loc - tightenT p (BOX qty ty loc) = - BOX qty <$> tightenT p ty <*> pure loc - tightenT p (Box val loc) = - Box <$> tightenT p val <*> pure loc - tightenT p (E e) = - assert_total $ E <$> tightenE p e - tightenT p (CloT (Sub tm th)) = do - th <- assert_total $ tightenSub tightenE p th - pure $ CloT $ Sub tm th - tightenT p (DCloT (Sub tm th)) = do - tm <- tightenT p tm - pure $ DCloT $ Sub tm th - - private - tightenE : OPE n1 n2 -> Elim d n2 -> Maybe (Elim d n1) - tightenE p (F x u loc) = - pure $ F x u loc - tightenE p (B i loc) = - B <$> tighten p i <*> pure loc - tightenE p (App fun arg loc) = - App <$> tightenE p fun <*> tightenT p arg <*> pure loc - tightenE p (CasePair qty pair ret body loc) = - CasePair qty <$> tightenE p pair - <*> tightenS p ret - <*> tightenS p body - <*> pure loc - tightenE p (CaseEnum qty tag ret arms loc) = - CaseEnum qty <$> tightenE p tag - <*> tightenS p ret - <*> traverse (tightenT p) arms - <*> pure loc - tightenE p (CaseNat qty qtyIH nat ret zero succ loc) = - CaseNat qty qtyIH - <$> tightenE p nat - <*> tightenS p ret - <*> tightenT p zero - <*> tightenS p succ - <*> pure loc - tightenE p (CaseBox qty box ret body loc) = - CaseBox qty <$> tightenE p box - <*> tightenS p ret - <*> tightenS p body - <*> pure loc - tightenE p (DApp fun arg loc) = - DApp <$> tightenE p fun <*> pure arg <*> pure loc - tightenE p (Ann tm ty loc) = - Ann <$> tightenT p tm <*> tightenT p ty <*> pure loc - tightenE p (Coe ty q0 q1 val loc) = - Coe <$> tightenDS p ty - <*> pure q0 <*> pure q1 - <*> tightenT p val - <*> pure loc - tightenE p (Comp ty q0 q1 val r zero one loc) = - Comp <$> tightenT p ty - <*> pure q0 <*> pure q1 - <*> tightenT p val - <*> pure r - <*> tightenDS p zero - <*> tightenDS p one - <*> pure loc - tightenE p (TypeCase ty ret arms def loc) = - TypeCase <$> tightenE p ty - <*> tightenT p ret - <*> traverse (tightenS p) arms - <*> tightenT p def - <*> pure loc - tightenE p (CloE (Sub el th)) = do - th <- assert_total $ tightenSub tightenE p th - pure $ CloE $ Sub el th - tightenE p (DCloE (Sub el th)) = do - el <- tightenE p el - pure $ DCloE $ Sub el th - - export - tightenS : {s : Nat} -> OPE m n -> - ScopeTermN s f n -> Maybe (ScopeTermN s f m) - tightenS = assert_total $ tightenScope tightenT - - export - tightenDS : OPE m n -> DScopeTermN s f n -> Maybe (DScopeTermN s f m) - tightenDS = assert_total $ tightenDScope tightenT {f = \n, d => Term d n} - -export Tighten (Elim d) where tighten p e = tightenE p e -export Tighten (Term d) where tighten p t = tightenT p t - - -mutual - export - dtightenT : OPE d1 d2 -> Term d2 n -> Maybe (Term d1 n) - dtightenT p (TYPE l loc) = - pure $ TYPE l loc - dtightenT p (Pi qty arg res loc) = - Pi qty <$> dtightenT p arg <*> dtightenS p res <*> pure loc - dtightenT p (Lam body loc) = - Lam <$> dtightenS p body <*> pure loc - dtightenT p (Sig fst snd loc) = - Sig <$> dtightenT p fst <*> dtightenS p snd <*> pure loc - dtightenT p (Pair fst snd loc) = - Pair <$> dtightenT p fst <*> dtightenT p snd <*> pure loc - dtightenT p (Enum cases loc) = - pure $ Enum cases loc - dtightenT p (Tag tag loc) = - pure $ Tag tag loc - dtightenT p (Eq ty l r loc) = - Eq <$> dtightenDS p ty <*> dtightenT p l <*> dtightenT p r <*> pure loc - dtightenT p (DLam body loc) = - DLam <$> dtightenDS p body <*> pure loc - dtightenT p (Nat loc) = - pure $ Nat loc - dtightenT p (Zero loc) = - pure $ Zero loc - dtightenT p (Succ s loc) = - Succ <$> dtightenT p s <*> pure loc - dtightenT p (BOX qty ty loc) = - BOX qty <$> dtightenT p ty <*> pure loc - dtightenT p (Box val loc) = - Box <$> dtightenT p val <*> pure loc - dtightenT p (E e) = - assert_total $ E <$> dtightenE p e - dtightenT p (CloT (Sub tm th)) = do - tm <- dtightenT p tm - th <- assert_total $ traverse (dtightenE p) th - pure $ CloT $ Sub tm th - dtightenT p (DCloT (Sub tm th)) = do - th <- tighten p th - pure $ DCloT $ Sub tm th - - export - dtightenE : OPE d1 d2 -> Elim d2 n -> Maybe (Elim d1 n) - dtightenE p (F x u loc) = - pure $ F x u loc - dtightenE p (B i loc) = - pure $ B i loc - dtightenE p (App fun arg loc) = - App <$> dtightenE p fun <*> dtightenT p arg <*> pure loc - dtightenE p (CasePair qty pair ret body loc) = - CasePair qty <$> dtightenE p pair - <*> dtightenS p ret - <*> dtightenS p body - <*> pure loc - dtightenE p (CaseEnum qty tag ret arms loc) = - CaseEnum qty <$> dtightenE p tag - <*> dtightenS p ret - <*> traverse (dtightenT p) arms - <*> pure loc - dtightenE p (CaseNat qty qtyIH nat ret zero succ loc) = - CaseNat qty qtyIH - <$> dtightenE p nat - <*> dtightenS p ret - <*> dtightenT p zero - <*> dtightenS p succ - <*> pure loc - dtightenE p (CaseBox qty box ret body loc) = - CaseBox qty <$> dtightenE p box - <*> dtightenS p ret - <*> dtightenS p body - <*> pure loc - dtightenE p (DApp fun arg loc) = - DApp <$> dtightenE p fun <*> tighten p arg <*> pure loc - dtightenE p (Ann tm ty loc) = - Ann <$> dtightenT p tm <*> dtightenT p ty <*> pure loc - dtightenE p (Coe ty q0 q1 val loc) = - [|Coe (dtightenDS p ty) (tighten p q0) (tighten p q1) (dtightenT p val) - (pure loc)|] - dtightenE p (Comp ty q0 q1 val r zero one loc) = - [|Comp (dtightenT p ty) (tighten p q0) (tighten p q1) - (dtightenT p val) (tighten p r) - (dtightenDS p zero) (dtightenDS p one) (pure loc)|] - dtightenE p (TypeCase ty ret arms def loc) = - [|TypeCase (dtightenE p ty) (dtightenT p ret) - (traverse (dtightenS p) arms) (dtightenT p def) (pure loc)|] - dtightenE p (CloE (Sub el th)) = do - el <- dtightenE p el - th <- assert_total $ traverse (dtightenE p) th - pure $ CloE $ Sub el th - dtightenE p (DCloE (Sub el th)) = do - th <- tighten p th - pure $ DCloE $ Sub el th - - export - dtightenS : OPE d1 d2 -> ScopeTermN s d2 n -> Maybe (ScopeTermN s d1 n) - dtightenS = assert_total $ tightenDScope dtightenT {f = Term} - - export - dtightenDS : {s : Nat} -> OPE d1 d2 -> - DScopeTermN s d2 n -> Maybe (DScopeTermN s d1 n) - dtightenDS = assert_total $ tightenScope dtightenT - - -export [TermD] Tighten (\d => Term d n) where tighten p t = dtightenT p t -export [ElimD] Tighten (\d => Elim d n) where tighten p e = dtightenE p e - - --- versions of SY, etc, that try to tighten and use SN automatically - -public export -ST : Tighten f => {s : Nat} -> BContext s -> f (s + n) -> Scoped s f n -ST names body = - case tightenN s body of - Just body => S names $ N body - Nothing => S names $ Y body - -public export -DST : {s : Nat} -> BContext s -> Term (s + d) n -> DScopeTermN s d n -DST names body = - case tightenN @{TermD} s body of - Just body => S names $ N body - Nothing => S names $ Y body - -public export %inline -PiT : (qty : Qty) -> (x : BindName) -> - (arg : Term d n) -> (res : Term d (S n)) -> (loc : Loc) -> Term d n -PiT {qty, x, arg, res, loc} = Pi {qty, arg, res = ST [< x] res, loc} - -public export %inline -LamT : (x : BindName) -> (body : Term d (S n)) -> (loc : Loc) -> Term d n -LamT {x, body, loc} = Lam {body = ST [< x] body, loc} - -public export %inline -SigT : (x : BindName) -> (fst : Term d n) -> - (snd : Term d (S n)) -> (loc : Loc) -> Term d n -SigT {x, fst, snd, loc} = Sig {fst, snd = ST [< x] snd, loc} - -public export %inline -EqT : (i : BindName) -> (ty : Term (S d) n) -> - (l, r : Term d n) -> (loc : Loc) -> Term d n -EqT {i, ty, l, r, loc} = Eq {ty = DST [< i] ty, l, r, loc} - -public export %inline -DLamT : (i : BindName) -> (body : Term (S d) n) -> (loc : Loc) -> Term d n -DLamT {i, body, loc} = DLam {body = DST [< i] body, loc} - -public export %inline -CoeT : (i : BindName) -> (ty : Term (S d) n) -> - (p, q : Dim d) -> (val : Term d n) -> (loc : Loc) -> Elim d n -CoeT {i, ty, p, q, val, loc} = Coe {ty = DST [< i] ty, p, q, val, loc} - -public export %inline -typeCase1T : Elim d n -> Term d n -> - (k : TyConKind) -> BContext (arity k) -> Term d (arity k + n) -> - (loc : Loc) -> - {default (Nat loc) def : Term d n} -> - Elim d n -typeCase1T ty ret k ns body loc {def} = - typeCase ty ret [(k ** ST ns body)] def loc - - -export -squeeze : {s : Nat} -> ScopeTermN s d n -> ScopeTermN s d n -squeeze (S names (Y body)) = S names $ maybe (Y body) N $ tightenN s body -squeeze (S names (N body)) = S names $ N body - -export -dsqueeze : {s : Nat} -> DScopeTermN s d n -> DScopeTermN s d n -dsqueeze (S names (Y body)) = - S names $ maybe (Y body) N $ tightenN s body @{TermD} -dsqueeze (S names (N body)) = S names $ N body diff --git a/lib/Quox/Syntax/Term/TyConKind.idr b/lib/Quox/Syntax/Term/TyConKind.idr index 6bacf77..298173e 100644 --- a/lib/Quox/Syntax/Term/TyConKind.idr +++ b/lib/Quox/Syntax/Term/TyConKind.idr @@ -9,7 +9,8 @@ import Generics.Derive public export -data TyConKind = KTYPE | KPi | KSig | KEnum | KEq | KNat | KBOX +data TyConKind = + KTYPE | KIOState | KPi | KSig | KEnum | KEq | KNat | KString | KBOX %name TyConKind k %runElab derive "TyConKind" [Eq.Eq, Ord.Ord, Show.Show, Generic, Meta, DecEq] @@ -25,10 +26,12 @@ allKinds = %runElab do ||| in `type-case`, how many variables are bound in this branch public export %inline arity : TyConKind -> Nat -arity KTYPE = 0 -arity KPi = 2 -arity KSig = 2 -arity KEnum = 0 -arity KEq = 5 -arity KNat = 0 -arity KBOX = 1 +arity KTYPE = 0 +arity KIOState = 0 +arity KPi = 2 +arity KSig = 2 +arity KEnum = 0 +arity KEq = 5 +arity KNat = 0 +arity KString = 0 +arity KBOX = 1 diff --git a/lib/Quox/Thin.idr b/lib/Quox/Thin.idr deleted file mode 100644 index 90eb2ae..0000000 --- a/lib/Quox/Thin.idr +++ /dev/null @@ -1,13 +0,0 @@ -module Quox.Thin - -import public Quox.Thin.Base -import public Quox.Thin.View -import public Quox.Thin.Eqv -import public Quox.Thin.Cons -import public Quox.Thin.List -import public Quox.Thin.Append -import public Quox.Thin.Comp -import public Quox.Thin.Cover -import public Quox.Thin.Coprod -import public Quox.Thin.Split -import public Quox.Thin.Term diff --git a/lib/Quox/Thin/Append.idr b/lib/Quox/Thin/Append.idr deleted file mode 100644 index 37a5a4c..0000000 --- a/lib/Quox/Thin/Append.idr +++ /dev/null @@ -1,27 +0,0 @@ -module Quox.Thin.Append - -import public Quox.Thin.Base -import public Quox.Thin.View -import Data.DPair - -%default total - -public export -app' : OPE m1 n1 mask1 -> OPE m2 n2 mask2 -> Exists (OPE (m1 + m2) (n1 + n2)) -app' Stop ope2 = Evidence _ ope2 -app' (Drop ope1 Refl) ope2 = Evidence _ $ Drop (app' ope1 ope2).snd Refl -app' (Keep ope1 Refl) ope2 = Evidence _ $ Keep (app' ope1 ope2).snd Refl - -public export -(++) : {n1, n2, mask1, mask2 : Nat} -> - (0 ope1 : OPE m1 n1 mask1) -> (0 ope2 : OPE m2 n2 mask2) -> - Subset Nat (OPE (m1 + m2) (n1 + n2)) -ope1 ++ ope2 with %syntactic (view ope1) - Stop ++ ope2 | StopV = Element _ ope2 - Drop ope1 Refl ++ ope2 | DropV mask ope1 = - Element _ $ Drop (ope1 ++ ope2).snd Refl - Keep ope1 Refl ++ ope2 | KeepV mask ope1 = - Element _ $ Keep (ope1 ++ ope2).snd Refl - --- [todo] this mask is just (mask1 << n2) | mask2 --- prove it and add %transform diff --git a/lib/Quox/Thin/Base.idr b/lib/Quox/Thin/Base.idr deleted file mode 100644 index 1f24e5b..0000000 --- a/lib/Quox/Thin/Base.idr +++ /dev/null @@ -1,81 +0,0 @@ -module Quox.Thin.Base - -import Data.Fin -import Data.DPair - -%default total - -||| "order preserving embeddings", for recording a correspondence between a -||| smaller scope and part of a larger one. the third argument is a bitmask -||| representing this OPE, unique for a given `n`. -public export -data OPE : (m, n, mask : Nat) -> Type where - [search m n] - Stop : OPE 0 0 0 - Drop : OPE m n mask -> mask' = mask + mask -> OPE m (S n) mask' - Keep : OPE m n mask -> mask' = (S (mask + mask)) -> OPE (S m) (S n) mask' -%name OPE ope - -export -Show (OPE m n mask) where - showPrec d Stop = "Stop" - showPrec d (Drop ope Refl) = showCon d "Drop" $ showArg ope ++ " Refl" - showPrec d (Keep ope Refl) = showCon d "Keep" $ showArg ope ++ " Refl" - -public export %inline -drop : OPE m n mask -> OPE m (S n) (mask + mask) -drop ope = Drop ope Refl - -public export %inline -keep : OPE m n mask -> OPE (S m) (S n) (S (mask + mask)) -keep ope = Keep ope Refl - - -public export -data IsStop : OPE m n mask -> Type where ItIsStop : IsStop Stop - -public export -data IsDrop : OPE m n mask -> Type where ItIsDrop : IsDrop (Drop ope eq) - -public export -data IsKeep : OPE m n mask -> Type where ItIsKeep : IsKeep (Keep ope eq) - - -export -0 zeroIsStop : (ope : OPE m 0 mask) -> IsStop ope -zeroIsStop Stop = ItIsStop - - -||| everything selected -public export -id : {m : Nat} -> Subset Nat (OPE m m) -id {m = 0} = Element _ Stop -id {m = S m} = Element _ $ Keep id.snd Refl - -public export %inline -0 id' : {m : Nat} -> OPE m m (fst (Base.id {m})) -id' = id.snd - -||| nothing selected -public export -zero : {m : Nat} -> OPE 0 m 0 -zero {m = 0} = Stop -zero {m = S m} = Drop zero Refl - -||| a single slot selected -public export -one : Fin n -> Subset Nat (OPE 1 n) -one FZ = Element _ $ keep zero -one (FS i) = Element _ $ drop (one i).snd - -public export %inline -0 one' : (i : Fin n) -> OPE 1 n (one i).fst -one' i = (one i).snd - - -public export -record SomeOPE n where - constructor MkOPE - {0 scope : Nat} - {mask : Nat} - 0 ope : OPE scope n mask diff --git a/lib/Quox/Thin/Comp.idr b/lib/Quox/Thin/Comp.idr deleted file mode 100644 index 7352cfb..0000000 --- a/lib/Quox/Thin/Comp.idr +++ /dev/null @@ -1,55 +0,0 @@ -module Quox.Thin.Comp - -import public Quox.Thin.Base -import public Quox.Thin.View -import Quox.NatExtra -import Data.Singleton - -%default total - -||| inductive definition of OPE composition -public export -data Comp : (l : OPE n p mask1) -> (r : OPE m n mask2) -> - (res : OPE m p mask3) -> Type where - [search l r] - StopZ : Comp Stop Stop Stop - DropZ : Comp a b c -> Comp (Drop a Refl) b (Drop c Refl) - KeepZ : Comp a b c -> Comp (Keep a Refl) (Keep b Refl) (Keep c Refl) - KDZ : Comp a b c -> Comp (Keep a Refl) (Drop b Refl) (Drop c Refl) - -public export -record CompResult (ope1 : OPE n p mask1) (ope2 : OPE m n mask2) where - constructor MkComp - {mask : Nat} - {0 ope : OPE m p mask} - 0 comp : Comp ope1 ope2 ope -%name CompResult comp - -||| compose two OPEs, if the middle scope size is already known at runtime -export -comp' : {n, p, mask1, mask2 : Nat} -> - (0 ope1 : OPE n p mask1) -> (0 ope2 : OPE m n mask2) -> - CompResult ope1 ope2 -comp' ope1 ope2 with %syntactic (view ope1) | (view ope2) - comp' Stop Stop | StopV | StopV = - MkComp StopZ - comp' (Drop ope1 Refl) ope2 | DropV _ ope1 | _ = - MkComp $ DropZ (comp' ope1 ope2).comp - comp' (Keep ope1 Refl) (Drop ope2 Refl) | KeepV _ ope1 | DropV _ ope2 = - MkComp $ KDZ (comp' ope1 ope2).comp - comp' (Keep ope1 Refl) (Keep ope2 Refl) | KeepV _ ope1 | KeepV _ ope2 = - MkComp $ KeepZ (comp' ope1 ope2).comp - -||| compose two OPEs, after recomputing the middle scope size using `appOpe` -export -comp : {p, mask1, mask2 : Nat} -> - (0 ope1 : OPE n p mask1) -> (0 ope2 : OPE m n mask2) -> - CompResult ope1 ope2 -comp ope1 ope2 = let Val n = appOpe p ope1 in comp' ope1 ope2 - --- [todo] is there a quick way to compute the mask of comp? - -export -0 (.) : (ope1 : OPE n p mask1) -> (ope2 : OPE m n mask2) -> - OPE m p (comp ope1 ope2).mask -ope1 . ope2 = (comp ope1 ope2).ope diff --git a/lib/Quox/Thin/Cons.idr b/lib/Quox/Thin/Cons.idr deleted file mode 100644 index 81fe762..0000000 --- a/lib/Quox/Thin/Cons.idr +++ /dev/null @@ -1,74 +0,0 @@ -module Quox.Thin.Cons - -import public Quox.Thin.Base -import Quox.Thin.Eqv -import Quox.Thin.View -import Data.DPair -import Control.Relation - -%default total - - -public export -data IsHead : (ope : OPE m (S n) mask) -> Bool -> Type where - [search ope] - DropH : IsHead (Drop ope eq) False - KeepH : IsHead (Keep ope eq) True - -public export -data IsTail : (full : OPE m (S n) mask) -> OPE m' n mask' -> Type where - [search full] - DropT : IsTail (Drop ope eq) ope - KeepT : IsTail (Keep ope eq) ope - -public export -record Uncons (ope : OPE m (S n) mask) where - constructor MkUncons - 0 head : Bool - {tailMask : Nat} - 0 tail : OPE scope n tailMask - {auto isHead : IsHead ope head} - {auto 0 isTail : IsTail ope tail} - -public export -uncons : {n, mask : Nat} -> (0 ope : OPE m (S n) mask) -> Uncons ope -uncons ope with %syntactic (view ope) - uncons (Drop ope Refl) | DropV _ ope = MkUncons False ope - uncons (Keep ope Refl) | KeepV _ ope = MkUncons True ope - -public export -head : {n, mask : Nat} -> (0 ope : OPE m (S n) mask) -> Exists $ IsHead ope -head ope = Evidence _ (uncons ope).isHead - -public export -record Tail (ope : OPE m (S n) mask) where - constructor MkTail - {tailMask : Nat} - 0 tail : OPE scope n tailMask - {auto 0 isTail : IsTail ope tail} - -public export -tail : {n, mask : Nat} -> (0 ope : OPE m (S n) mask) -> Tail ope -tail ope = let u = uncons ope in MkTail u.tail @{u.isTail} - - -export -cons : {mask : Nat} -> (head : Bool) -> (0 tail : OPE m n mask) -> - Subset Nat (OPE (if head then S m else m) (S n)) -cons False tail = Element _ $ drop tail -cons True tail = Element _ $ keep tail - -export -0 consEquiv' : (self : OPE m' (S n) mask') -> - (head : Bool) -> (tail : OPE m n mask) -> - IsHead self head -> IsTail self tail -> - (cons head tail).snd `Eqv` self -consEquiv' (Drop tail _) False tail DropH DropT = EqvDrop reflexive -consEquiv' (Keep tail _) True tail KeepH KeepT = EqvKeep reflexive - -export -0 consEquiv : (full : OPE m' (S n) mask') -> - (cons (uncons full).head (uncons full).tail).snd `Eqv` full -consEquiv full with %syntactic (uncons full) - _ | MkUncons head tail {isHead, isTail} = - consEquiv' full head tail isHead isTail diff --git a/lib/Quox/Thin/Coprod.idr b/lib/Quox/Thin/Coprod.idr deleted file mode 100644 index ca56c08..0000000 --- a/lib/Quox/Thin/Coprod.idr +++ /dev/null @@ -1,171 +0,0 @@ -module Quox.Thin.Coprod - -import public Quox.Thin.Base -import public Quox.Thin.Comp -import public Quox.Thin.View -import public Quox.Thin.List -import public Quox.Thin.Cover -import Data.DPair -import Data.Nat -import Control.Function - -%default total - - -namespace Coprod - public export - data Comps : OPE scope n scopeMask -> - OPEList scope -> OPEList n -> Type where - Nil : Comps sub [] [] - (::) : Comp sub inner full -> - Comps sub inners fulls -> - Comps sub (inner :: inners) (full :: fulls) - %name Comps comps - - public export - record Coprod (fulls : OPEList n) where - constructor MkCoprod - {scopeMask : Nat} - {0 sub : OPE scope n scopeMask} - inners : OPEList scope - 0 comps : Comps sub inners fulls - 0 cov : Cover inners - %name Coprod cop - -export -0 compsLength : Comps s ts us -> length ts = length us -compsLength [] = Refl -compsLength (_ :: comps) = cong S $ compsLength comps - - -export -coprodNil : Coprod [] -coprodNil = MkCoprod [] [] [] {sub = zero} - -private -coprodHead : {n : Nat} -> (opes : OPEList (S n)) -> - Either (Cover1 opes) (All IsDrop opes) -coprodHead [] = Right [] -coprodHead (ope :: opes) = case view ope of - DropV {} => case coprodHead opes of - Left cov1 => Left $ There cov1 - Right drops => Right $ ItIsDrop :: drops - KeepV {} => Left Here - - -private -0 compsConsDrop : (opes : OPEList (S n)) -> - All IsDrop opes -> - All2 IsTail opes tails -> - Comps sub inners tails -> Comps (drop sub) inners opes -compsConsDrop [] [] [] [] = [] -compsConsDrop (Drop ope Refl :: opes) (ItIsDrop :: ds) (DropT :: ts) (c :: cs) = - DropZ c :: compsConsDrop opes ds ts cs -compsConsDrop (_ :: _) [] _ _ impossible - -private -coprodConsDrop : (0 opes : OPEList (S n)) -> - (0 ds : All IsDrop opes) -> - (0 ts : All2 IsTail opes tails) -> - Coprod tails -> Coprod opes -coprodConsDrop opes ds ts (MkCoprod inners comps cov) = - MkCoprod inners (compsConsDrop opes ds ts comps) cov - - -private -copyHeads : {m : Nat} -> - (src : OPEList (S m)) -> (tgt : OPEList n) -> - (0 eq : length src = length tgt) => OPEList (S n) -copyHeads [] [] = [] -copyHeads (s :: ss) (t :: ts) = - case view s of - DropV mask ope => drop t :: copyHeads ss ts @{inj S eq} - KeepV mask ope => keep t :: copyHeads ss ts @{inj S eq} - -private -0 copyHeadsComps : (eq : length outers = length inners) -> - All2 IsTail outers tails -> - Comps sub inners tails -> - Comps (keep sub) (copyHeads outers inners) outers -copyHeadsComps _ [] [] = [] -copyHeadsComps eq (DropT {eq = eq2} :: ps) ((c :: cs) {full}) = - let (Refl) = eq2 in -- coverage checker weirdness - rewrite viewDrop full Refl in - KDZ c :: copyHeadsComps (inj S eq) ps cs -copyHeadsComps eq (KeepT {eq = eq2} :: ps) ((c :: cs) {full}) = - let (Refl) = eq2 in - rewrite viewKeep full Refl in - KeepZ c :: copyHeadsComps (inj S eq) ps cs - --- should be erased (coverage checker weirdness) --- it is possibly https://github.com/idris-lang/Idris2/issues/1417 that keeps --- happening. not 100% sure -private -cover1CopyHeads : {m : Nat} -> - (ss : OPEList (S m)) -> (ts : OPEList n) -> - (eq : length ss = length ts) -> - (cov1 : Cover1 ss) -> Cover1 (copyHeads ss ts) -cover1CopyHeads (Keep s Refl :: ss) (t :: ts) eq Here = - rewrite viewKeep s Refl in Here -cover1CopyHeads (s :: ss) (t :: ts) eq (There c) with (view s) - cover1CopyHeads (Drop {} :: ss) (t :: ts) eq (There c) | DropV {} = - There $ cover1CopyHeads ss ts (inj S eq) c - cover1CopyHeads (Keep {} :: ss) (t :: ts) eq (There c) | KeepV {} = - Here - -private -copyHeadsTails : {m : Nat} -> - (ss : OPEList (S m)) -> (ts : OPEList n) -> - (eq : length ss = length ts) -> - All2 IsTail (copyHeads ss ts) ts -copyHeadsTails [] [] eq = [] -copyHeadsTails (s :: ss) (t :: ts) eq with (view s) - copyHeadsTails (Drop ope Refl :: ss) (t :: ts) eq | DropV mask ope = - DropT :: copyHeadsTails ss ts (inj S eq) - copyHeadsTails (Keep ope Refl :: ss) (t :: ts) eq | KeepV mask ope = - KeepT :: copyHeadsTails ss ts (inj S eq) - -private -coprodConsKeep : {n : Nat} -> - (opes : OPEList (S n)) -> - {0 tails : OPEList n} -> - (cov1 : Cover1 opes) -> - (0 ts : All2 IsTail opes tails) -> - Coprod tails -> Coprod opes -coprodConsKeep opes cov1 ts (MkCoprod inners comps cov) = - MkCoprod - (copyHeads opes inners @{all2Length ts `trans` sym (compsLength comps)}) - (copyHeadsComps _ ts comps) - ((cover1CopyHeads {cov1, _} :: cov) @{copyHeadsTails {}}) - - -export -coprod : {n : Nat} -> (opes : OPEList n) -> Coprod opes - -private -coprod0 : (opes : OPEList 0) -> Coprod opes - -private -coprodS : {n : Nat} -> (opes : OPEList (S n)) -> Coprod opes - -coprod {n = 0} opes = coprod0 opes -coprod {n = S n} opes = coprodS opes - -coprod0 [] = coprodNil -coprod0 (ope :: opes) with %syntactic 0 (zeroIsStop ope) | (coprod opes) - coprod0 (Stop :: opes) - | ItIsStop | MkCoprod {sub} inners comps cov - with %syntactic 0 (zeroIsStop sub) - coprod0 (Stop :: opes) - | ItIsStop | MkCoprod {sub = Stop} inners comps cov | ItIsStop - = MkCoprod (Stop :: inners) (StopZ :: comps) [] - -coprodS [] = coprodNil -coprodS opes = - let hs = heads opes - Element ts tprf = tails_ opes - tcop = coprod $ assert_smaller opes ts - in - case coprodHead opes of - Left cov1 => coprodConsKeep opes cov1 tprf tcop - Right drops => coprodConsDrop opes drops tprf tcop diff --git a/lib/Quox/Thin/Cover.idr b/lib/Quox/Thin/Cover.idr deleted file mode 100644 index 7ef48c4..0000000 --- a/lib/Quox/Thin/Cover.idr +++ /dev/null @@ -1,27 +0,0 @@ -module Quox.Thin.Cover - -import public Quox.Thin.Base -import public Quox.Thin.List - -%default total - -||| an OPE list is a cover if at least one of the OPEs has `Keep` as the head, -||| and the tails are also a cover -||| -||| in @egtbs it is a binary relation which is fine for ×ᵣ but i don't want to -||| write my AST in universe-of-syntaxes style. sorry -public export data Cover : OPEList n -> Type - -||| the "`Keep` in the head" condition of a cover -public export data Cover1 : OPEList n -> Type - -data Cover where - Nil : Cover opes {n = 0} - (::) : Cover1 opes -> All2 IsTail opes tails => Cover tails -> Cover opes -%name Cover cov - -data Cover1 where - Here : Cover1 (Keep ope eq :: opes) - There : Cover1 opes -> Cover1 (ope :: opes) -%name Cover1 cov1 -%builtin Natural Cover1 diff --git a/lib/Quox/Thin/Eqv.idr b/lib/Quox/Thin/Eqv.idr deleted file mode 100644 index 76b8957..0000000 --- a/lib/Quox/Thin/Eqv.idr +++ /dev/null @@ -1,128 +0,0 @@ -module Quox.Thin.Eqv - -import public Quox.Thin.Base -import public Quox.Thin.View -import Quox.NatExtra -import Syntax.PreorderReasoning - -%default total - -infix 6 `Eqv` - -private -uip : (p, q : a = b) -> p = q -uip Refl Refl = Refl - - -public export -data Eqv : OPE m1 n1 mask1 -> OPE m2 n2 mask2 -> Type where - EqvStop : Eqv Stop Stop - EqvDrop : {0 p : OPE m1 n1 mask1} -> - {0 q : OPE m2 n2 mask2} -> - Eqv p q -> Eqv (Drop p eq1) (Drop q eq2) - EqvKeep : {0 p : OPE m1 n1 mask1} -> - {0 q : OPE m2 n2 mask2} -> - Eqv p q -> Eqv (Keep p eq1) (Keep q eq2) -%name Eqv eqv - -export Uninhabited (Stop `Eqv` Drop p e) where uninhabited _ impossible -export Uninhabited (Stop `Eqv` Keep p e) where uninhabited _ impossible -export Uninhabited (Drop p e `Eqv` Stop) where uninhabited _ impossible -export Uninhabited (Drop p e `Eqv` Keep q f) where uninhabited _ impossible -export Uninhabited (Keep p e `Eqv` Stop) where uninhabited _ impossible -export Uninhabited (Keep p e `Eqv` Drop q f) where uninhabited _ impossible - -export -Reflexive (OPE m n mask) Eqv where - reflexive {x = Stop} = EqvStop - reflexive {x = Drop {}} = EqvDrop reflexive - reflexive {x = Keep {}} = EqvKeep reflexive - -export -symmetric : p `Eqv` q -> q `Eqv` p -symmetric EqvStop = EqvStop -symmetric (EqvDrop eqv) = EqvDrop $ symmetric eqv -symmetric (EqvKeep eqv) = EqvKeep $ symmetric eqv - -export -transitive : p `Eqv` q -> q `Eqv` r -> p `Eqv` r -transitive EqvStop EqvStop = EqvStop -transitive (EqvDrop eqv1) (EqvDrop eqv2) = EqvDrop (transitive eqv1 eqv2) -transitive (EqvKeep eqv1) (EqvKeep eqv2) = EqvKeep (transitive eqv1 eqv2) - - -private -recompute' : {mask1, mask2, n1, n2 : Nat} -> - (0 p : OPE m1 n1 mask1) -> (0 q : OPE m2 n2 mask2) -> - (0 eqv : p `Eqv` q) -> p `Eqv` q -recompute' p q eqv with %syntactic (view p) | (view q) - recompute' Stop Stop _ | StopV | StopV = EqvStop - recompute' (Drop p _) (Drop q _) eqv | DropV _ p | DropV _ q = - EqvDrop $ recompute' {eqv = let EqvDrop e = eqv in e, _} - recompute' (Keep p _) (Keep q _) eqv | KeepV _ p | KeepV _ q = - EqvKeep $ recompute' {eqv = let EqvKeep e = eqv in e, _} - recompute' (Drop p _) (Keep q _) eqv | DropV _ p | KeepV _ q = - void $ absurd eqv - recompute' (Keep p _) (Drop q _) eqv | KeepV _ p | DropV _ q = - void $ absurd eqv - -private -recompute : {mask1, mask2, n1, n2 : Nat} -> - {0 p : OPE m1 n1 mask1} -> {0 q : OPE m2 n2 mask2} -> - (0 _ : p `Eqv` q) -> p `Eqv` q -recompute eqv = recompute' {eqv, _} - - -export -eqvIndices : {0 p : OPE m1 n1 mask1} -> {0 q : OPE m2 n2 mask2} -> - p `Eqv` q -> (m1 = m2, n1 = n2, mask1 = mask2) -eqvIndices EqvStop = (Refl, Refl, Refl) -eqvIndices (EqvDrop eqv {eq1 = Refl, eq2 = Refl}) = - let (Refl, Refl, Refl) = eqvIndices eqv in (Refl, Refl, Refl) -eqvIndices (EqvKeep eqv {eq1 = Refl, eq2 = Refl}) = - let (Refl, Refl, Refl) = eqvIndices eqv in (Refl, Refl, Refl) - -export -0 eqvMask : (p : OPE m1 n mask1) -> (q : OPE m2 n mask2) -> - mask1 = mask2 -> p `Eqv` q -eqvMask Stop Stop _ = EqvStop -eqvMask (Drop ope1 Refl) (Drop {mask = mm2} ope2 eq2) Refl = - EqvDrop $ eqvMask ope1 ope2 (doubleInj _ _ eq2) -eqvMask (Drop ope1 Refl) (Keep ope2 eq2) Refl = - void $ notEvenOdd _ _ eq2 -eqvMask (Keep ope1 eq1) (Keep ope2 eq2) Refl = - EqvKeep $ eqvMask ope1 ope2 (doubleInj _ _ $ inj S $ trans (sym eq1) eq2) -eqvMask (Keep ope1 eq1) (Drop ope2 eq2) Refl = - void $ notEvenOdd _ _ $ trans (sym eq2) eq1 - -export -0 eqvEq : (p, q : OPE m n mask) -> p `Eqv` q -> p === q -eqvEq Stop Stop EqvStop = Refl -eqvEq (Drop p eq1) (Drop q eq2) (EqvDrop eqv) - with %syntactic (doubleInj _ _ $ trans (sym eq1) eq2) - _ | Refl = cong2 Drop (eqvEq p q eqv) (uip eq1 eq2) -eqvEq (Keep p eq1) (Keep q eq2) (EqvKeep eqv) - with %syntactic (doubleInj _ _ $ inj S $ trans (sym eq1) eq2) - _ | Refl = cong2 Keep (eqvEq p q eqv) (uip eq1 eq2) - -export -0 eqvEq' : (p : OPE m1 n1 mask1) -> (q : OPE m2 n2 mask2) -> - p `Eqv` q -> p ~=~ q -eqvEq' p q eqv = let (Refl, Refl, Refl) = eqvIndices eqv in eqvEq p q eqv - -export -0 maskEqInner : (0 ope1 : OPE m1 n mask1) -> (0 ope2 : OPE m2 n mask2) -> - mask1 = mask2 -> m1 = m2 -maskEqInner Stop Stop _ = Refl -maskEqInner (Drop ope1 Refl) (Drop ope2 Refl) eq = - maskEqInner ope1 ope2 (doubleInj _ _ eq) -maskEqInner (Keep ope1 Refl) (Keep ope2 Refl) eq = - cong S $ maskEqInner ope1 ope2 $ doubleInj _ _ $ inj S eq -maskEqInner (Drop ope1 Refl) (Keep ope2 Refl) eq = void $ notEvenOdd _ _ eq -maskEqInner (Keep {mask = mask1'} ope1 eq1) (Drop {mask = mask2'} ope2 eq2) eq = - -- matching on eq1, eq2, or eq here triggers that weird coverage bug ☹ - void $ notEvenOdd _ _ $ Calc $ - |~ mask2' + mask2' - ~~ mask2 ..<(eq2) - ~~ mask1 ..<(eq) - ~~ S (mask1' + mask1') ...(eq1) diff --git a/lib/Quox/Thin/List.idr b/lib/Quox/Thin/List.idr deleted file mode 100644 index f0532dd..0000000 --- a/lib/Quox/Thin/List.idr +++ /dev/null @@ -1,127 +0,0 @@ -module Quox.Thin.List - -import public Quox.Thin.Base -import public Quox.Thin.Cons -import Data.DPair -import Data.Nat -import Control.Function - -%default total - -||| a list of OPEs of a given outer scope size -||| (at runtime just the masks) -public export -data OPEList : Nat -> Type where - Nil : OPEList n - (::) : {mask : Nat} -> (0 ope : OPE m n mask) -> OPEList n -> OPEList n -%name OPEList opes - -public export -length : OPEList n -> Nat -length [] = 0 -length (_ :: opes) = S $ length opes - -public export -toList : OPEList n -> List (SomeOPE n) -toList [] = [] -toList (ope :: opes) = MkOPE ope :: toList opes - -public export -fromList : List (SomeOPE n) -> OPEList n -fromList [] = [] -fromList (MkOPE ope :: xs) = ope :: fromList xs - - -public export -0 Pred : Nat -> Type -Pred n = forall m, mask. OPE m n mask -> Type - -public export -0 Rel : Nat -> Nat -> Type -Rel n1 n2 = forall m1, m2, mask1, mask2. - OPE m1 n1 mask1 -> OPE m2 n2 mask2 -> Type - -namespace All - public export - data All : Pred n -> OPEList n -> Type where - Nil : {0 p : Pred n} -> All p [] - (::) : {0 p : Pred n} -> p ope -> All p opes -> All p (ope :: opes) - %name All.All ps, qs - -namespace All2 - public export - data All2 : Rel n1 n2 -> OPEList n1 -> OPEList n2 -> Type where - Nil : {0 p : Rel n1 n2} -> All2 p [] [] - (::) : {0 p : Rel n1 n2} -> p a b -> All2 p as bs -> - All2 p (a :: as) (b :: bs) - %name All2.All2 ps, qs - -export -0 all2Length : {p : Rel m n} -> All2 p ss ts -> length ss = length ts -all2Length [] = Refl -all2Length (p :: ps) = cong S $ all2Length ps - -namespace Any - public export - data Any : Pred n -> OPEList n -> Type where - Here : {0 p : Pred n} -> p ope -> Any p (ope :: opes) - There : {0 p : Pred n} -> Any p opes -> Any p (ope :: opes) - %name Any.Any p, q - -export -{0 p : Pred n} -> Uninhabited (Any p []) where uninhabited _ impossible - -export -all : {0 p : Pred n} -> - (forall m. {mask : Nat} -> (0 ope : OPE m n mask) -> p ope) -> - (opes : OPEList n) -> All p opes -all f [] = [] -all f (ope :: opes) = f ope :: all f opes - -export -allDec : {0 p : Pred n} -> - (forall m. {mask : Nat} -> (0 ope : OPE m n mask) -> Dec (p ope)) -> - (opes : OPEList n) -> Dec (All p opes) -allDec f [] = Yes [] -allDec f (ope :: opes) = case f ope of - Yes y => case allDec f opes of - Yes ys => Yes $ y :: ys - No k => No $ \(_ :: ps) => k ps - No k => No $ \(p :: _) => k p - -export -anyDec : {0 p : Pred n} -> - (forall m. {mask : Nat} -> (0 ope : OPE m n mask) -> Dec (p ope)) -> - (opes : OPEList n) -> Dec (Any p opes) -anyDec f [] = No absurd -anyDec f (ope :: opes) = case f ope of - Yes y => Yes $ Here y - No nh => case anyDec f opes of - Yes y => Yes $ There y - No nt => No $ \case Here h => nh h; There t => nt t - - -export -unconses : {n : Nat} -> (opes : OPEList (S n)) -> All Uncons opes -unconses = all uncons - -export -heads : {n : Nat} -> (opes : OPEList (S n)) -> All (Exists . IsHead) opes -heads = all head - -export -tails : {n : Nat} -> (opes : OPEList (S n)) -> All Tail opes -tails = all tail - -export -tails_ : {n : Nat} -> (opes : OPEList (S n)) -> - Subset (OPEList n) (All2 IsTail opes) -tails_ [] = Element [] [] -tails_ (ope :: opes) = Element _ $ (tail ope).isTail :: (tails_ opes).snd - -export -conses : (heads : List Bool) -> (tails : OPEList n) -> - (0 len : length heads = length tails) => - OPEList (S n) -conses [] [] = [] -conses (h :: hs) (t :: ts) = snd (cons h t) :: conses hs ts @{inj S len} diff --git a/lib/Quox/Thin/Split.idr b/lib/Quox/Thin/Split.idr deleted file mode 100644 index 07bda8a..0000000 --- a/lib/Quox/Thin/Split.idr +++ /dev/null @@ -1,57 +0,0 @@ -module Quox.Thin.Split - -import public Quox.Thin.Base -import public Quox.Thin.View -import public Quox.Thin.Eqv -import public Quox.Thin.Append -import public Quox.Thin.Cover -import Data.DPair -import Control.Relation - -%default total - -public export -record Chunks m n where - constructor MkChunks - {leftMask : Nat} - {rightMask : Nat} - 0 left : OPE m (m + n) leftMask - 0 right : OPE n (m + n) rightMask - {auto 0 isCover : Cover [left, right]} -%name Chunks chunks - -export -chunks : (m, n : Nat) -> Chunks m n -chunks 0 0 = MkChunks Stop Stop -chunks 0 (S n) = - let MkChunks l r = chunks 0 n in - MkChunks (Drop l Refl) (Keep r Refl) -chunks (S m) n = - let MkChunks l r = chunks m n in - MkChunks (Keep l Refl) (Drop r Refl) - --- [todo] the masks here are just ((2 << m) - 1) << n and (2 << n) - 1 - - -public export -record SplitAt m n1 n2 (ope : OPE m (n1 + n2) mask) where - constructor MkSplitAt - {leftMask, rightMask : Nat} - {0 leftScope, rightScope : Nat} - 0 left : OPE leftScope n1 leftMask - 0 right : OPE rightScope n2 rightMask - 0 scopePrf : m = leftScope + rightScope - 0 opePrf : ope `Eqv` (left `app'` right).snd -%name SplitAt split - -export -splitAt : (n1 : Nat) -> {n2, mask : Nat} -> (0 ope : OPE m (n1 + n2) mask) -> - SplitAt m n1 n2 ope -splitAt 0 ope = MkSplitAt zero ope Refl reflexive -splitAt (S n1) ope with %syntactic (view ope) - splitAt (S n1) (Drop ope Refl) | DropV _ ope with %syntactic (splitAt n1 ope) - _ | MkSplitAt left right scopePrf opePrf = - MkSplitAt (Drop left Refl) right scopePrf (EqvDrop opePrf) - splitAt (S n1) (Keep ope Refl) | KeepV _ ope with %syntactic (splitAt n1 ope) - _ | MkSplitAt left right scopePrf opePrf = - MkSplitAt (Keep left Refl) right (cong S scopePrf) (EqvKeep opePrf) diff --git a/lib/Quox/Thin/Term.idr b/lib/Quox/Thin/Term.idr deleted file mode 100644 index 74f2420..0000000 --- a/lib/Quox/Thin/Term.idr +++ /dev/null @@ -1,216 +0,0 @@ -module Quox.Thin.Term - -import public Quox.Thin.Base -import public Quox.Thin.Comp -import public Quox.Thin.List -import Quox.Thin.Eqv -import public Quox.Thin.Cover -import Quox.Thin.Append -import Quox.Name -import Quox.Loc -import Data.DPair -import public Data.List.Quantifiers -import Data.Vect -import Data.Singleton -import Decidable.Equality - -%default total - -private -cmpMask : (m, n : Nat) -> Either Ordering (m = n) -cmpMask 0 0 = Right Refl -cmpMask 0 (S n) = Left LT -cmpMask (S m) 0 = Left GT -cmpMask (S m) (S n) = map (cong S) $ cmpMask m n - -public export -record Thinned f n where - constructor Th - {0 scope : Nat} - {scopeMask : Nat} - 0 ope : OPE scope n scopeMask - term : f scope -%name Thinned s, t, u - -export -(forall n. Eq (f n)) => Eq (Thinned f n) where - s == t = case cmpMask s.scopeMask t.scopeMask of - Left _ => False - Right eq => s.term == (rewrite maskEqInner s.ope t.ope eq in t.term) - -export -(forall n. Ord (f n)) => Ord (Thinned f n) where - compare s t = case cmpMask s.scopeMask t.scopeMask of - Left o => o - Right eq => compare s.term (rewrite maskEqInner s.ope t.ope eq in t.term) - -export -{n : Nat} -> (forall s. Show (f s)) => Show (Thinned f n) where - showPrec d (Th ope term) = - showCon d "Th" $ showArg (unVal $ maskToOpe ope) ++ showArg term - -export -(forall n. Located (f n)) => Located (Thinned f n) where - term.loc = term.term.loc - -export -(forall n. Relocatable (f n)) => Relocatable (Thinned f n) where - setLoc loc = {term $= setLoc loc} - -namespace Thinned - export - pure : {n : Nat} -> f n -> Thinned f n - pure term = Th id.snd term - - export - join : {n : Nat} -> Thinned (Thinned f) n -> Thinned f n - join (Th ope1 (Th ope2 term)) = Th (ope1 . ope2) term - - export - weak : {n : Nat} -> (by : Nat) -> Thinned f n -> Thinned f (by + n) - weak by (Th ope term) = Th (zero ++ ope).snd term - - -public export -record ScopedN (s : Nat) (f : Nat -> Type) (n : Nat) where - constructor S - names : Vect s BindName - {0 scope : Nat} - {mask : Nat} - 0 ope : OPE scope s mask - body : f (scope + n) - -export -(forall n. Eq (f n)) => Eq (ScopedN s f n) where - s1 == s2 = case decEq s1.mask s2.mask of - Yes eq => - s1.names == s2.names && - s1.body == (rewrite maskEqInner s1.ope s2.ope eq in s2.body) - No _ => False - -export -{s : Nat} -> (forall n. Show (f n)) => Show (ScopedN s f n) where - showPrec d (S ns ope body) = showCon d "S" $ - showArg ns ++ showArg (unVal $ maskToOpe ope) ++ showArg body - -public export -Scoped : (Nat -> Type) -> Nat -> Type -Scoped d n = ScopedN 1 d n - -(.name) : Scoped f n -> BindName -(S {names = [x], _}).name = x - -export -(forall n. Located (f n)) => Located (ScopedN s f n) where - s.loc = s.body.loc - -export -(forall n. Relocatable (f n)) => Relocatable (ScopedN s f n) where - setLoc loc = {body $= setLoc loc} - - -public export -record Thinned2 f d n where - constructor Th2 - {0 dscope, tscope : Nat} - {dmask, tmask : Nat} - 0 dope : OPE dscope d dmask - 0 tope : OPE tscope n tmask - term : f dscope tscope -%name Thinned2 term - -export -(forall d, n. Eq (f d n)) => Eq (Thinned2 f d n) where - s == t = case (decEq s.dmask t.dmask, decEq s.tmask t.tmask) of - (Yes deq, Yes teq) => - s.term == (rewrite maskEqInner s.dope t.dope deq in - rewrite maskEqInner s.tope t.tope teq in t.term) - _ => False - -export -{d, n : Nat} -> (forall sd, sn. Show (f sd sn)) => Show (Thinned2 f d n) where - showPrec d (Th2 dope tope term) = - showCon d "Th2" $ - showArg (unVal $ maskToOpe dope) ++ - showArg (unVal $ maskToOpe tope) ++ - showArg term - -export -(forall d, n. Located (f d n)) => Located (Thinned2 f d n) where - term.loc = term.term.loc - -export -(forall d, n. Relocatable (f d n)) => Relocatable (Thinned2 f d n) where - setLoc loc = {term $= setLoc loc} - -namespace Thinned2 - export - pure : {d, n : Nat} -> f d n -> Thinned2 f d n - pure term = Th2 id.snd id.snd term - - export - join : {d, n : Nat} -> Thinned2 (Thinned2 f) d n -> Thinned2 f d n - join (Th2 dope1 tope1 (Th2 dope2 tope2 term)) = - Th2 (dope1 . dope2) (tope1 . tope2) term - - export - weak : {d, n : Nat} -> (dby, nby : Nat) -> - Thinned2 f d n -> Thinned2 f (dby + d) (nby + n) - weak dby nby (Th2 dope tope term) = - Th2 (zero ++ dope).snd (zero ++ tope).snd term - - -namespace TermList - public export - data Element : (Nat -> Nat -> Type) -> - OPE dscope d dmask -> OPE tscope n tmask -> Type where - T : f dscope tscope -> - {dmask : Nat} -> (0 dope : OPE dscope d dmask) -> - {tmask : Nat} -> (0 tope : OPE tscope n tmask) -> - Element f dope tope - %name TermList.Element s, t, u - - export - elementEq : (forall d, n. Eq (f d n)) => - Element {d, n} f dope1 tope1 -> Element {d, n} f dope2 tope2 -> - Bool - elementEq (T s dope1 tope1 {dmask = dm1, tmask = tm1}) - (T t dope2 tope2 {dmask = dm2, tmask = tm2}) = - case (decEq dm1 dm2, decEq tm1 tm2) of - (Yes deq, Yes teq) => - s == (rewrite maskEqInner dope1 dope2 deq in - rewrite maskEqInner tope1 tope2 teq in t) - _ => False - - public export - data TermList : List (Nat -> Nat -> Type) -> - OPEList d -> OPEList n -> Type where - Nil : TermList [] [] [] - (::) : Element f dope tope -> - TermList fs dopes topes -> - TermList (f :: fs) (dope :: dopes) (tope :: topes) - %name TermList ss, ts, us - - export - termListEq : All (\f => forall d, n. Eq (f d n)) fs => - TermList {d, n} fs dopes1 topes1 -> - TermList {d, n} fs dopes2 topes2 -> - Bool - termListEq [] [] = True - termListEq (s :: ss) (t :: ts) @{eq :: eqs} = - elementEq s t && termListEq ss ts - - -public export -record Subterms (fs : List (Nat -> Nat -> Type)) d n where - constructor Sub - {0 dopes : OPEList d} - {0 topes : OPEList n} - terms : TermList fs dopes topes - 0 dcov : Cover dopes - 0 tcov : Cover topes -%name Subterms ss, ts, us - -export -All (\f => forall d, n. Eq (f d n)) fs => Eq (Subterms fs d n) where - ss == ts = ss.terms `termListEq` ts.terms diff --git a/lib/Quox/Thin/View.idr b/lib/Quox/Thin/View.idr deleted file mode 100644 index 480f9db..0000000 --- a/lib/Quox/Thin/View.idr +++ /dev/null @@ -1,100 +0,0 @@ -module Quox.Thin.View - -import public Quox.Thin.Base -import Quox.NatExtra -import Data.Singleton -import Data.SnocVect -import Data.Fin - -%default total - -public export -data View : OPE m n mask -> Type where - StopV : View Stop - DropV : (mask : Nat) -> (0 ope : OPE m n mask) -> View (Drop ope Refl) - KeepV : (mask : Nat) -> (0 ope : OPE m n mask) -> View (Keep ope Refl) -%name View.View v - -private -0 stopEqs : OPE m 0 mask -> (m = 0, mask = 0) -stopEqs Stop = (Refl, Refl) - -private -0 fromStop : (ope : OPE 0 0 0) -> ope = Stop -fromStop Stop = Refl - -private -0 fromDrop : (ope : OPE m (S n) (k + k)) -> - (inner : OPE m n k ** ope === Drop inner Refl) -fromDrop (Drop ope eq) with %syntactic (doubleInj _ _ eq) - fromDrop (Drop ope Refl) | Refl = (ope ** Refl) -fromDrop (Keep ope eq) = void $ notEvenOdd _ _ eq - -private -0 fromKeep : (ope : OPE (S m) (S n) (S (k + k))) -> - (inner : OPE m n k ** ope === Keep inner Refl) -fromKeep (Drop ope eq) = void $ notEvenOdd _ _ $ sym eq -fromKeep (Keep ope eq) with %syntactic (doubleInj _ _ $ inj S eq) - fromKeep (Keep ope Refl) | Refl = (ope ** Refl) - -private -0 keepIsSucc : (ope : OPE m n (S (k + k))) -> IsSucc m -keepIsSucc (Drop ope eq) = void $ notEvenOdd _ _ $ sym eq -keepIsSucc (Keep ope _) = ItIsSucc - -export -view : {0 m : Nat} -> {n, mask : Nat} -> (0 ope : OPE m n mask) -> View ope -view {n = 0} ope with %syntactic 0 (fst $ stopEqs ope) | 0 (snd $ stopEqs ope) - _ | Refl | Refl = rewrite fromStop ope in StopV -view {n = S n} ope with %syntactic (half mask) - _ | HalfOdd mask' with %syntactic 0 (keepIsSucc ope) - _ | ItIsSucc with %syntactic 0 (fromKeep ope) - _ | (ope' ** eq) = rewrite eq in KeepV mask' ope' - _ | HalfEven mask' with %syntactic 0 (fromDrop ope) - _ | (ope' ** eq) = rewrite eq in DropV mask' ope' - -export -(.fin) : {n, mask : Nat} -> (0 ope : OPE 1 n mask) -> Fin n -ope.fin with (view ope) - _.fin | DropV _ ope = FS ope.fin - _.fin | KeepV _ ope = FZ - - -export -appOpe : {0 m : Nat} -> (n : Nat) -> {mask : Nat} -> - (0 ope : OPE m n mask) -> Singleton m -appOpe n ope with %syntactic (view ope) - appOpe 0 Stop | StopV = Val 0 - appOpe (S n) (Drop ope' _) | DropV _ ope' = appOpe n ope' - appOpe (S n) (Keep ope' _) | KeepV _ ope' = [|S $ appOpe n ope'|] - -export -maskToOpe : {n, mask : Nat} -> (0 ope : OPE m n mask) -> Singleton ope -maskToOpe ope with %syntactic (view ope) - maskToOpe Stop | StopV = [|Stop|] - maskToOpe (Drop ope Refl) | DropV k ope = [|drop $ maskToOpe ope|] - maskToOpe (Keep ope Refl) | KeepV k ope = [|keep $ maskToOpe ope|] - -export -0 outerInnerZero : OPE m 0 mask -> m = 0 -outerInnerZero Stop = Refl - -export -0 outerMaskZero : OPE m 0 mask -> mask = 0 -outerMaskZero Stop = Refl - -export -0 viewStop : view Stop = StopV -viewStop = Refl - -export -0 viewDrop : (ope : OPE m n mask) -> (eq : mask2 = mask + mask) -> - view (Drop {mask} ope eq) = DropV mask ope -viewDrop ope eq with %syntactic (view (Drop ope eq)) - viewDrop ope Refl | DropV _ ope = Refl - -export -0 viewKeep : (ope : OPE m n mask) -> (eq : mask2 = S (mask + mask)) -> - view (Keep {mask} ope eq) = KeepV mask ope -viewKeep ope eq with %syntactic (view (Keep ope eq)) - viewKeep ope Refl | KeepV _ ope = Refl diff --git a/lib/Quox/Typechecker.idr b/lib/Quox/Typechecker.idr index d5cb0e6..3892b27 100644 --- a/lib/Quox/Typechecker.idr +++ b/lib/Quox/Typechecker.idr @@ -3,6 +3,7 @@ module Quox.Typechecker import public Quox.Typing import public Quox.Equal import Quox.Displace +import Quox.Pretty import Data.List import Data.SnocVect @@ -13,25 +14,14 @@ import Quox.EffExtra public export -0 TCEff : List (Type -> Type) -TCEff = [ErrorEff, DefsReader, NameGen] - -public export -0 TC : Type -> Type -TC = Eff TCEff - -export -runTCWith : NameSuf -> Definitions -> TC a -> (Either Error a, NameSuf) -runTCWith = runEqualWith - -export -runTC : Definitions -> TC a -> Either Error a -runTC = runEqual +0 TC : List (Type -> Type) +TC = [ErrorEff, DefsReader, NameGen, Log] parameters (loc : Loc) export - popQs : Has ErrorEff fs => QContext s -> QOutput (s + n) -> Eff fs (QOutput n) + popQs : Has ErrorEff fs => QContext s -> QOutput (s + n) -> + Eff fs (QOutput n) popQs [<] qout = pure qout popQs (pis :< pi) (qout :< rh) = do expectCompatQ loc rh pi; popQs pis qout @@ -52,34 +42,24 @@ lubs ctx [] = zeroFor ctx lubs ctx (x :: xs) = lubs1 $ x ::: xs -export -typecaseTel : (k : TyConKind) -> BContext (arity k) -> Universe -> - CtxExtension d n (arity k + n) -typecaseTel k xs u = case k of - KTYPE => [<] - -- A : ★ᵤ, B : 0.A → ★ᵤ - KPi => - let [< a, b] = xs in - [< (Zero, a, TYPE u a.loc), - (Zero, b, Arr Zero (BVT 0 b.loc) (TYPE u b.loc) b.loc)] - KSig => - let [< a, b] = xs in - [< (Zero, a, TYPE u a.loc), - (Zero, b, Arr Zero (BVT 0 b.loc) (TYPE u b.loc) b.loc)] - KEnum => [<] - -- A₀ : ★ᵤ, A₁ : ★ᵤ, A : (A₀ ≡ A₁ : ★ᵤ), L : A₀, R : A₀ - KEq => - let [< a0, a1, a, l, r] = xs in - [< (Zero, a0, TYPE u a0.loc), - (Zero, a1, TYPE u a1.loc), - (Zero, a, Eq0 (TYPE u a.loc) (BVT 1 a.loc) (BVT 0 a.loc) a.loc), - (Zero, l, BVT 2 l.loc), - (Zero, r, BVT 2 r.loc)] - KNat => [<] - -- A : ★ᵤ - KBOX => let [< a] = xs in [< (Zero, a, TYPE u a.loc)] +private +prettyTermTC : {opts : LayoutOpts} -> + TyContext d n -> Term d n -> Eff Pretty (Doc opts) +prettyTermTC ctx s = prettyTerm ctx.dnames ctx.tnames s +private +checkLogs : String -> TyContext d n -> SQty -> + Term d n -> Maybe (Term d n) -> Eff TC () +checkLogs fun ctx sg subj ty = do + let tyDoc = delay $ maybe (text "none") (runPretty . prettyTermTC ctx) ty + sayMany "check" subj.loc + [10 :> text fun, + 95 :> hsep ["ctx =", runPretty $ prettyTyContext ctx], + 95 :> hsep ["sg =", runPretty $ prettyQty sg.qty], + 10 :> hsep ["subj =", runPretty $ prettyTermTC ctx subj], + 10 :> hsep ["ty =", tyDoc]] + mutual ||| "Ψ | Γ ⊢ σ · s ⇐ A ⊳ Σ" ||| @@ -91,28 +71,32 @@ mutual ||| doing any further work. export covering %inline check : (ctx : TyContext d n) -> SQty -> Term d n -> Term d n -> - TC (CheckResult ctx.dctx n) - check ctx sg subj ty = ifConsistent ctx.dctx $ checkC ctx sg subj ty + Eff TC (CheckResult ctx.dctx n) + check ctx sg subj ty = + ifConsistentElse ctx.dctx + (do checkLogs "check" ctx sg subj (Just ty) + checkC ctx sg subj ty) + (say "check" 20 subj.loc "check: 0=1") ||| "Ψ | Γ ⊢₀ s ⇐ A" ||| ||| `check0 ctx subj ty` checks a term (as `check`) in a zero context. export covering %inline - check0 : TyContext d n -> Term d n -> Term d n -> TC () - check0 ctx tm ty = ignore $ check ctx szero tm ty + check0 : TyContext d n -> Term d n -> Term d n -> Eff TC () + check0 ctx tm ty = ignore $ check ctx SZero tm ty -- the output will always be 𝟎 because the subject quantity is 0 ||| `check`, assuming the dimension context is consistent export covering %inline checkC : (ctx : TyContext d n) -> SQty -> Term d n -> Term d n -> - TC (CheckResult' n) + Eff TC (CheckResult' n) checkC ctx sg subj ty = - wrapErr (WhileChecking ctx sg.fst subj ty) $ + wrapErr (WhileChecking ctx sg subj ty) $ checkCNoWrap ctx sg subj ty export covering %inline checkCNoWrap : (ctx : TyContext d n) -> SQty -> Term d n -> Term d n -> - TC (CheckResult' n) + Eff TC (CheckResult' n) checkCNoWrap ctx sg subj ty = let Element subj nc = pushSubsts subj in check' ctx sg subj ty @@ -122,16 +106,21 @@ mutual ||| `checkType ctx subj ty` checks a type (in a zero context). sometimes the ||| universe doesn't matter, only that a term is _a_ type, so it is optional. export covering %inline - checkType : TyContext d n -> Term d n -> Maybe Universe -> TC () - checkType ctx subj l = ignore $ ifConsistent ctx.dctx $ checkTypeC ctx subj l + checkType : TyContext d n -> Term d n -> Maybe Universe -> Eff TC () + checkType ctx subj l = do + let univ = TYPE <$> l <*> pure noLoc + ignore $ ifConsistentElse ctx.dctx + (do checkLogs "checkType" ctx SZero subj univ + checkTypeC ctx subj l) + (say "check" 20 subj.loc "checkType: 0=1") export covering %inline - checkTypeC : TyContext d n -> Term d n -> Maybe Universe -> TC () + checkTypeC : TyContext d n -> Term d n -> Maybe Universe -> Eff TC () checkTypeC ctx subj l = wrapErr (WhileCheckingTy ctx subj l) $ checkTypeNoWrap ctx subj l export covering %inline - checkTypeNoWrap : TyContext d n -> Term d n -> Maybe Universe -> TC () + checkTypeNoWrap : TyContext d n -> Term d n -> Maybe Universe -> Eff TC () checkTypeNoWrap ctx subj l = let Element subj nc = pushSubsts subj in checkType' ctx subj l @@ -145,15 +134,19 @@ mutual ||| doing any further work. export covering %inline infer : (ctx : TyContext d n) -> SQty -> Elim d n -> - TC (InferResult ctx.dctx d n) - infer ctx sg subj = ifConsistent ctx.dctx $ inferC ctx sg subj + Eff TC (InferResult ctx.dctx d n) + infer ctx sg subj = do + ifConsistentElse ctx.dctx + (do checkLogs "infer" ctx sg (E subj) Nothing + inferC ctx sg subj) + (say "check" 20 subj.loc "infer: 0=1") ||| `infer`, assuming the dimension context is consistent export covering %inline inferC : (ctx : TyContext d n) -> SQty -> Elim d n -> - TC (InferResult' d n) + Eff TC (InferResult' d n) inferC ctx sg subj = - wrapErr (WhileInferring ctx sg.fst subj) $ + wrapErr (WhileInferring ctx sg subj) $ let Element subj nc = pushSubsts subj in infer' ctx sg subj @@ -161,27 +154,29 @@ mutual private covering toCheckType : TyContext d n -> SQty -> (subj : Term d n) -> (0 nc : NotClo subj) => Term d n -> - TC (CheckResult' n) + Eff TC (CheckResult' n) toCheckType ctx sg t ty = do - u <- expectTYPE !(askAt DEFS) ctx ty.loc ty - expectEqualQ t.loc Zero sg.fst + u <- expectTYPE !(askAt DEFS) ctx sg ty.loc ty + expectEqualQ t.loc Zero sg.qty checkTypeNoWrap ctx t (Just u) pure $ zeroFor ctx private covering check' : TyContext d n -> SQty -> (subj : Term d n) -> (0 nc : NotClo subj) => Term d n -> - TC (CheckResult' n) + Eff TC (CheckResult' n) check' ctx sg t@(TYPE {}) ty = toCheckType ctx sg t ty + check' ctx sg t@(IOState {}) ty = toCheckType ctx sg t ty + check' ctx sg t@(Pi {}) ty = toCheckType ctx sg t ty check' ctx sg (Lam body loc) ty = do - (qty, arg, res) <- expectPi !(askAt DEFS) ctx ty.loc ty + (qty, arg, res) <- expectPi !(askAt DEFS) ctx SZero ty.loc ty -- if Ψ | Γ, x : A ⊢ σ · t ⇐ B ⊳ Σ, ρ·x -- with ρ ≤ σπ - let qty' = sg.fst * qty + let qty' = sg.qty * qty qout <- checkC (extendTy qty' body.name arg ctx) sg body.term res.term -- then Ψ | Γ ⊢ σ · (λx ⇒ t) ⇐ (π·x : A) → B ⊳ Σ popQ loc qty' qout @@ -189,7 +184,7 @@ mutual check' ctx sg t@(Sig {}) ty = toCheckType ctx sg t ty check' ctx sg (Pair fst snd loc) ty = do - (tfst, tsnd) <- expectSig !(askAt DEFS) ctx ty.loc ty + (tfst, tsnd) <- expectSig !(askAt DEFS) ctx SZero ty.loc ty -- if Ψ | Γ ⊢ σ · s ⇐ A ⊳ Σ₁ qfst <- checkC ctx sg fst tfst let tsnd = sub1 tsnd (Ann fst tfst fst.loc) @@ -201,7 +196,7 @@ mutual check' ctx sg t@(Enum {}) ty = toCheckType ctx sg t ty check' ctx sg (Tag t loc) ty = do - tags <- expectEnum !(askAt DEFS) ctx ty.loc ty + tags <- expectEnum !(askAt DEFS) ctx SZero ty.loc ty -- if t ∈ ts unless (t `elem` tags) $ throw $ TagNotIn loc t tags -- then Ψ | Γ ⊢ σ · t ⇐ {ts} ⊳ 𝟎 @@ -210,38 +205,54 @@ mutual check' ctx sg t@(Eq {}) ty = toCheckType ctx sg t ty check' ctx sg (DLam body loc) ty = do - (ty, l, r) <- expectEq !(askAt DEFS) ctx ty.loc ty + (ty, l, r) <- expectEq !(askAt DEFS) ctx SZero ty.loc ty let ctx' = extendDim body.name ctx ty = ty.term body = body.term -- if Ψ, i | Γ ⊢ σ · t ⇐ A ⊳ Σ qout <- checkC ctx' sg body ty -- if Ψ, i, i = 0 | Γ ⊢ t = l : A - lift $ equal loc (eqDim (B VZ loc) (K Zero loc) ctx') ty body (dweakT 1 l) + let ctx0 = eqDim (B VZ loc) (K Zero loc) ctx' + lift $ equal loc ctx0 sg ty body $ dweakT 1 l -- if Ψ, i, i = 1 | Γ ⊢ t = r : A - lift $ equal loc (eqDim (B VZ loc) (K One loc) ctx') ty body (dweakT 1 r) + let ctx1 = eqDim (B VZ loc) (K One loc) ctx' + lift $ equal loc ctx1 sg ty body $ dweakT 1 r -- then Ψ | Γ ⊢ σ · (δ i ⇒ t) ⇐ Eq [i ⇒ A] l r ⊳ Σ pure qout - check' ctx sg t@(Nat {}) ty = toCheckType ctx sg t ty + check' ctx sg t@(NAT {}) ty = toCheckType ctx sg t ty - check' ctx sg (Zero {}) ty = do - expectNat !(askAt DEFS) ctx ty.loc ty + check' ctx sg (Nat {}) ty = do + expectNAT !(askAt DEFS) ctx SZero ty.loc ty pure $ zeroFor ctx check' ctx sg (Succ n {}) ty = do - expectNat !(askAt DEFS) ctx ty.loc ty + expectNAT !(askAt DEFS) ctx SZero ty.loc ty checkC ctx sg n ty + check' ctx sg t@(STRING {}) ty = toCheckType ctx sg t ty + + check' ctx sg t@(Str s {}) ty = do + expectSTRING !(askAt DEFS) ctx SZero ty.loc ty + pure $ zeroFor ctx + check' ctx sg t@(BOX {}) ty = toCheckType ctx sg t ty check' ctx sg (Box val loc) ty = do - (q, ty) <- expectBOX !(askAt DEFS) ctx ty.loc ty - -- if Ψ | Γ ⊢ σ · s ⇐ A ⊳ Σ - valout <- checkC ctx sg val ty + (q, ty) <- expectBOX !(askAt DEFS) ctx SZero ty.loc ty + -- if Ψ | Γ ⊢ σ ⨴ π · s ⇐ A ⊳ Σ + valout <- checkC ctx (subjMult sg q) val ty -- then Ψ | Γ ⊢ σ · [s] ⇐ [π.A] ⊳ πΣ pure $ q * valout + check' ctx sg (Let qty rhs body loc) ty = do + eres <- inferC ctx (subjMult sg qty) rhs + let sqty = sg.qty * qty + qout <- checkC (extendTyLet sqty body.name eres.type (E rhs) ctx) + sg body.term (weakT 1 ty) + >>= popQ loc sqty + pure $ qty * eres.qout + qout + check' ctx sg (E e) ty = do -- if Ψ | Γ ⊢ σ · e ⇒ A' ⊳ Σ infres <- inferC ctx sg e @@ -253,7 +264,7 @@ mutual private covering checkType' : TyContext d n -> (subj : Term d n) -> (0 nc : NotClo subj) => - Maybe Universe -> TC () + Maybe Universe -> Eff TC () checkType' ctx (TYPE k loc) u = do -- if 𝓀 < ℓ then Ψ | Γ ⊢₀ Type 𝓀 ⇐ Type ℓ @@ -261,6 +272,9 @@ mutual Just l => unless (k < l) $ throw $ BadUniverse loc k l Nothing => pure () + checkType' ctx (IOState loc) u = pure () + -- Ψ | Γ ⊢₀ IOState ⇒ Type ℓ + checkType' ctx (Pi qty arg res _) u = do -- if Ψ | Γ ⊢₀ A ⇐ Type ℓ checkTypeC ctx arg u @@ -301,26 +315,35 @@ mutual checkType' ctx t@(DLam {}) u = throw $ NotType t.loc ctx t - checkType' ctx (Nat {}) u = pure () - checkType' ctx t@(Zero {}) u = throw $ NotType t.loc ctx t + checkType' ctx (NAT {}) u = pure () + checkType' ctx t@(Nat {}) u = throw $ NotType t.loc ctx t checkType' ctx t@(Succ {}) u = throw $ NotType t.loc ctx t + checkType' ctx (STRING loc) u = pure () + -- Ψ | Γ ⊢₀ STRING ⇒ Type ℓ + checkType' ctx t@(Str {}) u = throw $ NotType t.loc ctx t + checkType' ctx (BOX q ty _) u = checkType ctx ty u checkType' ctx t@(Box {}) u = throw $ NotType t.loc ctx t + checkType' ctx (Let qty rhs body loc) u = do + expectEqualQ loc qty Zero + ety <- inferC ctx SZero rhs + checkType (extendTy Zero body.name ety.type ctx) body.term u + checkType' ctx (E e) u = do -- if Ψ | Γ ⊢₀ E ⇒ Type ℓ - infres <- inferC ctx szero e + infres <- inferC ctx SZero e -- if Ψ | Γ ⊢ Type ℓ <: Type 𝓀 case u of - Just u => lift $ subtype e.loc ctx infres.type (TYPE u noLoc) - Nothing => ignore $ expectTYPE !(askAt DEFS) ctx e.loc infres.type + Just u => lift $ subtype e.loc ctx infres.type (TYPE u e.loc) + Nothing => ignore $ expectTYPE !(askAt DEFS) ctx SZero e.loc infres.type -- then Ψ | Γ ⊢₀ E ⇐ Type 𝓀 private covering checkTypeScope : TyContext d n -> Term d n -> - ScopeTerm d n -> Maybe Universe -> TC () + ScopeTerm d n -> Maybe Universe -> Eff TC () checkTypeScope ctx s (S _ (N body)) u = checkType ctx body u checkTypeScope ctx s (S [< x] (Y body)) u = checkType (extendTy Zero x s ctx) body u @@ -329,25 +352,27 @@ mutual private covering infer' : TyContext d n -> SQty -> (subj : Elim d n) -> (0 nc : NotClo subj) => - TC (InferResult' d n) + Eff TC (InferResult' d n) infer' ctx sg (F x u loc) = do -- if π·x : A {≔ s} in global context g <- lookupFree x loc !(askAt DEFS) -- if σ ≤ π - expectCompatQ loc sg.fst g.qty.fst + expectCompatQ loc sg.qty g.qty.qty -- then Ψ | Γ ⊢ σ · x ⇒ A ⊳ 𝟎 - let Val d = ctx.dimLen; Val n = ctx.termLen - pure $ InfRes {type = displace u g.type, qout = zeroFor ctx} + pure $ InfRes { + type = g.typeWithAt ctx.dimLen ctx.termLen u, + qout = zeroFor ctx + } infer' ctx sg (B i _) = -- if x : A ∈ Γ -- then Ψ | Γ ⊢ σ · x ⇒ A ⊳ (𝟎, σ·x, 𝟎) - pure $ lookupBound sg.fst i ctx.tctx + pure $ lookupBound sg.qty i ctx.tctx where lookupBound : forall n. Qty -> Var n -> TContext d n -> InferResult' d n - lookupBound pi VZ (ctx :< type) = - InfRes {type = weakT 1 type, qout = zeroFor ctx :< pi} + lookupBound pi VZ (ctx :< var) = + InfRes {type = weakT 1 var.type, qout = zeroFor ctx :< pi} lookupBound pi (VS i) (ctx :< _) = let InfRes {type, qout} = lookupBound pi i ctx in InfRes {type = weakT 1 type, qout = qout :< Zero} @@ -355,7 +380,7 @@ mutual infer' ctx sg (App fun arg loc) = do -- if Ψ | Γ ⊢ σ · f ⇒ (π·x : A) → B ⊳ Σ₁ funres <- inferC ctx sg fun - (qty, argty, res) <- expectPi !(askAt DEFS) ctx fun.loc funres.type + (qty, argty, res) <- expectPi !(askAt DEFS) ctx SZero fun.loc funres.type -- if Ψ | Γ ⊢ σ ⨴ π · s ⇐ A ⊳ Σ₂ argout <- checkC ctx (subjMult sg qty) arg argty -- then Ψ | Γ ⊢ σ · f s ⇒ B[s] ⊳ Σ₁ + πΣ₂ @@ -372,12 +397,12 @@ mutual pairres <- inferC ctx sg pair -- if Ψ | Γ, p : (x : A) × B ⊢₀ ret ⇐ Type checkTypeC (extendTy Zero ret.name pairres.type ctx) ret.term Nothing - (tfst, tsnd) <- expectSig !(askAt DEFS) ctx pair.loc pairres.type + (tfst, tsnd) <- expectSig !(askAt DEFS) ctx SZero pair.loc pairres.type -- if Ψ | Γ, x : A, y : B ⊢ σ · body ⇐ -- ret[(x, y) ∷ (x : A) × B/p] ⊳ Σ₂, ρ₁·x, ρ₂·y -- with ρ₁, ρ₂ ≤ πσ let [< x, y] = body.names - pisg = pi * sg.fst + pisg = pi * sg.qty bodyctx = extendTyN [< (pisg, x, tfst), (pisg, y, tsnd.term)] ctx bodyty = substCasePairRet body.names pairres.type ret bodyout <- checkC bodyctx sg body.term bodyty >>= @@ -388,10 +413,30 @@ mutual qout = pi * pairres.qout + bodyout } + infer' ctx sg (Fst pair loc) = do + -- if Ψ | Γ ⊢ σ · e ⇒ (x : A) × B ⊳ Σ + pairres <- inferC ctx sg pair + (tfst, _) <- expectSig !(askAt DEFS) ctx SZero pair.loc pairres.type + -- then Ψ | Γ ⊢ σ · fst e ⇒ A ⊳ ωΣ + pure $ InfRes { + type = tfst, + qout = Any * pairres.qout + } + + infer' ctx sg (Snd pair loc) = do + -- if Ψ | Γ ⊢ σ · e ⇒ (x : A) × B ⊳ Σ + pairres <- inferC ctx sg pair + (_, tsnd) <- expectSig !(askAt DEFS) ctx SZero pair.loc pairres.type + -- then Ψ | Γ ⊢ σ · snd e ⇒ B[fst e/x] ⊳ ωΣ + pure $ InfRes { + type = sub1 tsnd (Fst pair loc), + qout = Any * pairres.qout + } + infer' ctx sg (CaseEnum pi t ret arms loc) {d, n} = do -- if Ψ | Γ ⊢ σ · t ⇒ {ts} ⊳ Σ₁ tres <- inferC ctx sg t - ttags <- expectEnum !(askAt DEFS) ctx t.loc tres.type + ttags <- expectEnum !(askAt DEFS) ctx SZero t.loc tres.type -- if 1 ≤ π, OR there is only zero or one option unless (length (SortedSet.toList ttags) <= 1) $ expectCompatQ loc One pi -- if Ψ | Γ, x : {ts} ⊢₀ A ⇐ Type @@ -415,39 +460,43 @@ mutual -- if Ψ | Γ ⊢ σ · n ⇒ ℕ ⊳ Σn nres <- inferC ctx sg n let nat = nres.type - expectNat !(askAt DEFS) ctx n.loc nat + expectNAT !(askAt DEFS) ctx SZero n.loc nat -- if Ψ | Γ, n : ℕ ⊢₀ A ⇐ Type checkTypeC (extendTy Zero ret.name nat ctx) ret.term Nothing -- if Ψ | Γ ⊢ σ · zer ⇐ A[0 ∷ ℕ/n] ⊳ Σz zerout <- checkC ctx sg zer $ sub1 ret $ Ann (Zero zer.loc) nat zer.loc - -- if Ψ | Γ, n : ℕ, ih : A ⊢ σ · suc ⇐ A[succ p ∷ ℕ/n] ⊳ Σs, ρ₁.p, ρ₂.ih - -- with ρ₂ ≤ π'σ, (ρ₁ + ρ₂) ≤ πσ + -- if Ψ | Γ, n : ℕ, ih : A ⊢ σ · suc ⇐ A[succ p ∷ ℕ/n] ⊳ Σs, ρ.p, ς.ih + -- with ς ≤ π'σ, (ρ + ς) ≤ πσ let [< p, ih] = suc.names - pisg = pi * sg.fst - sucCtx = extendTyN [< (pisg, p, Nat p.loc), (pi', ih, ret.term)] ctx + pisg = pi * sg.qty + sucCtx = extendTyN [< (pisg, p, NAT p.loc), (pi', ih, ret.term)] ctx sucType = substCaseSuccRet suc.names ret sucout :< qp :< qih <- checkC sucCtx sg suc.term sucType - expectCompatQ loc qih (pi' * sg.fst) + expectCompatQ loc qih (pi' * sg.qty) -- [fixme] better error here expectCompatQ loc (qp + qih) pisg - -- then Ψ | Γ ⊢ caseπ ⋯ ⇒ A[n] ⊳ πΣn + Σz + ωΣs + -- if ς = 0, then Σb = lubs(Σz, Σs), otherwise Σb = Σz + ωςΣs + let bodyout = case qih of + Zero => lubs ctx [zerout, sucout] + _ => zerout + Any * sucout + -- then Ψ | Γ ⊢ caseπ ⋯ ⇒ A[n] ⊳ πΣn + Σb pure $ InfRes { type = sub1 ret n, - qout = pi * nres.qout + zerout + Any * sucout + qout = pi * nres.qout + bodyout } infer' ctx sg (CaseBox pi box ret body loc) = do -- if Ψ | Γ ⊢ σ · b ⇒ [ρ.A] ⊳ Σ₁ boxres <- inferC ctx sg box - (q, ty) <- expectBOX !(askAt DEFS) ctx box.loc boxres.type + (rh, ty) <- expectBOX !(askAt DEFS) ctx SZero box.loc boxres.type -- if Ψ | Γ, x : [ρ.A] ⊢₀ R ⇐ Type checkTypeC (extendTy Zero ret.name boxres.type ctx) ret.term Nothing - -- if Ψ | Γ, x : A ⊢ t ⇐ R[[x] ∷ [ρ.A/x]] ⊳ Σ₂, ς·x + -- if Ψ | Γ, x : A ⊢ σ · t ⇐ R[[x] ∷ [ρ.A/x]] ⊳ Σ₂, ς·x -- with ς ≤ ρπσ - let qpisg = q * pi * sg.fst - bodyCtx = extendTy qpisg body.name ty ctx + let rhpisg = rh * pi * sg.qty + bodyCtx = extendTy rhpisg body.name ty ctx bodyType = substCaseBoxRet body.name ty ret - bodyout <- checkC bodyCtx sg body.term bodyType >>= popQ loc qpisg + bodyout <- checkC bodyCtx sg body.term bodyType >>= popQ loc rhpisg -- then Ψ | Γ ⊢ caseπ ⋯ ⇒ R[b/x] ⊳ Σ₁ + Σ₂ pure $ InfRes { type = sub1 ret box, @@ -457,42 +506,54 @@ mutual infer' ctx sg (DApp fun dim loc) = do -- if Ψ | Γ ⊢ σ · f ⇒ Eq [𝑖 ⇒ A] l r ⊳ Σ InfRes {type, qout} <- inferC ctx sg fun - ty <- fst <$> expectEq !(askAt DEFS) ctx fun.loc type + ty <- fst <$> expectEq !(askAt DEFS) ctx SZero fun.loc type -- then Ψ | Γ ⊢ σ · f p ⇒ A‹p/𝑖› ⊳ Σ pure $ InfRes {type = dsub1 ty dim, qout} infer' ctx sg (Coe ty p q val loc) = do + -- if Ψ, 𝑖 | Γ ⊢₀ A ⇐ Type _ checkType (extendDim ty.name ctx) ty.term Nothing + -- if Ψ | Γ ⊢ σ · s ⇐ A‹p/𝑖› ⊳ Σ qout <- checkC ctx sg val $ dsub1 ty p + -- then Ψ | Γ ⊢ σ · coe (𝑖 ⇒ A) @p @q s ⇒ A‹q/𝑖› ⊳ Σ pure $ InfRes {type = dsub1 ty q, qout} infer' ctx sg (Comp ty p q val r (S [< j0] val0) (S [< j1] val1) loc) = do + -- if Ψ | Γ ⊢₀ A ⇐ Type _ checkType ctx ty Nothing + -- if Ψ | Γ ⊢ σ · s ⇐ A ⊳ Σ qout <- checkC ctx sg val ty + -- if Ψ, 𝑗, 𝑖=0 | Γ ⊢ σ · t₀ ⇐ A ⊳ Σ₀ + -- Ψ, 𝑗, 𝑖=0, 𝑗=p | Γ ⊢ t₀ = s ⇐ A let ty' = dweakT 1 ty; val' = dweakT 1 val; p' = weakD 1 p ctx0 = extendDim j0 $ eqDim r (K Zero j0.loc) ctx - val0 = val0.term + val0 = getTerm val0 qout0 <- check ctx0 sg val0 ty' - lift $ equal loc (eqDim (B VZ p.loc) p' ctx0) ty' val0 val' + lift $ equal loc (eqDim (B VZ p.loc) p' ctx0) sg ty' val0 val' + -- if Ψ, 𝑗, 𝑖=1 | Γ ⊢ σ · t₁ ⇐ A ⊳ Σ₁ + -- Ψ, 𝑗, 𝑖=1, 𝑗=p | Γ ⊢ t₁ = s ⇐ A let ctx1 = extendDim j1 $ eqDim r (K One j1.loc) ctx - val1 = val1.term + val1 = getTerm val1 qout1 <- check ctx1 sg val1 ty' - lift $ equal loc (eqDim (B VZ p.loc) p' ctx1) ty' val1 val' + -- if Σ = Σ₀ = Σ₁ + lift $ equal loc (eqDim (B VZ p.loc) p' ctx1) sg ty' val1 val' let qouts = qout :: catMaybes [toMaybe qout0, toMaybe qout1] + -- then Ψ | Γ ⊢ comp A @p @q s @r {0 𝑗 ⇒ t₀; 1 𝑗 ⇒ t₁} ⇒ A ⊳ Σ pure $ InfRes {type = ty, qout = lubs ctx qouts} infer' ctx sg (TypeCase ty ret arms def loc) = do -- if σ = 0 - expectEqualQ loc Zero sg.fst + expectEqualQ loc Zero sg.qty -- if Ψ, Γ ⊢₀ e ⇒ Type u - u <- expectTYPE !(askAt DEFS) ctx ty.loc . type =<< inferC ctx szero ty + u <- inferC ctx SZero ty >>= + expectTYPE !(askAt DEFS) ctx SZero ty.loc . type -- if Ψ, Γ ⊢₀ C ⇐ Type (non-dependent return type) checkTypeC ctx ret Nothing -- if Ψ, Γ' ⊢₀ A ⇐ C for each rhs A for_ allKinds $ \k => for_ (lookupPrecise k arms) $ \(S names t) => check0 (extendTyN (typecaseTel k names u) ctx) - t.term (weakT (arity k) ret) + (getTerm t) (weakT (arity k) ret) -- then Ψ, Γ ⊢₀ type-case ⋯ ⇒ C pure $ InfRes {type = ret, qout = zeroFor ctx} diff --git a/lib/Quox/Typing.idr b/lib/Quox/Typing.idr index 2d0a215..2ebed73 100644 --- a/lib/Quox/Typing.idr +++ b/lib/Quox/Typing.idr @@ -6,7 +6,8 @@ import public Quox.Typing.Error as Typing import public Quox.Syntax import public Quox.Definition -import public Quox.Reduce +import public Quox.Whnf +import public Quox.Pretty import Language.Reflection import Control.Eff @@ -46,16 +47,15 @@ lookupFree x loc defs = maybe (throw $ NotInScope loc x) pure $ lookup x defs public export substCasePairRet : BContext 2 -> Term d n -> ScopeTerm d n -> Term d (2 + n) substCasePairRet [< x, y] dty retty = - let tm = Pair (BVT 1 x.loc) (BVT 0 y.loc) $ x.loc `extendL` y.loc - arg = Ann tm (dty // fromNat 2) tm.loc - in + let tm = Pair (BVT 1 x.loc) (BVT 0 y.loc) $ x.loc `extendL` y.loc + arg = Ann tm (dty // fromNat 2) tm.loc in retty.term // (arg ::: shift 2) public export substCaseSuccRet : BContext 2 -> ScopeTerm d n -> Term d (2 + n) substCaseSuccRet [< p, ih] retty = - let arg = Ann (Succ (BVT 1 p.loc) p.loc) (Nat noLoc) $ p.loc `extendL` ih.loc - in + let loc = p.loc `extendL` ih.loc + arg = Ann (Succ (BVT 1 p.loc) p.loc) (NAT p.loc) loc in retty.term // (arg ::: shift 2) public export @@ -65,23 +65,31 @@ substCaseBoxRet x dty retty = retty.term // (arg ::: shift 1) -parameters (defs : Definitions) {auto _ : (Has ErrorEff fs, Has NameGen fs)} +private +0 ExpectErrorConstructor : Type +ExpectErrorConstructor = + forall d, n. Loc -> NameContexts d n -> Term d n -> Error + +parameters (defs : Definitions) + {auto _ : (Has ErrorEff fs, Has NameGen fs, Has Log fs)} namespace TyContext - parameters (ctx : TyContext d n) (loc : Loc) + parameters (ctx : TyContext d n) (sg : SQty) (loc : Loc) export covering whnf : {0 isRedex : RedexTest tm} -> CanWhnf tm isRedex => - tm d n -> Eff fs (NonRedex tm d n defs) + tm d n -> Eff fs (NonRedex tm d n defs (toWhnfContext ctx) sg) whnf tm = do let Val n = ctx.termLen; Val d = ctx.dimLen - res <- lift $ runExcept $ whnf defs (toWhnfContext ctx) tm + res <- lift $ runExcept $ whnf defs (toWhnfContext ctx) sg tm rethrow res private covering %macro - expect : (forall d, n. Loc -> NameContexts d n -> Term d n -> Error) -> - TTImp -> TTImp -> Elab (Term d n -> Eff fs a) - expect k l r = do - f <- check `(\case ~(l) => Just ~(r); _ => Nothing) - pure $ \t => maybe (throw $ k loc ctx.names t) pure . f . fst =<< whnf t + expect : ExpectErrorConstructor -> TTImp -> TTImp -> + Elab (Term d n -> Eff fs a) + expect err pat rhs = Prelude.do + match <- check `(\case ~(pat) => Just ~(rhs); _ => Nothing) + pure $ \term => do + res <- whnf term + maybe (throw $ err loc ctx.names term) pure $ match $ fst res export covering %inline expectTYPE : Term d n -> Eff fs Universe @@ -104,32 +112,40 @@ parameters (defs : Definitions) {auto _ : (Has ErrorEff fs, Has NameGen fs)} expectEq = expect ExpectedEq `(Eq {ty, l, r, _}) `((ty, l, r)) export covering %inline - expectNat : Term d n -> Eff fs () - expectNat = expect ExpectedNat `(Nat {}) `(()) + expectNAT : Term d n -> Eff fs () + expectNAT = expect ExpectedNAT `(NAT {}) `(()) + + export covering %inline + expectSTRING : Term d n -> Eff fs () + expectSTRING = expect ExpectedSTRING `(STRING {}) `(()) export covering %inline expectBOX : Term d n -> Eff fs (Qty, Term d n) expectBOX = expect ExpectedBOX `(BOX {qty, ty, _}) `((qty, ty)) + export covering %inline + expectIOState : Term d n -> Eff fs () + expectIOState = expect ExpectedIOState `(IOState {}) `(()) + namespace EqContext - parameters (ctx : EqContext n) (loc : Loc) + parameters (ctx : EqContext n) (sg : SQty) (loc : Loc) export covering whnf : {0 isRedex : RedexTest tm} -> CanWhnf tm isRedex => - tm 0 n -> Eff fs (NonRedex tm 0 n defs) + tm 0 n -> Eff fs (NonRedex tm 0 n defs (toWhnfContext ctx) sg) whnf tm = do - let Val n = ctx.termLen - res <- lift $ runExcept $ whnf defs (toWhnfContext ctx) tm + res <- lift $ runExcept $ whnf defs (toWhnfContext ctx) sg tm rethrow res private covering %macro - expect : (forall d, n. Loc -> NameContexts d n -> Term d n -> Error) -> - TTImp -> TTImp -> Elab (Term 0 n -> Eff fs a) - expect k l r = do - f <- check `(\case ~(l) => Just ~(r); _ => Nothing) - pure $ \t => - let err = throw $ k loc ctx.names (t // shift0 ctx.dimLen) in - maybe err pure . f . fst =<< whnf t + expect : ExpectErrorConstructor -> TTImp -> TTImp -> + Elab (Term 0 n -> Eff fs a) + expect err pat rhs = do + match <- check `(\case ~(pat) => Just ~(rhs); _ => Nothing) + pure $ \term => do + res <- whnf term + let t0 = delay $ term // shift0 ctx.dimLen + maybe (throw $ err loc ctx.names t0) pure $ match $ fst res export covering %inline expectTYPE : Term 0 n -> Eff fs Universe @@ -152,9 +168,17 @@ parameters (defs : Definitions) {auto _ : (Has ErrorEff fs, Has NameGen fs)} expectEq = expect ExpectedEq `(Eq {ty, l, r, _}) `((ty, l, r)) export covering %inline - expectNat : Term 0 n -> Eff fs () - expectNat = expect ExpectedNat `(Nat {}) `(()) + expectNAT : Term 0 n -> Eff fs () + expectNAT = expect ExpectedNAT `(NAT {}) `(()) + + export covering %inline + expectSTRING : Term 0 n -> Eff fs () + expectSTRING = expect ExpectedSTRING `(STRING {}) `(()) export covering %inline expectBOX : Term 0 n -> Eff fs (Qty, Term 0 n) expectBOX = expect ExpectedBOX `(BOX {qty, ty, _}) `((qty, ty)) + + export covering %inline + expectIOState : Term 0 n -> Eff fs () + expectIOState = expect ExpectedIOState `(IOState {}) `(()) diff --git a/lib/Quox/Typing/Context.idr b/lib/Quox/Typing/Context.idr index c1db5fe..d231694 100644 --- a/lib/Quox/Typing/Context.idr +++ b/lib/Quox/Typing/Context.idr @@ -4,17 +4,51 @@ import Quox.Syntax import Quox.Context import Quox.Pretty import public Data.Singleton +import Derive.Prelude %default total +%language ElabReflection public export QContext : Nat -> Type QContext = Context' Qty +public export +record LocalVar d n where + constructor MkLocal + type : Term d n + term : Maybe (Term d n) -- if from a `let` +%runElab deriveIndexed "LocalVar" [Show] + +namespace LocalVar + export %inline + letVar : (type, term : Term d n) -> LocalVar d n + letVar type term = MkLocal {type, term = Just term} + + export %inline + lamVar : (type : Term d n) -> LocalVar d n + lamVar type = MkLocal {type, term = Nothing} + + export %inline + mapVar : (Term d n -> Term d' n') -> LocalVar d n -> LocalVar d' n' + mapVar f = {type $= f, term $= map f} + + export %inline + subD : DSubst d1 d2 -> LocalVar d1 n -> LocalVar d2 n + subD th = mapVar (// th) + + export %inline + weakD : LocalVar d n -> LocalVar (S d) n + weakD = subD $ shift 1 + +export %inline CanShift (LocalVar d) where l // by = mapVar (// by) l +export %inline CanDSubst LocalVar where l // by = mapVar (// by) l +export %inline CanTSubst LocalVar where l // by = mapVar (// by) l + public export TContext : TermLike -TContext d = Context (Term d) +TContext d = Context (LocalVar d) public export QOutput : Nat -> Type @@ -31,11 +65,12 @@ record TyContext d n where {auto dimLen : Singleton d} {auto termLen : Singleton n} dctx : DimEq d - dnames : BContext d + dnames : BContext d -- only used for printing tctx : TContext d n - tnames : BContext n + tnames : BContext n -- only used for printing qtys : QContext n -- only used for printing %name TyContext ctx +%runElab deriveIndexed "TyContext" [Show] public export @@ -46,29 +81,29 @@ record EqContext n where dassign : DimAssign dimLen -- only used for printing dnames : BContext dimLen -- only used for printing tctx : TContext 0 n - tnames : BContext n + tnames : BContext n -- only used for printing qtys : QContext n -- only used for printing %name EqContext ctx +%runElab deriveIndexed "EqContext" [Show] public export record WhnfContext d n where constructor MkWhnfContext + {auto dimLen : Singleton d} + {auto termLen : Singleton n} dnames : BContext d tnames : BContext n tctx : TContext d n %name WhnfContext ctx +%runElab deriveIndexed "WhnfContext" [Show] namespace TContext - export %inline - pushD : TContext d n -> TContext (S d) n - pushD tel = map (// shift 1) tel - export %inline zeroFor : Context tm n -> QOutput n zeroFor ctx = Zero <$ ctx -private +public export extendLen : Telescope a n1 n2 -> Singleton n1 -> Singleton n2 extendLen [<] x = x extendLen (tel :< _) x = [|S $ extendLen tel x|] @@ -78,32 +113,66 @@ public export CtxExtension : Nat -> Nat -> Nat -> Type CtxExtension d = Telescope ((Qty, BindName,) . Term d) +public export +CtxExtension0 : Nat -> Nat -> Nat -> Type +CtxExtension0 d = Telescope ((BindName,) . Term d) + +public export +CtxExtensionLet : Nat -> Nat -> Nat -> Type +CtxExtensionLet d = Telescope ((Qty, BindName,) . LocalVar d) + +public export +CtxExtensionLet0 : Nat -> Nat -> Nat -> Type +CtxExtensionLet0 d = Telescope ((BindName,) . LocalVar d) + namespace TyContext public export %inline empty : TyContext 0 0 - empty = - MkTyContext {dctx = new, dnames = [<], tctx = [<], tnames = [<], qtys = [<]} + empty = MkTyContext { + dctx = new, dnames = [<], tctx = [<], tnames = [<], qtys = [<] + } public export %inline null : TyContext d n -> Bool null ctx = null ctx.dnames && null ctx.tnames export %inline - extendTyN : CtxExtension d n1 n2 -> TyContext d n1 -> TyContext d n2 - extendTyN xss (MkTyContext {termLen, dctx, dnames, tctx, tnames, qtys}) = - let (qs, xs, ss) = unzip3 xss in + extendTyLetN : CtxExtensionLet d n1 n2 -> TyContext d n1 -> TyContext d n2 + extendTyLetN xss (MkTyContext {termLen, dctx, dnames, tctx, tnames, qtys}) = + let (qs, xs, ls) = unzip3 xss in MkTyContext { dctx, dnames, termLen = extendLen xss termLen, - tctx = tctx . ss, + tctx = tctx . ls, tnames = tnames . xs, qtys = qtys . qs } + export %inline + extendTyN : CtxExtension d n1 n2 -> TyContext d n1 -> TyContext d n2 + extendTyN = extendTyLetN . map (\(q, x, s) => (q, x, lamVar s)) + + export %inline + extendTyLetN0 : CtxExtensionLet0 d n1 n2 -> TyContext d n1 -> TyContext d n2 + extendTyLetN0 xss = extendTyLetN (map (Zero,) xss) + + export %inline + extendTyN0 : CtxExtension0 d n1 n2 -> TyContext d n1 -> TyContext d n2 + extendTyN0 xss = extendTyN (map (Zero,) xss) + + export %inline + extendTyLet : Qty -> BindName -> Term d n -> Term d n -> + TyContext d n -> TyContext d (S n) + extendTyLet q x s e = extendTyLetN [< (q, x, letVar s e)] + export %inline extendTy : Qty -> BindName -> Term d n -> TyContext d n -> TyContext d (S n) extendTy q x s = extendTyN [< (q, x, s)] + export %inline + extendTy0 : BindName -> Term d n -> TyContext d n -> TyContext d (S n) + extendTy0 = extendTy Zero + export %inline extendDim : BindName -> TyContext d n -> TyContext (S d) n extendDim x (MkTyContext {dimLen, dctx, dnames, tctx, tnames, qtys}) = @@ -111,7 +180,7 @@ namespace TyContext dctx = dctx : DSubst d 0 -> EqContext n makeEqContext ctx@(MkTyContext {dnames, _}) th = - let (d' ** Refl) = lengthPrf0 dnames in makeEqContext' ctx th + let Val d = lengthPrf0 dnames in makeEqContext' ctx th namespace EqContext public export %inline @@ -172,21 +241,42 @@ namespace EqContext null ctx = null ctx.dnames && null ctx.tnames export %inline - extendTyN : CtxExtension 0 n1 n2 -> EqContext n1 -> EqContext n2 - extendTyN xss (MkEqContext {termLen, dassign, dnames, tctx, tnames, qtys}) = - let (qs, xs, ss) = unzip3 xss in + extendTyLetN : CtxExtensionLet 0 n1 n2 -> EqContext n1 -> EqContext n2 + extendTyLetN xss (MkEqContext {termLen, dassign, dnames, tctx, tnames, qtys}) = + let (qs, xs, ls) = unzip3 xss in MkEqContext { termLen = extendLen xss termLen, - tctx = tctx . ss, + tctx = tctx . ls, tnames = tnames . xs, qtys = qtys . qs, dassign, dnames } + export %inline + extendTyN : CtxExtension 0 n1 n2 -> EqContext n1 -> EqContext n2 + extendTyN = extendTyLetN . map (\(q, x, s) => (q, x, lamVar s)) + + export %inline + extendTyLetN0 : CtxExtensionLet0 0 n1 n2 -> EqContext n1 -> EqContext n2 + extendTyLetN0 xss = extendTyLetN (map (Zero,) xss) + + export %inline + extendTyN0 : CtxExtension0 0 n1 n2 -> EqContext n1 -> EqContext n2 + extendTyN0 xss = extendTyN (map (Zero,) xss) + + export %inline + extendTyLet : Qty -> BindName -> Term 0 n -> Term 0 n -> + EqContext n -> EqContext (S n) + extendTyLet q x s e = extendTyLetN [< (q, x, letVar s e)] + export %inline extendTy : Qty -> BindName -> Term 0 n -> EqContext n -> EqContext (S n) extendTy q x s = extendTyN [< (q, x, s)] + export %inline + extendTy0 : BindName -> Term 0 n -> EqContext n -> EqContext (S n) + extendTy0 = extendTy Zero + export %inline extendDim : BindName -> DimConst -> EqContext n -> EqContext n extendDim x e (MkEqContext {dassign, dnames, tctx, tnames, qtys}) = @@ -197,8 +287,8 @@ namespace EqContext toTyContext : (e : EqContext n) -> TyContext e.dimLen n toTyContext (MkEqContext {dimLen, dassign, dnames, tctx, tnames, qtys}) = MkTyContext { - dctx = fromGround dassign, - tctx = map (// shift0 dimLen) tctx, + dctx = fromGround dnames dassign, + tctx = map (subD $ shift0 dimLen) tctx, dnames, tnames, qtys } @@ -207,18 +297,44 @@ namespace EqContext toWhnfContext (MkEqContext {tnames, tctx, _}) = MkWhnfContext {dnames = [<], tnames, tctx} + export + injElim : WhnfContext d n -> Elim 0 0 -> Elim d n + injElim ctx e = + let Val d = ctx.dimLen; Val n = ctx.termLen in + e // shift0 d // shift0 n + namespace WhnfContext public export %inline empty : WhnfContext 0 0 empty = MkWhnfContext [<] [<] [<] + export + extendTy' : BindName -> LocalVar d n -> WhnfContext d n -> WhnfContext d (S n) + extendTy' x var (MkWhnfContext {termLen, dnames, tnames, tctx}) = + MkWhnfContext { + dnames, + termLen = [|S termLen|], + tnames = tnames :< x, + tctx = tctx :< var + } + + export %inline + extendTy : BindName -> Term d n -> WhnfContext d n -> WhnfContext d (S n) + extendTy x ty ctx = extendTy' x (lamVar ty) ctx + + export %inline + extendTyLet : BindName -> (type, term : Term d n) -> + WhnfContext d n -> WhnfContext d (S n) + extendTyLet x type term ctx = extendTy' x (letVar {type, term}) ctx + export extendDimN : {s : Nat} -> BContext s -> WhnfContext d n -> WhnfContext (s + d) n - extendDimN ns (MkWhnfContext {dnames, tnames, tctx}) = + extendDimN ns (MkWhnfContext {dnames, tnames, tctx, dimLen}) = MkWhnfContext { + dimLen = [|Val s + dimLen|], dnames = dnames ++ toSnocVect' ns, - tctx = dweakT s <$> tctx, + tctx = map (subD $ shift s) tctx, tnames } @@ -230,14 +346,25 @@ namespace WhnfContext private prettyTContextElt : {opts : _} -> BContext d -> BContext n -> - Qty -> BindName -> Term d n -> Eff Pretty (Doc opts) -prettyTContextElt dnames tnames q x s = - pure $ hsep [hcat [!(prettyQty q), !dotD, !(prettyTBind x)], !colonD, - !(withPrec Outer $ prettyTerm dnames tnames s)] + Doc opts -> BindName -> LocalVar d n -> + Eff Pretty (Doc opts) +prettyTContextElt dnames tnames q x s = do + dot <- dotD + x <- prettyTBind x; colon <- colonD + ty <- withPrec Outer $ prettyTerm dnames tnames s.type; eq <- cstD + tm <- traverse (withPrec Outer . prettyTerm dnames tnames) s.term + d <- askAt INDENT + let qx = hcat [q, dot, x] + pure $ case tm of + Nothing => + ifMultiline (hsep [qx, colon, ty]) (vsep [qx, indent d $ colon <++> ty]) + Just tm => + ifMultiline (hsep [qx, colon, ty, eq, tm]) + (vsep [qx, indent d $ colon <++> ty, indent d $ eq <++> tm]) private prettyTContext' : {opts : _} -> - BContext d -> QContext n -> BContext n -> + BContext d -> Context' (Doc opts) n -> BContext n -> TContext d n -> Eff Pretty (SnocList (Doc opts)) prettyTContext' _ [<] [<] [<] = pure [<] prettyTContext' dnames (qtys :< q) (tnames :< x) (tys :< t) = @@ -248,8 +375,11 @@ export prettyTContext : {opts : _} -> BContext d -> QContext n -> BContext n -> TContext d n -> Eff Pretty (Doc opts) -prettyTContext dnames qtys tnames tys = - separateTight !commaD <$> prettyTContext' dnames qtys tnames tys +prettyTContext dnames qtys tnames tys = do + comma <- commaD + qtys <- traverse prettyQty qtys + sepSingle . exceptLast (<+> comma) . toList <$> + prettyTContext' dnames qtys tnames tys export prettyTyContext : {opts : _} -> TyContext d n -> Eff Pretty (Doc opts) @@ -257,9 +387,16 @@ prettyTyContext (MkTyContext dctx dnames tctx tnames qtys) = case dctx of C [<] => prettyTContext dnames qtys tnames tctx _ => pure $ - sep [!(prettyDimEq dnames dctx) <++> !pipeD, - !(prettyTContext dnames qtys tnames tctx)] + sepSingle [!(prettyDimEq dnames dctx) <++> !pipeD, + !(prettyTContext dnames qtys tnames tctx)] export prettyEqContext : {opts : _} -> EqContext n -> Eff Pretty (Doc opts) prettyEqContext ctx = prettyTyContext $ toTyContext ctx + +export +prettyWhnfContext : {opts : _} -> WhnfContext d n -> Eff Pretty (Doc opts) +prettyWhnfContext ctx = + let Val n = ctx.termLen in + sepSingle . exceptLast (<+> comma) . toList <$> + prettyTContext' ctx.dnames (replicate n "_") ctx.tnames ctx.tctx diff --git a/lib/Quox/Typing/Error.idr b/lib/Quox/Typing/Error.idr index 5975445..502757c 100644 --- a/lib/Quox/Typing/Error.idr +++ b/lib/Quox/Typing/Error.idr @@ -2,12 +2,19 @@ module Quox.Typing.Error import Quox.Loc import Quox.Syntax +import Quox.Syntax.Builtin import Quox.Typing.Context import Quox.Typing.EqMode import Quox.Pretty import Data.List import Control.Eff +import Derive.Prelude + +%language ElabReflection +%hide TT.Name + +%default total public export @@ -15,6 +22,7 @@ record NameContexts d n where constructor MkNameContexts dnames : BContext d tnames : BContext n +%runElab deriveIndexed "NameContexts" [Show] namespace NameContexts export @@ -55,17 +63,19 @@ namespace WhnfContext public export data Error -= ExpectedTYPE Loc (NameContexts d n) (Term d n) -| ExpectedPi Loc (NameContexts d n) (Term d n) -| ExpectedSig Loc (NameContexts d n) (Term d n) -| ExpectedEnum Loc (NameContexts d n) (Term d n) -| ExpectedEq Loc (NameContexts d n) (Term d n) -| ExpectedNat Loc (NameContexts d n) (Term d n) -| ExpectedBOX Loc (NameContexts d n) (Term d n) -| BadUniverse Loc Universe Universe -| TagNotIn Loc TagVal (SortedSet TagVal) -| BadCaseEnum Loc (SortedSet TagVal) (SortedSet TagVal) -| BadQtys Loc String (TyContext d n) (List (QOutput n, Term d n)) += ExpectedTYPE Loc (NameContexts d n) (Term d n) +| ExpectedPi Loc (NameContexts d n) (Term d n) +| ExpectedSig Loc (NameContexts d n) (Term d n) +| ExpectedEnum Loc (NameContexts d n) (Term d n) +| ExpectedEq Loc (NameContexts d n) (Term d n) +| ExpectedNAT Loc (NameContexts d n) (Term d n) +| ExpectedSTRING Loc (NameContexts d n) (Term d n) +| ExpectedBOX Loc (NameContexts d n) (Term d n) +| ExpectedIOState Loc (NameContexts d n) (Term d n) +| BadUniverse Loc Universe Universe +| TagNotIn Loc TagVal (SortedSet TagVal) +| BadCaseEnum Loc (SortedSet TagVal) (SortedSet TagVal) +| BadQtys Loc String (TyContext d n) (List (QOutput n, Term d n)) -- first term arg of ClashT is the type | ClashT Loc (EqContext n) EqMode (Term 0 n) (Term 0 n) (Term 0 n) @@ -78,11 +88,14 @@ data Error | NotType Loc (TyContext d n) (Term d n) | WrongType Loc (EqContext n) (Term 0 n) (Term 0 n) +| WrongBuiltinType Builtin Error +| ExpectedSingleEnum Loc (NameContexts d n) (Term d n) + | MissingEnumArm Loc TagVal (List TagVal) -- extra context | WhileChecking - (TyContext d n) Qty + (TyContext d n) SQty (Term d n) -- term (Term d n) -- type Error @@ -92,19 +105,20 @@ data Error (Maybe Universe) Error | WhileInferring - (TyContext d n) Qty + (TyContext d n) SQty (Elim d n) Error | WhileComparingT - (EqContext n) EqMode + (EqContext n) EqMode SQty (Term 0 n) -- type (Term 0 n) (Term 0 n) -- lhs/rhs Error | WhileComparingE - (EqContext n) EqMode + (EqContext n) EqMode SQty (Elim 0 n) (Elim 0 n) Error %name Error err +%runElab derive "Error" [Show] public export ErrorEff : Type -> Type @@ -113,31 +127,35 @@ ErrorEff = Except Error export Located Error where - (ExpectedTYPE loc _ _).loc = loc - (ExpectedPi loc _ _).loc = loc - (ExpectedSig loc _ _).loc = loc - (ExpectedEnum loc _ _).loc = loc - (ExpectedEq loc _ _).loc = loc - (ExpectedNat loc _ _).loc = loc - (ExpectedBOX loc _ _).loc = loc - (BadUniverse loc _ _).loc = loc - (TagNotIn loc _ _).loc = loc - (BadCaseEnum loc _ _).loc = loc - (BadQtys loc _ _ _).loc = loc - (ClashT loc _ _ _ _ _).loc = loc - (ClashTy loc _ _ _ _).loc = loc - (ClashE loc _ _ _ _).loc = loc - (ClashU loc _ _ _).loc = loc - (ClashQ loc _ _).loc = loc - (NotInScope loc _).loc = loc - (NotType loc _ _).loc = loc - (WrongType loc _ _ _).loc = loc - (MissingEnumArm loc _ _).loc = loc - (WhileChecking _ _ _ _ err).loc = err.loc - (WhileCheckingTy _ _ _ err).loc = err.loc - (WhileInferring _ _ _ err).loc = err.loc - (WhileComparingT _ _ _ _ _ err).loc = err.loc - (WhileComparingE _ _ _ _ err).loc = err.loc + (ExpectedTYPE loc _ _).loc = loc + (ExpectedPi loc _ _).loc = loc + (ExpectedSig loc _ _).loc = loc + (ExpectedEnum loc _ _).loc = loc + (ExpectedEq loc _ _).loc = loc + (ExpectedNAT loc _ _).loc = loc + (ExpectedSTRING loc _ _).loc = loc + (ExpectedBOX loc _ _).loc = loc + (ExpectedIOState loc _ _).loc = loc + (BadUniverse loc _ _).loc = loc + (TagNotIn loc _ _).loc = loc + (BadCaseEnum loc _ _).loc = loc + (BadQtys loc _ _ _).loc = loc + (ClashT loc _ _ _ _ _).loc = loc + (ClashTy loc _ _ _ _).loc = loc + (ClashE loc _ _ _ _).loc = loc + (ClashU loc _ _ _).loc = loc + (ClashQ loc _ _).loc = loc + (NotInScope loc _).loc = loc + (NotType loc _ _).loc = loc + (WrongType loc _ _ _).loc = loc + (WrongBuiltinType _ err).loc = err.loc + (ExpectedSingleEnum loc _ _).loc = loc + (MissingEnumArm loc _ _).loc = loc + (WhileChecking _ _ _ _ err).loc = err.loc + (WhileCheckingTy _ _ _ err).loc = err.loc + (WhileInferring _ _ _ err).loc = err.loc + (WhileComparingT _ _ _ _ _ _ err).loc = err.loc + (WhileComparingE _ _ _ _ _ err).loc = err.loc ||| separates out all the error context layers @@ -150,10 +168,10 @@ explodeContext (WhileCheckingTy ctx s k err) = mapFst (WhileCheckingTy ctx s k ::) $ explodeContext err explodeContext (WhileInferring ctx x e err) = mapFst (WhileInferring ctx x e ::) $ explodeContext err -explodeContext (WhileComparingT ctx x s t r err) = - mapFst (WhileComparingT ctx x s t r ::) $ explodeContext err -explodeContext (WhileComparingE ctx x e f err) = - mapFst (WhileComparingE ctx x e f ::) $ explodeContext err +explodeContext (WhileComparingT ctx x sg s t r err) = + mapFst (WhileComparingT ctx x sg s t r ::) $ explodeContext err +explodeContext (WhileComparingE ctx x sg e f err) = + mapFst (WhileComparingE ctx x sg e f ::) $ explodeContext err explodeContext err = ([], err) ||| leaves the outermost context layer, and the innermost (up to) n, and removes @@ -240,160 +258,186 @@ where hangDSingle "with quantities" $ separateTight !commaD $ toSnocList' !(traverse prettyQty qs)] -export -prettyErrorNoLoc : {opts : _} -> (showContext : Bool) -> Error -> - Eff Pretty (Doc opts) -prettyErrorNoLoc showContext = \case - ExpectedTYPE _ ctx s => - hangDSingle "expected a type universe, but got" - !(prettyTerm ctx.dnames ctx.tnames s) - - ExpectedPi _ ctx s => - hangDSingle "expected a function type, but got" - !(prettyTerm ctx.dnames ctx.tnames s) - - ExpectedSig _ ctx s => - hangDSingle "expected a pair type, but got" - !(prettyTerm ctx.dnames ctx.tnames s) - - ExpectedEnum _ ctx s => - hangDSingle "expected an enumeration type, but got" - !(prettyTerm ctx.dnames ctx.tnames s) - - ExpectedEq _ ctx s => - hangDSingle "expected an enumeration type, but got" - !(prettyTerm ctx.dnames ctx.tnames s) - - ExpectedNat _ ctx s => - hangDSingle - ("expected the type" <++> - !(prettyTerm [<] [<] $ Nat noLoc) <+> ", but got") - !(prettyTerm ctx.dnames ctx.tnames s) - - ExpectedBOX _ ctx s => - hangDSingle "expected a box type, but got" - !(prettyTerm ctx.dnames ctx.tnames s) - - BadUniverse _ k l => pure $ - sep ["the universe level" <++> !(prettyUniverse k), - "is not strictly less than" <++> !(prettyUniverse l)] - - TagNotIn _ tag set => - hangDSingle (hsep ["the tag", !(prettyTag tag), "is not contained in"]) - !(prettyTerm [<] [<] $ Enum set noLoc) - - BadCaseEnum _ head body => sep <$> sequence - [hangDSingle "case expression has head of type" - !(prettyTerm [<] [<] $ Enum head noLoc), - hangDSingle "but cases for" - !(prettyTerm [<] [<] $ Enum body noLoc)] - - BadQtys _ what ctx arms => - hangDSingle (text "inconsistent variable usage in \{what}") $ - sep !(printCaseQtys ctx ctx.tnames arms) - - ClashT _ ctx mode ty s t => - inEContext ctx . sep =<< sequence - [hangDSingle "the term" !(prettyTerm [<] ctx.tnames s), - hangDSingle (text "is not \{prettyMode mode}") - !(prettyTerm [<] ctx.tnames t), - hangDSingle "at type" !(prettyTerm [<] ctx.tnames ty)] - - ClashTy _ ctx mode a b => - inEContext ctx . sep =<< sequence - [hangDSingle "the type" !(prettyTerm [<] ctx.tnames a), - hangDSingle (text "is not \{prettyMode mode}") - !(prettyTerm [<] ctx.tnames b)] - - ClashE _ ctx mode e f => - inEContext ctx . sep =<< sequence - [hangDSingle "the term" !(prettyElim [<] ctx.tnames e), - hangDSingle (text "is not \{prettyMode mode}") - !(prettyElim [<] ctx.tnames f)] - - ClashU _ mode k l => pure $ - sep ["the universe level" <++> !(prettyUniverse k), - text "is not \{prettyModeU mode}" <++> !(prettyUniverse l)] - - ClashQ _ pi rh => pure $ - sep ["the quantity" <++> !(prettyQty pi), - "is not equal to" <++> !(prettyQty rh)] - - NotInScope _ x => pure $ - hsep [!(prettyFree x), "is not in scope"] - - NotType _ ctx s => - inTContext ctx . sep =<< sequence - [hangDSingle "the term" !(prettyTerm ctx.dnames ctx.tnames s), - pure "is not a type"] - - WrongType _ ctx ty s => - inEContext ctx . sep =<< sequence - [hangDSingle "the term" !(prettyTerm [<] ctx.tnames s), - hangDSingle "cannot have type" !(prettyTerm [<] ctx.tnames ty)] - - MissingEnumArm _ tag tags => pure $ - sep [hsep ["the tag", !(prettyTag tag), "is not contained in"], - !(prettyTerm [<] [<] $ Enum (fromList tags) noLoc)] - - WhileChecking ctx pi s a err => - [|vappendBlank - (inTContext ctx . sep =<< sequence - [hangDSingle "while checking" !(prettyTerm ctx.dnames ctx.tnames s), - hangDSingle "has type" !(prettyTerm ctx.dnames ctx.tnames a), - hangDSingle "with quantity" !(prettyQty pi)]) - (prettyErrorNoLoc showContext err)|] - - WhileCheckingTy ctx a k err => - [|vappendBlank - (inTContext ctx . sep =<< sequence - [hangDSingle "while checking" !(prettyTerm ctx.dnames ctx.tnames a), - pure $ text $ isTypeInUniverse k]) - (prettyErrorNoLoc showContext err)|] - - WhileInferring ctx pi e err => - [|vappendBlank - (inTContext ctx . sep =<< sequence - [hangDSingle "while inferring the type of" - !(prettyElim ctx.dnames ctx.tnames e), - hangDSingle "with quantity" !(prettyQty pi)]) - (prettyErrorNoLoc showContext err)|] - - WhileComparingT ctx mode a s t err => - [|vappendBlank - (inEContext ctx . sep =<< sequence - [hangDSingle "while checking that" !(prettyTerm [<] ctx.tnames s), - hangDSingle (text "is \{prettyMode mode}") - !(prettyTerm [<] ctx.tnames t), - hangDSingle "at type" !(prettyTerm [<] ctx.tnames a)]) - (prettyErrorNoLoc showContext err)|] - - WhileComparingE ctx mode e f err => - [|vappendBlank - (inEContext ctx . sep =<< sequence - [hangDSingle "while checking that" !(prettyElim [<] ctx.tnames e), - hangDSingle (text "is \{prettyMode mode}") - !(prettyElim [<] ctx.tnames f)]) - (prettyErrorNoLoc showContext err)|] - -where - vappendBlank : Doc opts -> Doc opts -> Doc opts - vappendBlank a b = flush a `vappend` b +parameters {opts : LayoutOpts} (showContext : Bool) + export + inContext' : Bool -> a -> (a -> Eff Pretty (Doc opts)) -> + Doc opts -> Eff Pretty (Doc opts) + inContext' null ctx f doc = + if showContext && not null then + vappend doc <$> hangDSingle "in context" !(f ctx) + else pure doc + export %inline inTContext : TyContext d n -> Doc opts -> Eff Pretty (Doc opts) - inTContext ctx doc = - if showContext && not (null ctx) then - pure $ vappend doc (sep ["in context", !(prettyTyContext ctx)]) - else pure doc + inTContext ctx = inContext' (null ctx) ctx prettyTyContext + export %inline inEContext : EqContext n -> Doc opts -> Eff Pretty (Doc opts) - inEContext ctx doc = - if showContext && not (null ctx) then - pure $ vappend doc (sep ["in context", !(prettyEqContext ctx)]) - else pure doc + inEContext ctx = inContext' (null ctx) ctx prettyEqContext -export -prettyError : {opts : _} -> (showContext : Bool) -> - Error -> Eff Pretty (Doc opts) -prettyError showContext err = sep <$> sequence - [prettyLoc err.loc, indentD =<< prettyErrorNoLoc showContext err] + export + prettyErrorNoLoc : Error -> Eff Pretty (Doc opts) + prettyErrorNoLoc err0 = case err0 of + ExpectedTYPE _ ctx s => + hangDSingle "expected a type universe, but got" + !(prettyTerm ctx.dnames ctx.tnames s) + + ExpectedPi _ ctx s => + hangDSingle "expected a function type, but got" + !(prettyTerm ctx.dnames ctx.tnames s) + + ExpectedSig _ ctx s => + hangDSingle "expected a pair type, but got" + !(prettyTerm ctx.dnames ctx.tnames s) + + ExpectedEnum _ ctx s => + hangDSingle "expected an enumeration type, but got" + !(prettyTerm ctx.dnames ctx.tnames s) + + ExpectedEq _ ctx s => + hangDSingle "expected an equality type, but got" + !(prettyTerm ctx.dnames ctx.tnames s) + + ExpectedNAT _ ctx s => + hangDSingle + ("expected the type" <++> + !(prettyTerm [<] [<] $ NAT noLoc) <+> ", but got") + !(prettyTerm ctx.dnames ctx.tnames s) + + ExpectedSTRING _ ctx s => + hangDSingle + ("expected the type" <++> + !(prettyTerm [<] [<] $ STRING noLoc) <+> ", but got") + !(prettyTerm ctx.dnames ctx.tnames s) + + ExpectedBOX _ ctx s => + hangDSingle "expected a box type, but got" + !(prettyTerm ctx.dnames ctx.tnames s) + + ExpectedIOState _ ctx s => + hangDSingle "expected IOState, but got" + !(prettyTerm ctx.dnames ctx.tnames s) + + BadUniverse _ k l => pure $ + sep ["the universe level" <++> !(prettyUniverse k), + "is not strictly less than" <++> !(prettyUniverse l)] + + TagNotIn _ tag set => + hangDSingle (hsep ["the tag", !(prettyTag tag), "is not contained in"]) + !(prettyTerm [<] [<] $ Enum set noLoc) + + BadCaseEnum _ head body => sep <$> sequence + [hangDSingle "case expression has head of type" + !(prettyTerm [<] [<] $ Enum head noLoc), + hangDSingle "but cases for" + !(prettyTerm [<] [<] $ Enum body noLoc)] + + BadQtys _ what ctx arms => + hangDSingle (text "inconsistent variable usage in \{what}") $ + sep !(printCaseQtys ctx ctx.tnames arms) + + ClashT _ ctx mode ty s t => + inEContext ctx . sep =<< sequence + [hangDSingle "the term" !(prettyTerm [<] ctx.tnames s), + hangDSingle (text "is not \{prettyMode mode}") + !(prettyTerm [<] ctx.tnames t), + hangDSingle "at type" !(prettyTerm [<] ctx.tnames ty)] + + ClashTy _ ctx mode a b => + inEContext ctx . sep =<< sequence + [hangDSingle "the type" !(prettyTerm [<] ctx.tnames a), + hangDSingle (text "is not \{prettyMode mode}") + !(prettyTerm [<] ctx.tnames b)] + + ClashE _ ctx mode e f => + inEContext ctx . sep =<< sequence + [hangDSingle "the term" !(prettyElim [<] ctx.tnames e), + hangDSingle (text "is not \{prettyMode mode}") + !(prettyElim [<] ctx.tnames f)] + + ClashU _ mode k l => pure $ + sep ["the universe level" <++> !(prettyUniverse k), + text "is not \{prettyModeU mode}" <++> !(prettyUniverse l)] + + ClashQ _ pi rh => pure $ + sep ["the quantity" <++> !(prettyQty pi), + "is not equal to" <++> !(prettyQty rh)] + + NotInScope _ x => pure $ + hsep [!(prettyFree x), "is not in scope"] + + NotType _ ctx s => + inTContext ctx . sep =<< sequence + [hangDSingle "the term" !(prettyTerm ctx.dnames ctx.tnames s), + pure "is not a type"] + + WrongType _ ctx ty s => + inEContext ctx . sep =<< sequence + [hangDSingle "the term" !(prettyTerm [<] ctx.tnames s), + hangDSingle "cannot have type" !(prettyTerm [<] ctx.tnames ty)] + + WrongBuiltinType b err => pure $ + vappend + (sep [sep ["when checking", text $ builtinDesc b], + sep ["has type", !(builtinTypeDoc b)]]) + !(prettyErrorNoLoc err) + + ExpectedSingleEnum _ ctx s => + hangDSingle "expected an enumeration type with one case, but got" + !(prettyTerm ctx.dnames ctx.tnames s) + + MissingEnumArm _ tag tags => pure $ + sep [hsep ["the tag", !(prettyTag tag), "is not contained in"], + !(prettyTerm [<] [<] $ Enum (fromList tags) noLoc)] + + WhileChecking ctx sg s a err => + [|vappendBlank + (inTContext ctx . sep =<< sequence + [hangDSingle "while checking" !(prettyTerm ctx.dnames ctx.tnames s), + hangDSingle "has type" !(prettyTerm ctx.dnames ctx.tnames a), + hangDSingle "with quantity" !(prettyQty sg.qty)]) + (prettyErrorNoLoc err)|] + + WhileCheckingTy ctx a k err => + [|vappendBlank + (inTContext ctx . sep =<< sequence + [hangDSingle "while checking" !(prettyTerm ctx.dnames ctx.tnames a), + pure $ text $ isTypeInUniverse k]) + (prettyErrorNoLoc err)|] + + WhileInferring ctx sg e err => + [|vappendBlank + (inTContext ctx . sep =<< sequence + [hangDSingle "while inferring the type of" + !(prettyElim ctx.dnames ctx.tnames e), + hangDSingle "with quantity" !(prettyQty sg.qty)]) + (prettyErrorNoLoc err)|] + + WhileComparingT ctx mode sg a s t err => + [|vappendBlank + (inEContext ctx . sep =<< sequence + [hangDSingle "while checking that" !(prettyTerm [<] ctx.tnames s), + hangDSingle (text "is \{prettyMode mode}") + !(prettyTerm [<] ctx.tnames t), + hangDSingle "at type" !(prettyTerm [<] ctx.tnames a), + hangDSingle "with quantity" !(prettyQty sg.qty)]) + (prettyErrorNoLoc err)|] + + WhileComparingE ctx mode sg e f err => + [|vappendBlank + (inEContext ctx . sep =<< sequence + [hangDSingle "while checking that" !(prettyElim [<] ctx.tnames e), + hangDSingle (text "is \{prettyMode mode}") + !(prettyElim [<] ctx.tnames f), + hangDSingle "with quantity" !(prettyQty sg.qty)]) + (prettyErrorNoLoc err)|] + + where + vappendBlank : Doc opts -> Doc opts -> Doc opts + vappendBlank a b = flush a `vappend` b + + export + prettyError : Error -> Eff Pretty (Doc opts) + prettyError err = hangDSingle + !(prettyLoc err.loc) + !(indentD =<< prettyErrorNoLoc err) diff --git a/lib/Quox/Untyped/Erase.idr b/lib/Quox/Untyped/Erase.idr new file mode 100644 index 0000000..54062b4 --- /dev/null +++ b/lib/Quox/Untyped/Erase.idr @@ -0,0 +1,568 @@ +module Quox.Untyped.Erase + +import Quox.Definition as Q +import Quox.Pretty +import Quox.Syntax.Term.Base as Q +import Quox.Syntax.Term.Subst +import Quox.Typing +import Quox.Untyped.Syntax as U +import Quox.Whnf + +import Quox.EffExtra +import Data.List1 +import Data.Singleton +import Data.SnocVect +import Language.Reflection + +%default total +%language ElabReflection + +%hide TT.Name +%hide AppView.(.head) + + +public export +data IsErased = Erased | Kept + +public export +isErased : Qty -> IsErased +isErased Zero = Erased +isErased One = Kept +isErased Any = Kept + + +public export +ErasureContext : Nat -> Nat -> Type +ErasureContext = TyContext + + +public export +TypeError : Type +TypeError = Typing.Error.Error +%hide Typing.Error.Error + +public export +data Error = + CompileTimeOnly (ErasureContext d n) (Q.Term d n) +| WrapTypeError TypeError +| Postulate Loc Name +| WhileErasing Name Q.Definition Error +| MainIsErased Loc Name +%name Error err + +private %inline +notInScope : Loc -> Name -> Error +notInScope = WrapTypeError .: NotInScope + +export +Located Error where + (CompileTimeOnly _ s).loc = s.loc + (WrapTypeError err).loc = err.loc + (Postulate loc _).loc = loc + (WhileErasing _ def e).loc = e.loc `or` def.loc + (MainIsErased loc _).loc = loc + + +parameters {opts : LayoutOpts} (showContext : Bool) + export + prettyErrorNoLoc : Error -> Eff Pretty (Doc opts) + prettyErrorNoLoc (CompileTimeOnly ctx s) = + inTContext showContext ctx $ + sep ["the term", !(prettyTerm ctx.dnames ctx.tnames s), + "only exists at compile time"] + prettyErrorNoLoc (WrapTypeError err) = + prettyErrorNoLoc showContext err + prettyErrorNoLoc (Postulate _ x) = + pure $ sep [!(prettyFree x), "is a postulate with no definition"] + prettyErrorNoLoc (WhileErasing x def err) = pure $ + vsep [hsep ["while erasing the definition", !(prettyFree x)], + !(prettyErrorNoLoc err)] + prettyErrorNoLoc (MainIsErased _ x) = + pure $ hsep [!(prettyFree x), "is marked #[main] but is erased"] + + export + prettyError : Error -> Eff Pretty (Doc opts) + prettyError err = sep <$> sequence + [prettyLoc err.loc, indentD =<< prettyErrorNoLoc err] + + +public export +Erase : List (Type -> Type) +Erase = [Except Error, NameGen, Log] + +export +liftWhnf : Eff Whnf a -> Eff Erase a +liftWhnf act = lift $ wrapErr WrapTypeError act + +export covering +computeElimType : Q.Definitions -> ErasureContext d n -> SQty -> + Elim d n -> Eff Erase (Term d n) +computeElimType defs ctx sg e = do + let ctx = toWhnfContext ctx + liftWhnf $ do + Element e _ <- whnf defs ctx sg e + computeElimType defs ctx sg e + + +private %macro +wrapExpect : TTImp -> + Elab (Q.Definitions -> TyContext d n -> Loc -> + Term d n -> Eff Erase a) +wrapExpect f_ = do + f <- check `(\x => ~(f_) x) + pure $ \defs, ctx, loc, s => liftWhnf $ f defs ctx SZero loc s + + +public export +record EraseElimResult d n where + constructor EraRes + type : Lazy (Q.Term d n) + term : U.Term n + + +export covering +eraseTerm' : (defs : Q.Definitions) -> (ctx : ErasureContext d n) -> + (ty, tm : Q.Term d n) -> + (0 _ : NotRedex defs (toWhnfContext ctx) SZero ty) => + Eff Erase (U.Term n) + +-- "Ψ | Γ | Σ ⊢ s ⤋ s' ⇐ A" for `s' <- eraseTerm (Ψ,Γ,Σ) A s` +-- +-- in the below comments, Ψ, Γ, Σ are implicit and +-- only their extensions are written +export covering +eraseTerm : Q.Definitions -> ErasureContext d n -> + (ty, tm : Q.Term d n) -> Eff Erase (U.Term n) +eraseTerm defs ctx ty tm = do + Element ty _ <- liftWhnf $ Interface.whnf defs (toWhnfContext ctx) SZero ty + eraseTerm' defs ctx ty tm + + +-- "Ψ | Γ | Σ ⊢ e ⤋ e' ⇒ A" for `EraRes A e' <- eraseElim (Ψ,Γ,Σ) e` +export covering +eraseElim : Q.Definitions -> ErasureContext d n -> (tm : Q.Elim d n) -> + Eff Erase (EraseElimResult d n) + +eraseTerm' defs ctx _ s@(TYPE {}) = + throw $ CompileTimeOnly ctx s + +eraseTerm' defs ctx _ s@(IOState {}) = + throw $ CompileTimeOnly ctx s + +eraseTerm' defs ctx _ s@(Pi {}) = + throw $ CompileTimeOnly ctx s + +-- x : A | 0.x ⊢ s ⤋ s' ⇐ B +-- ------------------------------------- +-- (λ x ⇒ s) ⤋ s'[⌷/x] ⇐ 0.(x : A) → B +-- +-- x : A | π.x ⊢ s ⤋ s' ⇐ B π ≠ 0 +-- ---------------------------------------- +-- (λ x ⇒ s) ⤋ (λ x ⇒ s') ⇐ π.(x : A) → B +eraseTerm' defs ctx ty (Lam body loc) = do + let x = body.name + (qty, arg, res) <- wrapExpect `(expectPi) defs ctx loc ty + body <- eraseTerm defs (extendTy qty x arg ctx) res.term body.term + pure $ case isErased qty of + Kept => U.Lam x body loc + Erased => sub1 (Erased loc) body + +eraseTerm' defs ctx _ s@(Sig {}) = + throw $ CompileTimeOnly ctx s + +-- s ⤋ s' ⇐ A t ⤋ t' ⇐ B[s/x] +-- --------------------------------- +-- (s, t) ⤋ (s', t') ⇐ (x : A) × B +eraseTerm' defs ctx ty (Pair fst snd loc) = do + (a, b) <- wrapExpect `(expectSig) defs ctx loc ty + let b = sub1 b (Ann fst a a.loc) + fst <- eraseTerm defs ctx a fst + snd <- eraseTerm defs ctx b snd + pure $ Pair fst snd loc + +eraseTerm' defs ctx _ s@(Enum {}) = + throw $ CompileTimeOnly ctx s + +-- '𝐚 ⤋ '𝐚 ⇐ {⋯} +eraseTerm' defs ctx _ (Tag tag loc) = + pure $ Tag tag loc + +eraseTerm' defs ctx ty s@(Eq {}) = + throw $ CompileTimeOnly ctx s + +-- 𝑖 ⊢ s ⤋ s' ⇐ A +-- --------------------------------- +-- (δ 𝑖 ⇒ s) ⤋ s' ⇐ Eq (𝑖 ⇒ A) l r +eraseTerm' defs ctx ty (DLam body loc) = do + a <- fst <$> wrapExpect `(expectEq) defs ctx loc ty + eraseTerm defs (extendDim body.name ctx) a.term body.term + +eraseTerm' defs ctx _ s@(NAT {}) = + throw $ CompileTimeOnly ctx s + +-- n ⤋ n ⇐ ℕ +eraseTerm' _ _ _ (Nat n loc) = + pure $ Nat n loc + +-- s ⤋ s' ⇐ ℕ +-- ----------------------- +-- succ s ⤋ succ s' ⇐ ℕ +eraseTerm' defs ctx ty (Succ p loc) = do + p <- eraseTerm defs ctx ty p + pure $ Succ p loc + +eraseTerm' defs ctx ty s@(STRING {}) = + throw $ CompileTimeOnly ctx s + +-- s ⤋ s ⇐ String +eraseTerm' _ _ _ (Str s loc) = + pure $ Str s loc + +eraseTerm' defs ctx ty s@(BOX {}) = + throw $ CompileTimeOnly ctx s + +-- [s] ⤋ ⌷ ⇐ [0.A] +-- +-- π ≠ 0 s ⤋ s' ⇐ A +-- -------------------- +-- [s] ⤋ s' ⇐ [π.A] +eraseTerm' defs ctx ty (Box val loc) = do + (qty, a) <- wrapExpect `(expectBOX) defs ctx loc ty + case isErased qty of + Erased => pure $ Erased loc + Kept => eraseTerm defs ctx a val + +-- s ⤋ s' ⇐ A +-- --------------------------------- +-- let0 x = e in s ⤋ s'[⌷/x] ⇐ A +-- +-- e ⤋ e' ⇒ E π ≠ 0 +-- x : E ≔ e ⊢ s ⤋ s' ⇐ A +-- ------------------------------------- +-- letπ x = e in s ⤋ let x = e' in s' +eraseTerm' defs ctx ty (Let pi e s loc) = do + let x = s.name + case isErased pi of + Erased => do + ety <- computeElimType defs ctx SZero e + s' <- eraseTerm defs (extendTyLet pi x ety (E e) ctx) (weakT 1 ty) s.term + pure $ sub1 (Erased e.loc) s' + Kept => do + EraRes ety e' <- eraseElim defs ctx e + s' <- eraseTerm defs (extendTyLet pi x ety (E e) ctx) (weakT 1 ty) s.term + pure $ Let True x e' s' loc + +-- e ⤋ e' ⇒ B +-- ------------ +-- e ⤋ e' ⇐ A +eraseTerm' defs ctx ty (E e) = + term <$> eraseElim defs ctx e + +eraseTerm' defs ctx ty (CloT (Sub term th)) = + eraseTerm defs ctx ty $ pushSubstsWith' id th term + +eraseTerm' defs ctx ty (DCloT (Sub term th)) = + eraseTerm defs ctx ty $ pushSubstsWith' th id term + +-- defω x : A = s +-- ---------------- +-- x ⤋ x ⇒ A +eraseElim defs ctx e@(F x u loc) = do + let Just def = lookup x defs + | Nothing => throw $ notInScope loc x + case isErased def.qty.qty of + Erased => throw $ CompileTimeOnly ctx $ E e + Kept => pure $ EraRes (def.typeWith ctx.dimLen ctx.termLen) $ F x loc + +-- π.x ∈ Σ π ≠ 0 +-- ----------------- +-- x ⤋ x ⇒ A +eraseElim defs ctx e@(B i loc) = do + case isErased $ ctx.qtys !!! i of + Erased => throw $ CompileTimeOnly ctx $ E e + Kept => pure $ EraRes (ctx.tctx !! i).type $ B i loc + +-- f ⤋ f' ⇒ π.(x : A) → B s ⤋ s' ⇒ A π ≠ 0 +-- --------------------------------------------- +-- f s ⤋ f' s' ⇒ B[s/x] +-- +-- f ⤋ f' ⇒ 0.(x : A) → B +-- ------------------------- +-- f s ⤋ f' ⇒ B[s/x] +eraseElim defs ctx (App fun arg loc) = do + efun <- eraseElim defs ctx fun + (qty, targ, tres) <- wrapExpect `(expectPi) defs ctx loc efun.type + let ty = sub1 tres (Ann arg targ arg.loc) + case isErased qty of + Erased => pure $ EraRes ty efun.term + Kept => do arg <- eraseTerm defs ctx targ arg + pure $ EraRes ty $ App efun.term arg loc + +-- e ⇒ (x : A) × B +-- x : A, y : B | ρ.x, ρ.y ⊢ s ⤋ s' ⇐ R[((x,y) ∷ (x : A) × B)/z] +-- ------------------------------------------------------------------- +-- (case0 e return z ⇒ R of {(x, y) ⇒ s}) ⤋ s'[⌷/x, ⌷/y] ⇒ R[e/z] +-- +-- e ⤋ e' ⇒ (x : A) × B ρ ≠ 0 +-- x : A, y : B | ρ.x, ρ.y ⊢ s ⤋ s' ⇐ R[((x,y) ∷ (x : A) × B)/z] +-- ---------------------------------------------------------------------------- +-- (caseρ e return z ⇒ R of {(x, y) ⇒ s}) ⤋ +-- ⤋ +-- let xy = e' in let x = fst xy in let y = snd xy in s' ⇒ R[e/z] +eraseElim defs ctx (CasePair qty pair ret body loc) = do + let [< x, y] = body.names + case isErased qty of + Kept => do + EraRes ety eterm <- eraseElim defs ctx pair + let ty = sub1 (ret // shift 2) $ + Ann (Pair (BVT 0 loc) (BVT 1 loc) loc) (weakT 2 ety) loc + (tfst, tsnd) <- wrapExpect `(expectSig) defs ctx loc ety + let ctx' = extendTyN [< (qty, x, tfst), (qty, y, tsnd.term)] ctx + body' <- eraseTerm defs ctx' ty body.term + p <- mnb "p" loc + pure $ EraRes (sub1 ret pair) $ + Let False p eterm + (Let False x (Fst (B VZ loc) loc) + (Let False y (Snd (B (VS VZ) loc) loc) + (body' // (B VZ loc ::: B (VS VZ) loc ::: shift 3)) + loc) loc) loc + Erased => do + ety <- computeElimType defs ctx SOne pair + let ty = sub1 (ret // shift 2) $ + Ann (Pair (BVT 0 loc) (BVT 1 loc) loc) (weakT 2 ety) loc + (tfst, tsnd) <- wrapExpect `(expectSig) defs ctx loc ety + let ctx' = extendTyN0 [< (x, tfst), (y, tsnd.term)] ctx + body' <- eraseTerm defs ctx' ty body.term + pure $ EraRes (sub1 ret pair) $ subN [< Erased loc, Erased loc] body' + +-- e ⤋ e' ⇒ (x : A) × B +-- ---------------------- +-- fst e ⤋ fst e' ⇒ A +eraseElim defs ctx (Fst pair loc) = do + epair <- eraseElim defs ctx pair + a <- fst <$> wrapExpect `(expectSig) defs ctx loc epair.type + pure $ EraRes a $ Fst epair.term loc + +-- e ⤋ e' ⇒ (x : A) × B +-- ----------------------------- +-- snd e ⤋ snd e' ⇒ B[fst e/x] +eraseElim defs ctx (Snd pair loc) = do + epair <- eraseElim defs ctx pair + b <- snd <$> wrapExpect `(expectSig) defs ctx loc epair.type + pure $ EraRes (sub1 b (Fst pair loc)) $ Snd epair.term loc + +-- caseρ e return z ⇒ R of {} ⤋ absurd ⇒ R[e/z] +-- +-- s ⤋ s' ⇐ R[𝐚∷{𝐚}/z] +-- ----------------------------------------------- +-- case0 e return z ⇒ R of {𝐚 ⇒ s} ⤋ s' ⇒ R[e/z] +-- +-- e ⤋ e' ⇒ A sᵢ ⤋ s'ᵢ ⇐ R[𝐚ᵢ/z] ρ ≠ 0 i ≠ 0 +-- ------------------------------------------------------------------- +-- caseρ e return z ⇒ R of {𝐚ᵢ ⇒ sᵢ} ⤋ case e of {𝐚ᵢ ⇒ s'ᵢ} ⇒ R[e/z] +eraseElim defs ctx e@(CaseEnum qty tag ret arms loc) = do + let ty = sub1 ret tag + case isErased qty of + Erased => case SortedMap.toList arms of + [] => pure $ EraRes ty $ Absurd loc + [(t, rhs)] => do + let ty' = sub1 ret (Ann (Tag t loc) (enum [t] loc) loc) + rhs' <- eraseTerm defs ctx ty' rhs + pure $ EraRes ty rhs' + _ => throw $ CompileTimeOnly ctx $ E e + Kept => case List1.fromList $ SortedMap.toList arms of + Nothing => pure $ EraRes ty $ Absurd loc + Just arms => do + etag <- eraseElim defs ctx tag + arms <- for arms $ \(t, rhs) => do + let ty' = sub1 ret (Ann (Tag t loc) etag.type loc) + rhs' <- eraseTerm defs ctx ty' rhs + pure (t, rhs') + pure $ EraRes ty $ CaseEnum etag.term arms loc + +-- n ⤋ n' ⇒ ℕ z ⤋ z' ⇐ R[zero∷ℕ/z] ς ≠ 0 +-- m : ℕ, ih : R[m/z] | ρ.m, ς.ih ⊢ s ⤋ s' ⇐ R[(succ m)∷ℕ/z] +-- ----------------------------------------------------------- +-- caseρ n return z ⇒ R of {0 ⇒ z; succ m, ς.ih ⇒ s} +-- ⤋ +-- case n' of {0 ⇒ z'; succ m, ih ⇒ s'} ⇒ R[n/z] +-- +-- n ⤋ n' ⇒ ℕ z ⤋ z' ⇐ R[zero∷ℕ/z] +-- m : ℕ, ih : R[m/z] | ρ.m, 0.ih ⊢ s ⤋ s' ⇐ R[(succ m)∷ℕ/z] +-- ----------------------------------------------------------- +-- caseρ n return z ⇒ R of {0 ⇒ z; succ m, 0.ih ⇒ s} +-- ⤋ +-- case n' of {0 ⇒ z'; succ m ⇒ s'[⌷/ih]} ⇒ R[n/z] +eraseElim defs ctx (CaseNat qty qtyIH nat ret zero succ loc) = do + let ty = sub1 ret nat + enat <- eraseElim defs ctx nat + zero <- eraseTerm defs ctx (sub1 ret (Ann (Zero loc) (NAT loc) loc)) zero + let [< p, ih] = succ.names + succ' <- eraseTerm defs + (extendTyN [< (qty, p, NAT loc), + (qtyIH, ih, sub1 (ret // shift 1) (BV 0 loc))] ctx) + (sub1 (ret // shift 2) (Ann (Succ (BVT 1 loc) loc) (NAT loc) loc)) + succ.term + let succ = case isErased qtyIH of + Kept => NSRec p ih succ' + Erased => NSNonrec p (sub1 (Erased loc) succ') + pure $ EraRes ty $ CaseNat enat.term zero succ loc + +-- b ⤋ b' ⇒ [π.A] πρ ≠ 0 x : A | πρ.x ⊢ s ⤋ s' ⇐ R[[x]∷[π.A]/z] +-- ------------------------------------------------------------------ +-- caseρ b return z ⇒ R of {[x] ⇒ s} ⤋ let x = b' in s' ⇒ R[b/z] +-- +-- b ⇒ [π.A] x : A | 0.x ⊢ s ⤋ s' ⇐ R[[x]∷[0.A]/z] πρ = 0 +-- ------------------------------------------------------------- +-- caseρ b return z ⇒ R of {[x] ⇒ s} ⤋ s'[⌷/x] ⇒ R[b/z] +eraseElim defs ctx (CaseBox qty box ret body loc) = do + tbox <- computeElimType defs ctx SOne box + (pi, tinner) <- wrapExpect `(expectBOX) defs ctx loc tbox + let ctx' = extendTy (pi * qty) body.name tinner ctx + bty = sub1 (ret // shift 1) $ + Ann (Box (BVT 0 loc) loc) (weakT 1 tbox) loc + case isErased $ qty * pi of + Kept => do + ebox <- eraseElim defs ctx box + ebody <- eraseTerm defs ctx' bty body.term + pure $ EraRes (sub1 ret box) $ Let False body.name ebox.term ebody loc + Erased => do + body' <- eraseTerm defs ctx' bty body.term + pure $ EraRes (sub1 ret box) $ body' // one (Erased loc) + +-- f ⤋ f' ⇒ Eq (𝑖 ⇒ A) l r +-- ------------------------------ +-- f @r ⤋ f' ⇒ A‹r/𝑖› +eraseElim defs ctx (DApp fun arg loc) = do + efun <- eraseElim defs ctx fun + a <- fst <$> wrapExpect `(expectEq) defs ctx loc efun.type + pure $ EraRes (dsub1 a arg) efun.term + +-- s ⤋ s' ⇐ A +-- ---------------- +-- s ∷ A ⤋ s' ⇒ A +eraseElim defs ctx (Ann tm ty loc) = + EraRes ty <$> eraseTerm defs ctx ty tm + +-- s ⤋ s' ⇐ A‹p/𝑖› +-- ----------------------------------- +-- coe (𝑖 ⇒ A) @p @q s ⤋ s' ⇒ A‹q/𝑖› +eraseElim defs ctx (Coe ty p q val loc) = do + val <- eraseTerm defs ctx (dsub1 ty p) val + pure $ EraRes (dsub1 ty q) val + +-- s ⤋ s' ⇐ A +-- -------------------------------- +-- comp A @p @q s @r {⋯} ⤋ s' ⇒ A +eraseElim defs ctx (Comp ty p q val r zero one loc) = + EraRes ty <$> eraseTerm defs ctx ty val + +eraseElim defs ctx t@(TypeCase ty ret arms def loc) = + throw $ CompileTimeOnly ctx $ E t + +eraseElim defs ctx (CloE (Sub term th)) = + eraseElim defs ctx $ pushSubstsWith' id th term + +eraseElim defs ctx (DCloE (Sub term th)) = + eraseElim defs ctx $ pushSubstsWith' th id term + + +export +uses : Var n -> Term n -> Nat +uses i (F {}) = 0 +uses i (B j _) = if i == j then 1 else 0 +uses i (Lam x body _) = uses (VS i) body +uses i (App fun arg _) = uses i fun + uses i arg +uses i (Pair fst snd _) = uses i fst + uses i snd +uses i (Fst pair _) = uses i pair +uses i (Snd pair _) = uses i pair +uses i (Tag tag _) = 0 +uses i (CaseEnum tag cases _) = + uses i tag + foldl max 0 (map (assert_total uses i . snd) cases) +uses i (Absurd {}) = 0 +uses i (Nat {}) = 0 +uses i (Succ nat _) = uses i nat +uses i (CaseNat nat zer suc _) = uses i nat + max (uses i zer) (uses' suc) + where uses' : CaseNatSuc n -> Nat + uses' (NSRec _ _ s) = uses (VS (VS i)) s + uses' (NSNonrec _ s) = uses (VS i) s +uses i (Str {}) = 0 +uses i (Let _ x rhs body _) = uses i rhs + uses (VS i) body +uses i (Erased {}) = 0 + +export +inlineable : U.Term n -> Bool +inlineable (F {}) = True +inlineable (B {}) = True +inlineable (Tag {}) = True +inlineable (Nat {}) = True +inlineable (Str {}) = True +inlineable (Absurd {}) = True +inlineable (Erased {}) = True +inlineable _ = False + +export +droppable : U.Term n -> Bool +droppable (F {}) = True +droppable (B {}) = True +droppable (Fst e _) = droppable e +droppable (Snd e _) = droppable e +droppable (Tag {}) = True +droppable (Nat {}) = True +droppable (Str {}) = True +droppable (Absurd {}) = True +droppable (Erased {}) = True +droppable _ = False + +export +trimLets : U.Term n -> U.Term n +trimLets (F x loc) = F x loc +trimLets (B i loc) = B i loc +trimLets (Lam x body loc) = Lam x (trimLets body) loc +trimLets (App fun arg loc) = App (trimLets fun) (trimLets arg) loc +trimLets (Pair fst snd loc) = Pair (trimLets fst) (trimLets snd) loc +trimLets (Fst pair loc) = Fst (trimLets pair) loc +trimLets (Snd pair loc) = Snd (trimLets pair) loc +trimLets (Tag tag loc) = Tag tag loc +trimLets (CaseEnum tag cases loc) = + let tag = trimLets tag + cases = map (map $ \c => trimLets $ assert_smaller cases c) cases in + if droppable tag && length cases == 1 + then snd cases.head + else CaseEnum tag cases loc +trimLets (Absurd loc) = Absurd loc +trimLets (Nat n loc) = Nat n loc +trimLets (Succ nat loc) = Succ (trimLets nat) loc +trimLets (CaseNat nat zer suc loc) = + CaseNat (trimLets nat) (trimLets zer) (trimLets' suc) loc + where trimLets' : CaseNatSuc n -> CaseNatSuc n + trimLets' (NSRec x ih s) = NSRec x ih $ trimLets s + trimLets' (NSNonrec x s) = NSNonrec x $ trimLets s +trimLets (Str s loc) = Str s loc +trimLets (Let True x rhs body loc) = + Let True x (trimLets rhs) (trimLets body) loc +trimLets (Let False x rhs body loc) = + let rhs' = trimLets rhs + body' = trimLets body + uses = uses VZ body in + if inlineable rhs' || uses == 1 || (droppable rhs' && uses == 0) + then sub1 rhs' body' + else Let False x rhs' body' loc +trimLets (Erased loc) = Erased loc + + +export covering +eraseDef : Q.Definitions -> Name -> Q.Definition -> Eff Erase U.Definition +eraseDef defs name def@(MkDef qty type body scheme isMain loc) = + wrapErr (WhileErasing name def) $ + case isErased qty.qty of + Erased => do + when isMain $ throw $ MainIsErased loc name + pure ErasedDef + Kept => + case scheme of + Just str => pure $ SchemeDef isMain str + Nothing => case body of + Postulate => throw $ Postulate loc name + Concrete body => KeptDef isMain . trimLets <$> + eraseTerm defs empty type body diff --git a/lib/Quox/Untyped/Scheme.idr b/lib/Quox/Untyped/Scheme.idr new file mode 100644 index 0000000..b193598 --- /dev/null +++ b/lib/Quox/Untyped/Scheme.idr @@ -0,0 +1,378 @@ +module Quox.Untyped.Scheme + +import Quox.Name +import Quox.Context +import Quox.Untyped.Syntax +import Quox.Pretty + +import Quox.EffExtra +import Quox.CharExtra +import Quox.NatExtra +import Data.DPair +import Data.List1 +import Data.String +import Data.SortedSet +import Data.Vect +import Derive.Prelude + +%default total +%language ElabReflection + +%hide TT.Name + + + +export +isSchemeInitial : Char -> Bool +isSchemeInitial c = + let gc = genCat c in + isLetter gc || isSymbol gc && c /= '|' || + gc == Number Letter || + gc == Number Other || + gc == Mark NonSpacing || + gc == Punctuation Dash || + gc == Punctuation Connector || + gc == Punctuation Other && c /= '\'' && c /= '\\' || + gc == Other PrivateUse || + (c `elem` unpack "!$%&*/:<=>?~_^") + +export +isSchemeSubsequent : Char -> Bool +isSchemeSubsequent c = + let gc = genCat c in + isSchemeInitial c || + isNumber gc || + isMark gc || + (c `elem` unpack ".+-@") + +export +isSchemeId : String -> Bool +isSchemeId str = + str == "1+" || str == "1-" || + case unpack str of + [] => False + c :: cs => isSchemeInitial c && all isSchemeSubsequent cs + +export +escId : String -> String +escId str = + let str' = concatMap doEsc $ unpack str in + if isSchemeId str' then str' else "|\{str}|" +where + doEsc : Char -> String + doEsc '\\' = "\\\\" + doEsc '|' = "\\|" + doEsc '\'' = "^" + doEsc c = singleton c + + +public export +data Id = I String Nat +%runElab derive "Id" [Eq, Ord] + +export +prettyId' : {opts : LayoutOpts} -> Id -> Doc opts +prettyId' (I str 0) = text $ escId str +prettyId' (I str k) = text $ escId "\{str}:\{show k}" + +export +prettyId : {opts : LayoutOpts} -> Id -> Eff Pretty (Doc opts) +prettyId x = hl TVar $ prettyId' x + + +public export +data StateTag = AVOID | MAIN + +public export +Scheme : List (Type -> Type) +Scheme = [StateL AVOID (SortedSet Id), StateL MAIN (List Id)] + -- names to avoid, and functions with #[main] (should only be one) + + +public export +data Sexp = + V Id +| L (List Sexp) +| Q Sexp +| N Nat +| S String +| Lambda (List Id) Sexp +| LambdaC (List Id) Sexp -- curried lambda +| Let Id Sexp Sexp +| Case Sexp (List1 (List Sexp, Sexp)) +| Define Id Sexp +| Literal String + +export +FromString Sexp where fromString s = V $ I s 0 + + +private +makeIdBase : Mods -> String -> String +makeIdBase mods str = joinBy "." $ toList $ mods :< str + +export +makeId : Name -> Id +makeId (MkName mods (UN str)) = I (makeIdBase mods str) 0 +makeId (MkName mods (MN str k)) = I (makeIdBase mods str) 0 +makeId (MkName mods Unused) = I (makeIdBase mods "_") 0 + +export +makeIdB : BindName -> Id +makeIdB (BN name _) = makeId $ MkName [<] name + +private +bump : Id -> Id +bump (I x i) = I x (S i) + +export covering +getFresh : SortedSet Id -> Id -> Id +getFresh used x = + if contains x used then getFresh used (bump x) else x + +export covering +freshIn : Id -> (Id -> Eff Scheme a) -> Eff Scheme a +freshIn x k = + let x = getFresh !(getAt AVOID) x in + localAt AVOID (insert x) $ k x + +export covering +freshInB : BindName -> (Id -> Eff Scheme a) -> Eff Scheme a +freshInB x = freshIn (makeIdB x) + +export covering +freshInBT : Telescope' BindName m n -> + (Telescope' Id m n -> Eff Scheme a) -> + Eff Scheme a +freshInBT xs act = do + let (xs', used') = go (map makeIdB xs) !(getAt AVOID) + localAt_ AVOID used' $ act xs' +where + go : forall n. Telescope' Id m n -> + SortedSet Id -> (Telescope' Id m n, SortedSet Id) + go [<] used = ([<], used) + go (xs :< x) used = + let x = getFresh used x + (xs, used) = go xs (insert x used) + in + (xs :< x, used) + +export covering +freshInBC : Context' BindName n -> (Context' Id n -> Eff Scheme a) -> + Eff Scheme a +freshInBC = freshInBT + +export covering +toScheme : Context' Id n -> Term n -> Eff Scheme Sexp +toScheme xs (F x _) = pure $ V $ makeId x + +toScheme xs (B i _) = pure $ V $ xs !!! i + +toScheme xs (Lam x body _) = + let Evidence n' (ys, body) = splitLam [< x] body in + freshInBT ys $ \ys => do + pure $ LambdaC (toList' ys) !(toScheme (xs . ys) body) + +toScheme xs (App fun arg _) = do + let (fun, args) = splitApp fun + fun <- toScheme xs fun + args <- traverse (toScheme xs) args + arg <- toScheme xs arg + pure $ if null args + then L [fun, arg] + else L $ "%" :: fun :: toList (args :< arg) + +toScheme xs (Pair fst snd _) = + pure $ L ["cons", !(toScheme xs fst), !(toScheme xs snd)] + +toScheme xs (Fst pair _) = + pure $ L ["car", !(toScheme xs pair)] + +toScheme xs (Snd pair _) = + pure $ L ["cdr", !(toScheme xs pair)] + +toScheme xs (Tag tag _) = + pure $ Q $ fromString tag + +toScheme xs (CaseEnum tag cases _) = + Case <$> toScheme xs tag + <*> for cases (\(t, rhs) => ([fromString t],) <$> toScheme xs rhs) + +toScheme xs (Absurd _) = + pure $ Q "absurd" + +toScheme xs (Nat n _) = + pure $ N n + +toScheme xs (Succ nat _) = + pure $ L ["+", !(toScheme xs nat), N 1] + +toScheme xs (CaseNat nat zer (NSRec p ih suc) _) = + freshInBC [< p, ih] $ \[< p, ih] => + pure $ + L ["case-nat-rec", + Lambda [] !(toScheme xs zer), + Lambda [p, ih] !(toScheme (xs :< p :< ih) suc), + !(toScheme xs nat)] + +toScheme xs (Str s _) = pure $ S s + +toScheme xs (CaseNat nat zer (NSNonrec p suc) _) = + freshInB p $ \p => + pure $ + L ["case-nat-nonrec", + Lambda [] !(toScheme xs zer), + Lambda [p] !(toScheme (xs :< p) suc), + !(toScheme xs nat)] + +toScheme xs (Let _ x rhs body _) = + freshInB x $ \x => + pure $ Let x !(toScheme xs rhs) !(toScheme (xs :< x) body) + +toScheme xs (Erased _) = + pure $ Q "erased" + + +export +prelude : String +prelude = """ +#!r6rs +(import (rnrs)) + +; curried lambda +(define-syntax lambda% + (syntax-rules () + [(_ (x . xs) . body) (lambda (x) (lambda% xs . body))] + [(_ () . body) (begin . body)])) + +; curried application +(define-syntax % + (syntax-rules () + [(_ e0 e1 . es) (% (e0 e1) . es)] + [(_ e) e])) + +; curried function definition +(define-syntax define% + (syntax-rules () + [(_ (f . xs) . body) (define f (lambda% xs . body))] + [(_ f . body) (define f . body)])) + +(define-syntax builtin-io + (syntax-rules () + [(_ . body) (lambda (s) (cons (begin . body) s))])) + +(define (case-nat-rec z s n) + (do [(i 0 (+ i 1)) (acc (z) (s i acc))] + [(= i n) acc])) + +(define (case-nat-nonrec z s n) + (if (= n 0) (z) (s (- n 1)))) + +(define (run-main f) (f 'io-state)) +""" + +export +escape : String -> String +escape = foldMap esc1 . unpack where + esc1 : Char -> String + esc1 c = + if c == '\\' || c == '"' then + "\\" ++ singleton c + else if c < ' ' || c > '~' then + "\\x" ++ showHex (ord c) ++ ";" + else singleton c + +export covering +defToScheme : Name -> Definition -> Eff Scheme (Maybe Sexp) +defToScheme x ErasedDef = pure Nothing +defToScheme x (KeptDef isMain def) = do + let x = makeId x + when isMain $ modifyAt MAIN (x ::) + modifyAt AVOID $ insert x + pure $ Just $ Define x !(toScheme [<] def) +defToScheme x (SchemeDef isMain str) = do + let x = makeId x + when isMain $ modifyAt MAIN (x ::) + modifyAt AVOID $ insert x + pure $ Just $ Define x $ Literal str + +orIndent : {opts : LayoutOpts} -> Doc opts -> Doc opts -> Eff Pretty (Doc opts) +orIndent a b = do + one <- parens $ a <++> b + two <- parens $ a `vappend` indent 2 b + pure $ ifMultiline one two + +export covering +prettySexp : {opts : LayoutOpts} -> Sexp -> Eff Pretty (Doc opts) + +private covering +prettyLambda : {opts : LayoutOpts} -> + String -> List Id -> Sexp -> Eff Pretty (Doc opts) +prettyLambda lam xs e = + orIndent + (hsep [!(hl Syntax $ text lam), !(prettySexp $ L $ map V xs)]) + !(prettySexp e) + +private covering +prettyBind : {opts : LayoutOpts} -> (Id, Sexp) -> Eff Pretty (Doc opts) +prettyBind (x, e) = parens $ sep [!(prettyId x), !(prettySexp e)] + +private covering +prettyLet : {opts : LayoutOpts} -> + SnocList (Id, Sexp) -> Sexp -> Eff Pretty (Doc opts) +prettyLet ps (Let x rhs body) = prettyLet (ps :< (x, rhs)) body +prettyLet ps e = + orIndent + (hsep [!(hl Syntax "let*"), + !(bracks . vsep . toList =<< traverse prettyBind ps)]) + !(prettySexp e) + +private covering +prettyDefine : {opts : LayoutOpts} -> + String -> Either Id (List Id) -> Sexp -> Eff Pretty (Doc opts) +prettyDefine def xs body = + parens $ vappend + (hsep [!(hl Syntax $ text def), + !(either prettyId (prettySexp . L . map V) xs)]) + (indent 2 !(prettySexp body)) + +prettySexp (V x) = prettyId x +prettySexp (L []) = hl Delim "()" +prettySexp (L (x :: xs)) = do + d <- prettySexp x + ds <- traverse prettySexp xs + parens $ ifMultiline + (hsep $ d :: ds) + (hsep [d, vsep ds] <|> vsep (d :: map (indent 2) ds)) +prettySexp (Q (V x)) = hl Constant $ "'" <+> prettyId' x +prettySexp (Q x) = pure $ hcat [!(hl Constant "'"), !(prettySexp x)] +prettySexp (N n) = hl Constant $ pshow n +prettySexp (S s) = prettyStrLit $ escape s +prettySexp (Lambda xs e) = prettyLambda "lambda" xs e +prettySexp (LambdaC xs e) = prettyLambda "lambda%" xs e +prettySexp (Let x rhs e) = prettyLet [< (x, rhs)] e +prettySexp (Case h as) = do + header' <- prettySexp h + case_ <- caseD + let header = ifMultiline (case_ <++> header') + (case_ `vappend` indent 2 header') + arms <- traverse prettyCase $ toList as + pure $ ifMultiline + (parens $ header <++> hsep arms) + (parens $ vsep $ header :: map (indent 2) arms) +where + prettyCase : (List Sexp, Sexp) -> Eff Pretty (Doc opts) + prettyCase (ps, e) = bracks $ + ifMultiline + (hsep [!(parens . hsep =<< traverse prettySexp ps), !(prettySexp e)]) + (vsep [!(parens . sep =<< traverse prettySexp ps), !(prettySexp e)]) +prettySexp (Define x e) = case e of + LambdaC xs e => prettyDefine "define%" (Right $ x :: xs) e + Lambda xs e => prettyDefine "define" (Right $ x :: xs) e + _ => prettyDefine "define" (Left x) e +prettySexp (Literal sexp) = + pure $ text sexp + +export covering +makeRunMain : {opts : LayoutOpts} -> Id -> Eff Pretty (Doc opts) +makeRunMain x = prettySexp $ L ["run-main", V x] diff --git a/lib/Quox/Untyped/Syntax.idr b/lib/Quox/Untyped/Syntax.idr new file mode 100644 index 0000000..06f02f0 --- /dev/null +++ b/lib/Quox/Untyped/Syntax.idr @@ -0,0 +1,308 @@ +module Quox.Untyped.Syntax + +import Quox.Var +import Quox.Context +import Quox.Name +import Quox.Pretty +import Quox.Syntax.Subst + +import Data.Vect +import Data.DPair +import Data.SortedMap +import Data.SnocVect +import Derive.Prelude +%hide TT.Name + +%default total +%language ElabReflection + + +public export +data Term : Nat -> Type + +public export +data CaseNatSuc : Nat -> Type + +data Term where + F : (x : Name) -> Loc -> Term n + B : (i : Var n) -> Loc -> Term n + + Lam : (x : BindName) -> (body : Term (S n)) -> Loc -> Term n + App : (fun, arg : Term n) -> Loc -> Term n + + Pair : (fst, snd : Term n) -> Loc -> Term n + Fst : (pair : Term n) -> Loc -> Term n + Snd : (pair : Term n) -> Loc -> Term n + + Tag : (tag : String) -> Loc -> Term n + CaseEnum : (tag : Term n) -> (cases : List1 (String, Term n)) -> Loc -> Term n + ||| empty match + Absurd : Loc -> Term n + + Nat : (val : Nat) -> Loc -> Term n + Succ : (nat : Term n) -> Loc -> Term n + CaseNat : (nat : Term n) -> (zer : Term n) -> (suc : CaseNatSuc n) -> + Loc -> Term n + + Str : (str : String) -> Loc -> Term n + + ||| bool is true if the let comes from the original source code + Let : (real : Bool) -> (x : BindName) -> (rhs : Term n) -> + (body : Term (S n)) -> Loc -> Term n + + Erased : Loc -> Term n +%name Term s, t, u + +data CaseNatSuc where + NSRec : (x, ih : BindName) -> Term (2 + n) -> CaseNatSuc n + NSNonrec : (x : BindName) -> Term (S n) -> CaseNatSuc n +%name CaseNatSuc suc + +%runElab deriveParam $ + map (\ty => PI ty allIndices [Eq, Ord, Show]) ["Term", "CaseNatSuc"] + + +export +Located (Term n) where + (F _ loc).loc = loc + (B _ loc).loc = loc + (Lam _ _ loc).loc = loc + (App _ _ loc).loc = loc + (Pair _ _ loc).loc = loc + (Fst _ loc).loc = loc + (Snd _ loc).loc = loc + (Tag _ loc).loc = loc + (CaseEnum _ _ loc).loc = loc + (Absurd loc).loc = loc + (Nat _ loc).loc = loc + (Succ _ loc).loc = loc + (CaseNat _ _ _ loc).loc = loc + (Str _ loc).loc = loc + (Let _ _ _ _ loc).loc = loc + (Erased loc).loc = loc + + +public export +data Definition = + ErasedDef +| KeptDef Bool (Term 0) +| SchemeDef Bool String + -- bools are presence of #[main] flag + +public export +0 Definitions : Type +Definitions = SortedMap Name Definition + +public export +0 NDefinition : Type +NDefinition = (Name, Definition) + + +export covering +prettyTerm : {opts : LayoutOpts} -> BContext n -> + Term n -> Eff Pretty (Doc opts) + +export covering +prettyArg : {opts : LayoutOpts} -> BContext n -> Term n -> Eff Pretty (Doc opts) +prettyArg xs arg = withPrec Arg $ prettyTerm xs arg + +export covering +prettyApp_ : {opts : LayoutOpts} -> BContext n -> + Doc opts -> SnocList (Term n) -> Eff Pretty (Doc opts) +prettyApp_ xs fun args = + parensIfM App =<< + prettyAppD fun (toList !(traverse (prettyArg xs) args)) + +export covering %inline +prettyApp : {opts : LayoutOpts} -> BContext n -> + Term n -> SnocList (Term n) -> Eff Pretty (Doc opts) +prettyApp xs fun args = + prettyApp_ xs !(prettyArg xs fun) args + +public export +record PrettyCaseArm a n where + constructor MkPrettyCaseArm + lhs : a + {len : Nat} + vars : Vect len BindName + rhs : Term (len + n) + +export covering +prettyCase : {opts : LayoutOpts} -> BContext n -> + (a -> Eff Pretty (Doc opts)) -> + Term n -> List (PrettyCaseArm a n) -> + Eff Pretty (Doc opts) +prettyCase xs f head arms = + parensIfM Outer =<< do + header <- hsep <$> sequence [caseD, prettyTerm xs head, ofD] + cases <- for arms $ \(MkPrettyCaseArm lhs ys rhs) => do + lhs <- hsep <$> sequence [f lhs, darrowD] + rhs <- withPrec Outer $ prettyTerm (xs <>< ys) rhs + hangDSingle lhs rhs + lb <- hl Delim "{"; sc <- semiD; rb <- hl Delim "}"; d <- askAt INDENT + pure $ ifMultiline + (hsep [header, lb, separateTight sc cases, rb]) + (vsep [hsep [header, lb], indent d $ vsep (map (<+> sc) cases), rb]) + +private +sucPat : {opts : LayoutOpts} -> BindName -> Eff Pretty (Doc opts) +sucPat x = pure $ !succD <++> !(prettyTBind x) + +export +splitApp : Term n -> (Term n, SnocList (Term n)) +splitApp (App f x _) = mapSnd (:< x) $ splitApp f +splitApp f = (f, [<]) + +export +splitPair : Term n -> List (Term n) +splitPair (Pair s t _) = s :: splitPair t +splitPair t = [t] + +export +splitLam : Telescope' BindName a b -> Term b -> + Exists $ \c => (Telescope' BindName a c, Term c) +splitLam ys (Lam x body _) = splitLam (ys :< x) body +splitLam ys t = Evidence _ (ys, t) + +export +splitLet : Telescope (\i => (BindName, Term i)) a b -> Term b -> + Exists $ \c => (Telescope (\i => (BindName, Term i)) a c, Term c) +splitLet ys (Let _ x rhs body _) = splitLet (ys :< (x, rhs)) body +splitLet ys t = Evidence _ (ys, t) + +private covering +prettyLets : {opts : LayoutOpts} -> + BContext a -> Telescope (\i => (BindName, Term i)) a b -> + Eff Pretty (SnocList (Doc opts)) +prettyLets xs lets = sequence $ snd $ go lets where + go : forall b. Telescope (\i => (BindName, Term i)) a b -> + (BContext b, SnocList (Eff Pretty (Doc opts))) + go [<] = (xs, [<]) + go (lets :< (x, rhs)) = + let (ys, docs) = go lets + doc = do + x <- prettyTBind x + rhs <- withPrec Outer $ prettyTerm ys rhs + hangDSingle (hsep [!letD, x, !cstD]) (hsep [rhs, !inD]) in + (ys :< x, docs :< doc) + +private +sucCaseArm : {opts : LayoutOpts} -> + CaseNatSuc n -> Eff Pretty (PrettyCaseArm (Doc opts) n) +sucCaseArm (NSRec x ih s) = pure $ + MkPrettyCaseArm (!(sucPat x) <+> !commaD <++> !(prettyTBind ih)) [x, ih] s +sucCaseArm (NSNonrec x s) = pure $ + MkPrettyCaseArm !(sucPat x) [x] s + +prettyTerm _ (F x _) = prettyFree x +prettyTerm xs (B i _) = prettyTBind $ xs !!! i +prettyTerm xs (Lam x body _) = + parensIfM Outer =<< do + let Evidence n' (ys, body) = splitLam [< x] body + vars <- hsep . toList' <$> traverse prettyTBind ys + body <- withPrec Outer $ prettyTerm (xs . ys) body + hangDSingle (hsep [!lamD, vars, !darrowD]) body +prettyTerm xs (App fun arg _) = do + let (fun, args) = splitApp fun + prettyApp xs fun (args :< arg) +prettyTerm xs (Pair fst snd _) = + parens . separateTight !commaD =<< + traverse (withPrec Outer . prettyTerm xs) (fst :: splitPair snd) +prettyTerm xs (Fst pair _) = prettyApp_ xs !fstD [< pair] +prettyTerm xs (Snd pair _) = prettyApp_ xs !sndD [< pair] +prettyTerm xs (Tag tag _) = prettyTag tag +prettyTerm xs (CaseEnum tag cases _) = + prettyCase xs prettyTag tag $ + map (\(t, rhs) => MkPrettyCaseArm t [] rhs) $ toList cases +prettyTerm xs (Absurd _) = hl Syntax "absurd" +prettyTerm xs (Nat n _) = hl Constant $ pshow n +prettyTerm xs (Succ nat _) = prettyApp_ xs !succD [< nat] +prettyTerm xs (CaseNat nat zer suc _) = + prettyCase xs pure nat [MkPrettyCaseArm !zeroD [] zer, !(sucCaseArm suc)] +prettyTerm xs (Str s _) = + prettyStrLit s +prettyTerm xs (Let _ x rhs body _) = + parensIfM Outer =<< do + let Evidence n' (lets, body) = splitLet [< (x, rhs)] body + heads <- prettyLets xs lets + body <- withPrec Outer $ prettyTerm (xs . map fst lets) body + let lines = toList $ heads :< body + pure $ ifMultiline (hsep lines) (vsep lines) +prettyTerm _ (Erased _) = + hl Syntax =<< ifUnicode "□" "[]" + +export covering +prettyDef : {opts : LayoutOpts} -> Name -> + Definition -> Eff Pretty (Doc opts) +prettyDef name ErasedDef = + pure $ hsep [!(prettyFree name), !cstD, !(prettyTerm [<] $ Erased noLoc)] +prettyDef name (KeptDef isMain rhs) = do + name <- prettyFree name {opts} + eq <- cstD + rhs <- withPrec Outer $ prettyTerm [<] rhs + let header = if isMain then text "#[main]" <++> name else name + hangDSingle (header <++> eq) rhs +prettyDef name (SchemeDef isMain str) = do + name <- prettyFree name {opts} + eq <- cstD + let rhs = text $ "scheme:" ++ str + let header = if isMain then text "#[main]" <++> name else name + hangDSingle (header <++> eq) rhs + + +public export +USubst : Nat -> Nat -> Type +USubst = Subst Term + + +public export FromVar Term where fromVarLoc = B + + +public export +CanSubstSelf Term where + s // th = case s of + F x loc => + F x loc + B i loc => + getLoc th i loc + Lam x body loc => + Lam x (assert_total $ body // push x.loc th) loc + App fun arg loc => + App (fun // th) (arg // th) loc + Pair fst snd loc => + Pair (fst // th) (snd // th) loc + Fst pair loc => + Fst (pair // th) loc + Snd pair loc => + Snd (pair // th) loc + Tag tag loc => + Tag tag loc + CaseEnum tag cases loc => + CaseEnum (tag // th) (map (assert_total mapSnd (// th)) cases) loc + Absurd loc => + Absurd loc + Nat n loc => + Nat n loc + Succ nat loc => + Succ (nat // th) loc + CaseNat nat zer suc loc => + CaseNat (nat // th) (zer // th) (assert_total substSuc suc th) loc + Str s loc => + Str s loc + Let u x rhs body loc => + Let u x (rhs // th) (assert_total $ body // push x.loc th) loc + Erased loc => + Erased loc + where + substSuc : forall from, to. + CaseNatSuc from -> USubst from to -> CaseNatSuc to + substSuc (NSRec x ih t) th = NSRec x ih $ t // pushN 2 x.loc th + substSuc (NSNonrec x t) th = NSNonrec x $ t // push x.loc th + +public export +subN : SnocVect s (Term n) -> Term (s + n) -> Term n +subN th t = t // fromSnocVect th + +public export +sub1 : Term n -> Term (S n) -> Term n +sub1 e = subN [< e] diff --git a/lib/Quox/Syntax/Var.idr b/lib/Quox/Var.idr similarity index 96% rename from lib/Quox/Syntax/Var.idr rename to lib/Quox/Var.idr index 9edfb5c..5466542 100644 --- a/lib/Quox/Syntax/Var.idr +++ b/lib/Quox/Var.idr @@ -1,8 +1,7 @@ -module Quox.Syntax.Var +module Quox.Var import public Quox.Loc import public Quox.Name -import Quox.OPE import Data.Nat import Data.List @@ -138,6 +137,12 @@ export weakIsSpec p i = toNatInj $ trans (weakCorrect p i) (sym $ weakSpecCorrect p i) +public export +interface FromVar f where %inline fromVarLoc : Var n -> Loc -> f n + + +public export FromVar Var where fromVarLoc x _ = x + export tabulateV : {0 tm : Nat -> Type} -> (forall n. Var n -> tm n) -> (n : Nat) -> Vect n (tm n) @@ -284,12 +289,3 @@ decEqFromBool i j = %transform "Var.decEq" varDecEq = decEqFromBool public export %inline DecEq (Var n) where decEq = varDecEq - - -export -Tighten Var where - tighten Id i = Just i - tighten (Drop p) VZ = Nothing - tighten (Drop p) (VS i) = tighten p i - tighten (Keep p) VZ = Just VZ - tighten (Keep p) (VS i) = VS <$> tighten p i diff --git a/lib/Quox/Whnf.idr b/lib/Quox/Whnf.idr new file mode 100644 index 0000000..fb25a58 --- /dev/null +++ b/lib/Quox/Whnf.idr @@ -0,0 +1,5 @@ +module Quox.Whnf + +import public Quox.Whnf.Interface as Quox.Whnf +import public Quox.Whnf.ComputeElimType as Quox.Whnf +import public Quox.Whnf.Main as Quox.Whnf diff --git a/lib/Quox/Whnf/Coercion.idr b/lib/Quox/Whnf/Coercion.idr new file mode 100644 index 0000000..b086fc3 --- /dev/null +++ b/lib/Quox/Whnf/Coercion.idr @@ -0,0 +1,252 @@ +module Quox.Whnf.Coercion + +import Quox.Whnf.Interface +import Quox.Whnf.ComputeElimType +import Quox.Whnf.TypeCase + +%default total + + + +private +coeScoped : {s : Nat} -> DScopeTerm d n -> Dim d -> Dim d -> Loc -> + ScopeTermN s d n -> ScopeTermN s d n +coeScoped ty p q loc (S names (N body)) = + S names $ N $ E $ Coe ty p q body loc +coeScoped ty p q loc (S names (Y body)) = + SY names $ E $ Coe (weakDS s ty) p q body loc +where + weakDS : (by : Nat) -> DScopeTerm d n -> DScopeTerm d (by + n) + weakDS by (S names (Y body)) = S names $ Y $ weakT by body + weakDS by (S names (N body)) = S names $ N $ weakT by body + + +parameters {auto _ : CanWhnf Term Interface.isRedexT} + {auto _ : CanWhnf Elim Interface.isRedexE} + (defs : Definitions) (ctx : WhnfContext d n) (sg : SQty) + ||| reduce a function application `App (Coe ty p q val) s loc` + export covering + piCoe : (ty : DScopeTerm d n) -> (p, q : Dim d) -> + (val, s : Term d n) -> Loc -> + Eff Whnf (Subset (Elim d n) (No . isRedexE defs ctx sg)) + piCoe sty@(S [< i] ty) p q val s loc = do + -- (coe [i ⇒ π.(x : A) → B] @p @q t) s ⇝ + -- coe [i ⇒ B[𝒔‹i›/x] @p @q ((t ∷ (π.(x : A) → B)‹p/i›) 𝒔‹p›) + -- where 𝒔‹j› ≔ coe [i ⇒ A] @q @j s + -- + -- type-case is used to expose A,B if the type is neutral + let ctx1 = extendDim i ctx + Element ty tynf <- whnf defs ctx1 SZero $ getTerm ty + (arg, res) <- tycasePi defs ctx1 ty + let s0 = CoeY i arg q p s s.loc + body = E $ App (Ann val (ty // one p) val.loc) (E s0) loc + s1 = CoeY i (arg // (BV 0 i.loc ::: shift 2)) (weakD 1 q) (BV 0 i.loc) + (s // shift 1) s.loc + whnf defs ctx sg $ CoeY i (sub1 res s1) p q body loc + + ||| reduce a pair elimination `CasePair pi (Coe ty p q val) ret body loc` + export covering + sigCoe : (qty : Qty) -> + (ty : DScopeTerm d n) -> (p, q : Dim d) -> (val : Term d n) -> + (ret : ScopeTerm d n) -> (body : ScopeTermN 2 d n) -> Loc -> + Eff Whnf (Subset (Elim d n) (No . isRedexE defs ctx sg)) + sigCoe qty sty@(S [< i] ty) p q val ret body loc = do + -- caseπ (coe [i ⇒ (x : A) × B] @p @q s) return z ⇒ C of { (a, b) ⇒ e } + -- ⇝ + -- caseπ s ∷ ((x : A) × B)‹p/i› return z ⇒ C + -- of { (a, b) ⇒ + -- e[(coe [i ⇒ A] @p @q a)/a, + -- (coe [i ⇒ B[(coe [j ⇒ A‹j/i›] @p @i a)/x]] @p @q b)/b] } + -- + -- type-case is used to expose A,B if the type is neutral + let ctx1 = extendDim i ctx + Element ty tynf <- whnf defs ctx1 SZero $ getTerm ty + (tfst, tsnd) <- tycaseSig defs ctx1 ty + let [< x, y] = body.names + a' = CoeY i (weakT 2 tfst) p q (BVT 1 x.loc) x.loc + tsnd' = tsnd.term // + (CoeY i (weakT 2 $ tfst // (B VZ tsnd.loc ::: shift 2)) + (weakD 1 p) (B VZ i.loc) (BVT 1 tsnd.loc) y.loc ::: shift 2) + b' = CoeY i tsnd' p q (BVT 0 y.loc) y.loc + whnf defs ctx sg $ CasePair qty (Ann val (ty // one p) val.loc) ret + (SY body.names $ body.term // (a' ::: b' ::: shift 2)) loc + + ||| reduce a pair projection `Fst (Coe ty p q val) loc` + export covering + fstCoe : (ty : DScopeTerm d n) -> (p, q : Dim d) -> (val : Term d n) -> + Loc -> Eff Whnf (Subset (Elim d n) (No . isRedexE defs ctx sg)) + fstCoe sty@(S [< i] ty) p q val loc = do + -- fst (coe (𝑖 ⇒ (x : A) × B) @p @q s) + -- ⇝ + -- coe (𝑖 ⇒ A) @p @q (fst (s ∷ (x : A‹p/𝑖›) × B‹p/𝑖›)) + -- + -- type-case is used to expose A,B if the type is neutral + let ctx1 = extendDim i ctx + Element ty tynf <- whnf defs ctx1 SZero $ getTerm ty + (tfst, _) <- tycaseSig defs ctx1 ty + whnf defs ctx sg $ + Coe (SY [< i] tfst) p q + (E (Fst (Ann val (ty // one p) val.loc) val.loc)) loc + + ||| reduce a pair projection `Snd (Coe ty p q val) loc` + export covering + sndCoe : (ty : DScopeTerm d n) -> (p, q : Dim d) -> (val : Term d n) -> + Loc -> Eff Whnf (Subset (Elim d n) (No . isRedexE defs ctx sg)) + sndCoe sty@(S [< i] ty) p q val loc = do + -- snd (coe (𝑖 ⇒ (x : A) × B) @p @q s) + -- ⇝ + -- coe (𝑖 ⇒ B[coe (𝑗 ⇒ A‹𝑗/𝑖›) @p @𝑖 (fst (s ∷ (x : A) × B))/x]) @p @q + -- (snd (s ∷ (x : A‹p/𝑖›) × B‹p/𝑖›)) + -- + -- type-case is used to expose A,B if the type is neutral + let ctx1 = extendDim i ctx + Element ty tynf <- whnf defs ctx1 SZero $ getTerm ty + (tfst, tsnd) <- tycaseSig defs ctx1 ty + whnf defs ctx sg $ + Coe (SY [< i] $ sub1 tsnd $ + Coe (SY [< !(fresh i)] $ tfst // (BV 0 i.loc ::: shift 2)) + (weakD 1 p) (BV 0 loc) + (E (Fst (Ann (dweakT 1 val) ty val.loc) val.loc)) loc) + p q + (E (Snd (Ann val (ty // one p) val.loc) val.loc)) + loc + + ||| reduce a dimension application `DApp (Coe ty p q val) r loc` + export covering + eqCoe : (ty : DScopeTerm d n) -> (p, q : Dim d) -> (val : Term d n) -> + (r : Dim d) -> Loc -> + Eff Whnf (Subset (Elim d n) (No . isRedexE defs ctx sg)) + eqCoe sty@(S [< j] ty) p q val r loc = do + -- (coe [j ⇒ Eq [i ⇒ A] L R] @p @q eq) @r + -- ⇝ + -- comp [j ⇒ A‹r/i›] @p @q ((eq ∷ (Eq [i ⇒ A] L R)‹p/j›) @r) + -- @r { 0 j ⇒ L; 1 j ⇒ R } + let ctx1 = extendDim j ctx + Element ty tynf <- whnf defs ctx1 SZero $ getTerm ty + (a0, a1, a, s, t) <- tycaseEq defs ctx1 ty + let a' = dsub1 a (weakD 1 r) + val' = E $ DApp (Ann val (ty // one p) val.loc) r loc + whnf defs ctx sg $ CompH j a' p q val' r j s j t loc + + ||| reduce a pair elimination `CaseBox pi (Coe ty p q val) ret body` + export covering + boxCoe : (qty : Qty) -> + (ty : DScopeTerm d n) -> (p, q : Dim d) -> (val : Term d n) -> + (ret : ScopeTerm d n) -> (body : ScopeTerm d n) -> Loc -> + Eff Whnf (Subset (Elim d n) (No . isRedexE defs ctx sg)) + boxCoe qty sty@(S [< i] ty) p q val ret body loc = do + -- caseπ (coe [i ⇒ [ρ. A]] @p @q s) return z ⇒ C of { [a] ⇒ e } + -- ⇝ + -- caseπ s ∷ [ρ. A]‹p/i› return z ⇒ C of { [a] ⇒ e[(coe [i ⇒ A] p q a)/a] } + let ctx1 = extendDim i ctx + Element ty tynf <- whnf defs ctx1 SZero $ getTerm ty + ta <- tycaseBOX defs ctx1 ty + let xloc = body.name.loc + let a' = CoeY i (weakT 1 ta) p q (BVT 0 xloc) xloc + whnf defs ctx sg $ CaseBox qty (Ann val (ty // one p) val.loc) ret + (SY body.names $ body.term // (a' ::: shift 1)) loc + + +-- new params block to call the above functions at different `n` +parameters {auto _ : CanWhnf Term Interface.isRedexT} + {auto _ : CanWhnf Elim Interface.isRedexE} + (defs : Definitions) (ctx : WhnfContext d n) (sg : SQty) + ||| pushes a coercion inside a whnf-ed term + export covering + pushCoe : BindName -> + (ty : Term (S d) n) -> (p, q : Dim d) -> (s : Term d n) -> Loc -> + (0 pc : So (canPushCoe sg ty s)) => + Eff Whnf (NonRedex Elim d n defs ctx sg) + pushCoe i ty p q s loc = + case ty of + -- (coe ★ᵢ @_ @_ s) ⇝ (s ∷ ★ᵢ) + TYPE l tyLoc => + whnf defs ctx sg $ Ann s (TYPE l tyLoc) loc + + -- (coe IOState @_ @_ s) ⇝ (s ∷ IOState) + IOState tyLoc => + whnf defs ctx sg $ Ann s (IOState tyLoc) loc + + -- η expand, then simplify the Coe/App in the body + -- + -- (coe (𝑖 ⇒ π.(x : A) → B) @p @q s) + -- ⇝ + -- (λ y ⇒ (coe (𝑖 ⇒ π.(x : A) → B) @p @q s) y) ∷ (π.(x : A) → B)‹q/𝑖› + -- ⇝ ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾ + -- (λ y ⇒ ⋯) ∷ (π.(x : A) → B)‹q/𝑖› -- see `piCoe` + -- + -- do the piCoe step here because otherwise equality checking keeps + -- doing the η forever + Pi {arg, res = S [< x] _, _} => do + let ctx' = extendTy x (arg // one p) ctx + body <- piCoe defs ctx' sg + (weakDS 1 $ SY [< i] ty) p q (weakT 1 s) (BVT 0 loc) loc + whnf defs ctx sg $ + Ann (LamY x (E body.fst) loc) (ty // one q) loc + + -- no η!!! + -- push into a pair constructor, otherwise still stuck + -- + -- s̃‹𝑘› ≔ coe (𝑗 ⇒ A‹𝑗/𝑖›) @p @𝑘 s + -- ----------------------------------------------- + -- (coe (𝑖 ⇒ (x : A) × B) @p @q (s, t)) + -- ⇝ + -- (s̃‹q›, coe (𝑖 ⇒ B[s̃‹𝑖›/x]) @p @q t) + -- ∷ ((x : A) × B)‹q/𝑖› + Sig tfst tsnd tyLoc => do + let Pair fst snd sLoc = s + fst' = CoeY i tfst p q fst fst.loc + fstInSnd = + CoeY !(fresh i) + (tfst // (BV 0 loc ::: shift 2)) + (weakD 1 p) (BV 0 loc) (dweakT 1 fst) fst.loc + snd' = CoeY i (sub1 tsnd fstInSnd) p q snd snd.loc + whnf defs ctx sg $ + Ann (Pair (E fst') (E snd') sLoc) (ty // one q) loc + + -- (coe {𝐚̄} @_ @_ s) ⇝ (s ∷ {𝐚̄}) + Enum cases tyLoc => + whnf defs ctx sg $ Ann s (Enum cases tyLoc) loc + + -- η expand/simplify, same as for Π + -- + -- (coe (𝑖 ⇒ Eq (𝑗 ⇒ A) l r) @p @q s) + -- ⇝ + -- (δ 𝑘 ⇒ (coe (𝑖 ⇒ Eq (𝑗 ⇒ A) l r) @p @q s) @𝑘) ∷ (Eq (𝑗 ⇒ A) l r)‹q/𝑖› + -- ⇝ ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾ + -- (δ 𝑘 ⇒ ⋯) ∷ (Eq (𝑗 ⇒ A) l r)‹q/𝑖› -- see `eqCoe` + -- + -- do the eqCoe step here because otherwise equality checking keeps + -- doing the η forever + Eq {ty = S [< j] _, _} => do + let ctx' = extendDim j ctx + body <- eqCoe defs ctx' sg + (dweakDS 1 $ S [< i] $ Y ty) (weakD 1 p) (weakD 1 q) + (dweakT 1 s) (BV 0 loc) loc + whnf defs ctx sg $ + Ann (DLamY i (E body.fst) loc) (ty // one q) loc + + -- (coe ℕ @_ @_ s) ⇝ (s ∷ ℕ) + NAT tyLoc => + whnf defs ctx sg $ Ann s (NAT tyLoc) loc + + -- (coe String @_ @_ s) ⇝ (s ∷ String) + STRING tyLoc => + whnf defs ctx sg $ Ann s (STRING tyLoc) loc + + -- η expand/simplify + -- + -- (coe (𝑖 ⇒ [π.A]) @p @q s) + -- ⇝ + -- [case coe (𝑖 ⇒ [π.A]) @p @q s return A‹q/𝑖› of {[x] ⇒ x}] + -- ⇝ + -- [case1 s ∷ [π.A]‹p/𝑖› ⋯] ∷ [π.A]‹q/𝑖› -- see `boxCoe` + -- + -- do the eqCoe step here because otherwise equality checking keeps + -- doing the η forever + BOX qty inner tyLoc => do + body <- boxCoe defs ctx sg qty + (SY [< i] ty) p q s + (SN $ inner // one q) + (SY [< !(mnb "inner" loc)] (BVT 0 loc)) loc + whnf defs ctx sg $ Ann (Box (E body.fst) loc) (ty // one q) loc diff --git a/lib/Quox/Whnf/ComputeElimType.idr b/lib/Quox/Whnf/ComputeElimType.idr new file mode 100644 index 0000000..3661c12 --- /dev/null +++ b/lib/Quox/Whnf/ComputeElimType.idr @@ -0,0 +1,110 @@ +module Quox.Whnf.ComputeElimType + +import Quox.Whnf.Interface +import Quox.Displace +import Quox.Pretty + +%default total + + +||| performs the minimum work required to recompute the type of an elim. +||| +||| - assumes the elim is already typechecked +||| - the return value is not reduced +export covering +computeElimType : + CanWhnf Term Interface.isRedexT => + CanWhnf Elim Interface.isRedexE => + (defs : Definitions) -> (ctx : WhnfContext d n) -> (0 sg : SQty) -> + (e : Elim d n) -> (0 ne : No (isRedexE defs ctx sg e)) => + Eff Whnf (Term d n) + +||| computes a type and then reduces it to whnf +export covering +computeWhnfElimType0 : + CanWhnf Term Interface.isRedexT => + CanWhnf Elim Interface.isRedexE => + (defs : Definitions) -> (ctx : WhnfContext d n) -> (0 sg : SQty) -> + (e : Elim d n) -> (0 ne : No (isRedexE defs ctx sg e)) => + Eff Whnf (Term d n) + + +private covering +computeElimTypeNoLog, computeWhnfElimType0NoLog : + CanWhnf Term Interface.isRedexT => + CanWhnf Elim Interface.isRedexE => + (defs : Definitions) -> WhnfContext d n -> (0 sg : SQty) -> + (e : Elim d n) -> (0 ne : No (isRedexE defs ctx sg e)) => + Eff Whnf (Term d n) + +computeElimTypeNoLog defs ctx sg e = + case e of + F x u loc => do + let Just def = lookup x defs + | Nothing => throw $ NotInScope loc x + pure $ def.typeWithAt ctx.dimLen ctx.termLen u + + B i _ => + pure (ctx.tctx !! i).type + + App f s loc => + case !(computeWhnfElimType0NoLog defs ctx sg f {ne = noOr1 ne}) of + Pi {arg, res, _} => pure $ sub1 res $ Ann s arg loc + ty => throw $ ExpectedPi loc ctx.names ty + + CasePair {pair, ret, _} => + pure $ sub1 ret pair + + Fst pair loc => + case !(computeWhnfElimType0NoLog defs ctx sg pair {ne = noOr1 ne}) of + Sig {fst, _} => pure fst + ty => throw $ ExpectedSig loc ctx.names ty + + Snd pair loc => + case !(computeWhnfElimType0NoLog defs ctx sg pair {ne = noOr1 ne}) of + Sig {snd, _} => pure $ sub1 snd $ Fst pair loc + ty => throw $ ExpectedSig loc ctx.names ty + + CaseEnum {tag, ret, _} => + pure $ sub1 ret tag + + CaseNat {nat, ret, _} => + pure $ sub1 ret nat + + CaseBox {box, ret, _} => + pure $ sub1 ret box + + DApp {fun = f, arg = p, loc} => + case !(computeWhnfElimType0NoLog defs ctx sg f {ne = noOr1 ne}) of + Eq {ty, _} => pure $ dsub1 ty p + t => throw $ ExpectedEq loc ctx.names t + + Ann {ty, _} => + pure ty + + Coe {ty, q, _} => + pure $ dsub1 ty q + + Comp {ty, _} => + pure ty + + TypeCase {ret, _} => + pure ret + +computeElimType defs ctx sg e {ne} = do + let Val n = ctx.termLen + sayMany "whnf" e.loc + [90 :> "computeElimType", + 95 :> hsep ["ctx =", runPretty $ prettyWhnfContext ctx], + 90 :> hsep ["e =", runPretty $ prettyElim ctx.dnames ctx.tnames e]] + res <- computeElimTypeNoLog defs ctx sg e {ne} + say "whnf" 91 e.loc $ + hsep ["computeElimType ⇝", + runPretty $ prettyTerm ctx.dnames ctx.tnames res] + pure res + +computeWhnfElimType0 defs ctx sg e = + computeElimType defs ctx sg e >>= whnf0 defs ctx SZero + +computeWhnfElimType0NoLog defs ctx sg e {ne} = + computeElimTypeNoLog defs ctx sg e {ne} >>= whnf0 defs ctx SZero diff --git a/lib/Quox/Whnf/Interface.idr b/lib/Quox/Whnf/Interface.idr new file mode 100644 index 0000000..e516f62 --- /dev/null +++ b/lib/Quox/Whnf/Interface.idr @@ -0,0 +1,266 @@ +module Quox.Whnf.Interface + +import public Quox.No +import public Quox.Log +import public Quox.Syntax +import public Quox.Definition +import public Quox.Typing.Context +import public Quox.Typing.Error +import public Data.Maybe +import public Control.Eff + +%default total + + +public export +Whnf : List (Type -> Type) +Whnf = [Except Error, NameGen, Log] + + +public export +0 RedexTest : TermLike -> Type +RedexTest tm = + {0 d, n : Nat} -> Definitions -> WhnfContext d n -> SQty -> tm d n -> Bool + +public export +interface CanWhnf (0 tm : TermLike) (0 isRedex : RedexTest tm) | tm +where + whnf, whnfNoLog : + (defs : Definitions) -> (ctx : WhnfContext d n) -> (q : SQty) -> + tm d n -> Eff Whnf (Subset (tm d n) (No . isRedex defs ctx q)) + -- having isRedex be part of the class header, and needing to be explicitly + -- quantified on every use since idris can't infer its type, is a little ugly. + -- but none of the alternatives i've thought of so far work. e.g. in some + -- cases idris can't tell that `isRedex` and `isRedexT` are the same thing + +public export %inline +whnf0, whnfNoLog0 : + {0 isRedex : RedexTest tm} -> CanWhnf tm isRedex => + Definitions -> WhnfContext d n -> SQty -> tm d n -> Eff Whnf (tm d n) +whnf0 defs ctx q t = fst <$> whnf defs ctx q t +whnfNoLog0 defs ctx q t = fst <$> whnfNoLog defs ctx q t + +public export +0 IsRedex, NotRedex : {isRedex : RedexTest tm} -> CanWhnf tm isRedex => + Definitions -> WhnfContext d n -> SQty -> Pred (tm d n) +IsRedex defs ctx q = So . isRedex defs ctx q +NotRedex defs ctx q = No . isRedex defs ctx q + +public export +0 NonRedex : (tm : TermLike) -> {isRedex : RedexTest tm} -> + CanWhnf tm isRedex => (d, n : Nat) -> + Definitions -> WhnfContext d n -> SQty -> Type +NonRedex tm d n defs ctx q = Subset (tm d n) (NotRedex defs ctx q) + +public export %inline +nred : {0 isRedex : RedexTest tm} -> (0 _ : CanWhnf tm isRedex) => + (t : tm d n) -> (0 nr : NotRedex defs ctx q t) => + NonRedex tm d n defs ctx q +nred t = Element t nr + + +||| an expression like `(λ x ⇒ s) ∷ π.(x : A) → B` +public export %inline +isLamHead : Elim {} -> Bool +isLamHead (Ann (Lam {}) (Pi {}) _) = True +isLamHead (Coe {}) = True +isLamHead _ = False + +||| an expression like `(δ 𝑖 ⇒ s) ∷ Eq (𝑖 ⇒ A) s t` +public export %inline +isDLamHead : Elim {} -> Bool +isDLamHead (Ann (DLam {}) (Eq {}) _) = True +isDLamHead (Coe {}) = True +isDLamHead _ = False + +||| an expression like `(s, t) ∷ (x : A) × B` +public export %inline +isPairHead : Elim {} -> Bool +isPairHead (Ann (Pair {}) (Sig {}) _) = True +isPairHead (Coe {}) = True +isPairHead _ = False + +||| an expression like `'a ∷ {a, b, c}` +public export %inline +isTagHead : Elim {} -> Bool +isTagHead (Ann (Tag {}) (Enum {}) _) = True +isTagHead (Coe {}) = True +isTagHead _ = False + +||| an expression like `𝑘 ∷ ℕ` for a natural constant 𝑘, or `suc n ∷ ℕ` +public export %inline +isNatHead : Elim {} -> Bool +isNatHead (Ann (Nat {}) (NAT {}) _) = True +isNatHead (Ann (Succ {}) (NAT {}) _) = True +isNatHead (Coe {}) = True +isNatHead _ = False + +||| a natural constant, with or without an annotation +public export %inline +isNatConst : Term d n -> Bool +isNatConst (Nat {}) = True +isNatConst (E (Ann (Nat {}) _ _)) = True +isNatConst _ = False + +||| an expression like `[s] ∷ [π. A]` +public export %inline +isBoxHead : Elim {} -> Bool +isBoxHead (Ann (Box {}) (BOX {}) _) = True +isBoxHead (Coe {}) = True +isBoxHead _ = False + +||| an elimination in a term context +public export %inline +isE : Term {} -> Bool +isE (E {}) = True +isE _ = False + +||| an expression like `s ∷ A` +public export %inline +isAnn : Elim {} -> Bool +isAnn (Ann {}) = True +isAnn _ = False + +||| a syntactic type +public export %inline +isTyCon : Term {} -> Bool +isTyCon (TYPE {}) = True +isTyCon (IOState {}) = True +isTyCon (Pi {}) = True +isTyCon (Lam {}) = False +isTyCon (Sig {}) = True +isTyCon (Pair {}) = False +isTyCon (Enum {}) = True +isTyCon (Tag {}) = False +isTyCon (Eq {}) = True +isTyCon (DLam {}) = False +isTyCon (NAT {}) = True +isTyCon (Nat {}) = False +isTyCon (Succ {}) = False +isTyCon (STRING {}) = True +isTyCon (Str {}) = False +isTyCon (BOX {}) = True +isTyCon (Box {}) = False +isTyCon (Let {}) = False +isTyCon (E {}) = False +isTyCon (CloT {}) = False +isTyCon (DCloT {}) = False + +||| a syntactic type, or a neutral +public export %inline +isTyConE : Term {} -> Bool +isTyConE s = isTyCon s || isE s + +||| a syntactic type with an annotation `★ᵢ` +public export %inline +isAnnTyCon : Elim {} -> Bool +isAnnTyCon (Ann ty (TYPE {}) _) = isTyCon ty +isAnnTyCon _ = False + +||| 0 or 1 +public export %inline +isK : Dim d -> Bool +isK (K {}) = True +isK _ = False + + +||| true if `ty` is a type constructor, and `val` is a value of that type where +||| a coercion can be reduced +||| +||| 1. `ty` is an atomic type +||| 2. `ty` has an η law that is usable in this context +||| (e.g. η for pairs only exists when σ=0, not when σ=1) +||| 3. `val` is a constructor form +public export %inline +canPushCoe : SQty -> (ty, val : Term {}) -> Bool +canPushCoe sg (TYPE {}) _ = True +canPushCoe sg (IOState {}) _ = True +canPushCoe sg (Pi {}) _ = True +canPushCoe sg (Lam {}) _ = False +canPushCoe sg (Sig {}) (Pair {}) = True +canPushCoe sg (Sig {}) _ = False +canPushCoe sg (Pair {}) _ = False +canPushCoe sg (Enum {}) _ = True +canPushCoe sg (Tag {}) _ = False +canPushCoe sg (Eq {}) _ = True +canPushCoe sg (DLam {}) _ = False +canPushCoe sg (NAT {}) _ = True +canPushCoe sg (Nat {}) _ = False +canPushCoe sg (Succ {}) _ = False +canPushCoe sg (STRING {}) _ = True +canPushCoe sg (Str {}) _ = False +canPushCoe sg (BOX {}) _ = True +canPushCoe sg (Box {}) _ = False +canPushCoe sg (Let {}) _ = False +canPushCoe sg (E {}) _ = False +canPushCoe sg (CloT {}) _ = False +canPushCoe sg (DCloT {}) _ = False + + +mutual + ||| a reducible elimination + ||| + ||| 1. a free variable, if its definition is known + ||| 2. a bound variable pointing to a `let` + ||| 3. an elimination whose head is reducible + ||| 4. an "active" elimination: + ||| an application whose head is an annotated lambda, + ||| a case expression whose head is an annotated constructor form, etc + ||| 5. a redundant annotation, or one whose term or type is reducible + ||| 6. a coercion `coe (𝑖 ⇒ A) @p @q s` where: + ||| a. `A` is reducible or a type constructor, or + ||| b. `𝑖` is not mentioned in `A` + ||| ([fixme] should be A‹0/𝑖› = A‹1/𝑖›), or + ||| c. `p = q` + ||| 7. a composition `comp A @p @q s @r {⋯}` + ||| where `p = q`, `r = 0`, or `r = 1` + ||| 8. a closure + public export + isRedexE : RedexTest Elim + isRedexE defs ctx sg (F {x, u, _}) = isJust $ lookupElim0 x u defs + isRedexE _ ctx sg (B {i, _}) = isJust (ctx.tctx !! i).term + isRedexE defs ctx sg (App {fun, _}) = + isRedexE defs ctx sg fun || isLamHead fun + isRedexE defs ctx sg (CasePair {pair, _}) = + isRedexE defs ctx sg pair || isPairHead pair || isYes (sg `decEq` SZero) + isRedexE defs ctx sg (Fst pair _) = + isRedexE defs ctx sg pair || isPairHead pair + isRedexE defs ctx sg (Snd pair _) = + isRedexE defs ctx sg pair || isPairHead pair + isRedexE defs ctx sg (CaseEnum {tag, _}) = + isRedexE defs ctx sg tag || isTagHead tag + isRedexE defs ctx sg (CaseNat {nat, _}) = + isRedexE defs ctx sg nat || isNatHead nat + isRedexE defs ctx sg (CaseBox {box, _}) = + isRedexE defs ctx sg box || isBoxHead box + isRedexE defs ctx sg (DApp {fun, arg, _}) = + isRedexE defs ctx sg fun || isDLamHead fun || isK arg + isRedexE defs ctx sg (Ann {tm, ty, _}) = + isE tm || isRedexT defs ctx sg tm || isRedexT defs ctx SZero ty + isRedexE defs ctx sg (Coe {ty = S _ (N _), _}) = True + isRedexE defs ctx sg (Coe {ty = S [< i] (Y ty), p, q, val, _}) = + isRedexT defs (extendDim i ctx) SZero ty || + canPushCoe sg ty val || isYes (p `decEqv` q) + isRedexE defs ctx sg (Comp {ty, p, q, r, _}) = + isYes (p `decEqv` q) || isK r + isRedexE defs ctx sg (TypeCase {ty, ret, _}) = + isRedexE defs ctx sg ty || isRedexT defs ctx sg ret || isAnnTyCon ty + isRedexE _ _ _ (CloE {}) = True + isRedexE _ _ _ (DCloE {}) = True + + ||| a reducible term + ||| + ||| 1. a reducible elimination, as `isRedexE` + ||| 2. an annotated elimination + ||| (the annotation is redundant in a checkable context) + ||| 3. a closure + ||| 4. `succ` applied to a natural constant + ||| 5. a `let` expression + public export + isRedexT : RedexTest Term + isRedexT _ _ _ (CloT {}) = True + isRedexT _ _ _ (DCloT {}) = True + isRedexT _ _ _ (Let {}) = True + isRedexT defs ctx sg (E {e, _}) = isAnn e || isRedexE defs ctx sg e + isRedexT _ _ _ (Succ p {}) = isNatConst p + isRedexT _ _ _ _ = False diff --git a/lib/Quox/Whnf/Main.idr b/lib/Quox/Whnf/Main.idr new file mode 100644 index 0000000..cd340ca --- /dev/null +++ b/lib/Quox/Whnf/Main.idr @@ -0,0 +1,293 @@ +module Quox.Whnf.Main + +import Quox.Whnf.Interface +import Quox.Whnf.ComputeElimType +import Quox.Whnf.TypeCase +import Quox.Whnf.Coercion +import Quox.Pretty +import Quox.Displace +import Data.SnocVect + +%default total + + +export covering CanWhnf Term Interface.isRedexT +export covering CanWhnf Elim Interface.isRedexE + + +-- the String is what to call the "s" argument in logs (maybe "s", or "e") +private %inline +whnfDefault : + {0 isRedex : RedexTest tm} -> + (CanWhnf tm isRedex, Located2 tm) => + String -> + (forall d, n. WhnfContext d n -> tm d n -> Eff Pretty LogDoc) -> + (defs : Definitions) -> + (ctx : WhnfContext d n) -> + (sg : SQty) -> + (s : tm d n) -> + Eff Whnf (Subset (tm d n) (No . isRedex defs ctx sg)) +whnfDefault name ppr defs ctx sg s = do + sayMany "whnf" s.loc + [10 :> "whnf", + 95 :> hsep ["ctx =", runPretty $ prettyWhnfContext ctx], + 95 :> hsep ["sg =", runPretty $ prettyQty sg.qty], + 10 :> hsep [text name, "=", runPretty $ ppr ctx s]] + res <- whnfNoLog defs ctx sg s + say "whnf" 11 s.loc $ hsep ["whnf ⇝", runPretty $ ppr ctx res.fst] + pure res + +covering +CanWhnf Elim Interface.isRedexE where + whnf = whnfDefault "e" $ \ctx, e => prettyElim ctx.dnames ctx.tnames e + + whnfNoLog defs ctx sg (F x u loc) with (lookupElim0 x u defs) proof eq + _ | Just y = whnf defs ctx sg $ setLoc loc $ injElim ctx y + _ | Nothing = pure $ Element (F x u loc) $ rewrite eq in Ah + + whnfNoLog defs ctx sg (B i loc) with (ctx.tctx !! i) proof eq1 + _ | l with (l.term) proof eq2 + _ | Just y = whnf defs ctx sg $ Ann y l.type loc + _ | Nothing = pure $ Element (B i loc) $ rewrite eq1 in rewrite eq2 in Ah + + -- ((λ x ⇒ t) ∷ (π.x : A) → B) s ⇝ t[s∷A/x] ∷ B[s∷A/x] + whnfNoLog defs ctx sg (App f s appLoc) = do + Element f fnf <- whnf defs ctx sg f + case nchoose $ isLamHead f of + Left _ => case f of + Ann (Lam {body, _}) (Pi {arg, res, _}) floc => + let s = Ann s arg s.loc in + whnf defs ctx sg $ Ann (sub1 body s) (sub1 res s) appLoc + Coe ty p q val _ => piCoe defs ctx sg ty p q val s appLoc + Right nlh => pure $ Element (App f s appLoc) $ fnf `orNo` nlh + + -- case (s, t) ∷ (x : A) × B return p ⇒ C of { (a, b) ⇒ u } ⇝ + -- u[s∷A/a, t∷B[s∷A/x]] ∷ C[(s, t)∷((x : A) × B)/p] + -- + -- 0 · case e return p ⇒ C of { (a, b) ⇒ u } ⇝ + -- u[fst e/a, snd e/b] ∷ C[e/p] + whnfNoLog defs ctx sg (CasePair pi pair ret body caseLoc) = do + Element pair pairnf <- whnf defs ctx sg pair + case nchoose $ isPairHead pair of + Left _ => case pair of + Ann (Pair {fst, snd, _}) (Sig {fst = tfst, snd = tsnd, _}) pairLoc => + let fst = Ann fst tfst fst.loc + snd = Ann snd (sub1 tsnd fst) snd.loc + in + whnf defs ctx sg $ Ann (subN body [< fst, snd]) (sub1 ret pair) caseLoc + Coe ty p q val _ => do + sigCoe defs ctx sg pi ty p q val ret body caseLoc + Right np => + case sg `decEq` SZero of + Yes Refl => + whnf defs ctx SZero $ + Ann (subN body [< Fst pair caseLoc, Snd pair caseLoc]) + (sub1 ret pair) + caseLoc + No n0 => + pure $ Element (CasePair pi pair ret body caseLoc) + (pairnf `orNo` np `orNo` notYesNo n0) + + -- fst ((s, t) ∷ (x : A) × B) ⇝ s ∷ A + whnfNoLog defs ctx sg (Fst pair fstLoc) = do + Element pair pairnf <- whnf defs ctx sg pair + case nchoose $ isPairHead pair of + Left _ => case pair of + Ann (Pair {fst, snd, _}) (Sig {fst = tfst, snd = tsnd, _}) pairLoc => + whnf defs ctx sg $ Ann fst tfst pairLoc + Coe ty p q val _ => do + fstCoe defs ctx sg ty p q val fstLoc + Right np => + pure $ Element (Fst pair fstLoc) (pairnf `orNo` np) + + -- snd ((s, t) ∷ (x : A) × B) ⇝ t ∷ B[(s ∷ A)/x] + whnfNoLog defs ctx sg (Snd pair sndLoc) = do + Element pair pairnf <- whnf defs ctx sg pair + case nchoose $ isPairHead pair of + Left _ => case pair of + Ann (Pair {fst, snd, _}) (Sig {fst = tfst, snd = tsnd, _}) pairLoc => + whnf defs ctx sg $ Ann snd (sub1 tsnd (Ann fst tfst fst.loc)) sndLoc + Coe ty p q val _ => do + sndCoe defs ctx sg ty p q val sndLoc + Right np => + pure $ Element (Snd pair sndLoc) (pairnf `orNo` np) + + -- case 'a ∷ {a,…} return p ⇒ C of { 'a ⇒ u } ⇝ + -- u ∷ C['a∷{a,…}/p] + whnfNoLog defs ctx sg (CaseEnum pi tag ret arms caseLoc) = do + Element tag tagnf <- whnf defs ctx sg tag + case nchoose $ isTagHead tag of + Left _ => case tag of + Ann (Tag t _) (Enum ts _) _ => + let ty = sub1 ret tag in + case lookup t arms of + Just arm => whnf defs ctx sg $ Ann arm ty arm.loc + Nothing => throw $ MissingEnumArm caseLoc t (keys arms) + Coe ty p q val _ => + -- there is nowhere an equality can be hiding inside an enum type + whnf defs ctx sg $ + CaseEnum pi (Ann val (dsub1 ty q) val.loc) ret arms caseLoc + Right nt => + pure $ Element (CaseEnum pi tag ret arms caseLoc) $ tagnf `orNo` nt + + -- case zero ∷ ℕ return p ⇒ C of { zero ⇒ u; … } ⇝ + -- u ∷ C[zero∷ℕ/p] + -- + -- case succ n ∷ ℕ return p ⇒ C of { succ n', π.ih ⇒ u; … } ⇝ + -- u[n∷ℕ/n', (case n ∷ ℕ ⋯)/ih] ∷ C[succ n ∷ ℕ/p] + whnfNoLog defs ctx sg (CaseNat pi piIH nat ret zer suc caseLoc) = do + Element nat natnf <- whnf defs ctx sg nat + case nchoose $ isNatHead nat of + Left _ => + let ty = sub1 ret nat in + case nat of + Ann (Nat 0 _) (NAT _) _ => + whnf defs ctx sg $ Ann zer ty zer.loc + Ann (Nat (S n) succLoc) (NAT natLoc) _ => + let nn = Ann (Nat n succLoc) (NAT natLoc) succLoc + tm = subN suc [< nn, CaseNat pi piIH nn ret zer suc caseLoc] + in + whnf defs ctx sg $ Ann tm ty caseLoc + Ann (Succ n succLoc) (NAT natLoc) _ => + let nn = Ann n (NAT natLoc) succLoc + tm = subN suc [< nn, CaseNat pi piIH nn ret zer suc caseLoc] + in + whnf defs ctx sg $ Ann tm ty caseLoc + Coe ty p q val _ => + -- same deal as Enum + whnf defs ctx sg $ + CaseNat pi piIH (Ann val (dsub1 ty q) val.loc) ret zer suc caseLoc + Right nn => pure $ + Element (CaseNat pi piIH nat ret zer suc caseLoc) (natnf `orNo` nn) + + -- case [t] ∷ [π.A] return p ⇒ C of { [x] ⇒ u } ⇝ + -- u[t∷A/x] ∷ C[[t] ∷ [π.A]/p] + whnfNoLog defs ctx sg (CaseBox pi box ret body caseLoc) = do + Element box boxnf <- whnf defs ctx sg box + case nchoose $ isBoxHead box of + Left _ => case box of + Ann (Box val boxLoc) (BOX q bty tyLoc) _ => + let ty = sub1 ret box in + whnf defs ctx sg $ Ann (sub1 body (Ann val bty val.loc)) ty caseLoc + Coe ty p q val _ => + boxCoe defs ctx sg pi ty p q val ret body caseLoc + Right nb => + pure $ Element (CaseBox pi box ret body caseLoc) (boxnf `orNo` nb) + + -- e : Eq (𝑗 ⇒ A) t u ⊢ e @0 ⇝ t ∷ A‹0/𝑗› + -- e : Eq (𝑗 ⇒ A) t u ⊢ e @1 ⇝ u ∷ A‹1/𝑗› + -- + -- ((δ 𝑖 ⇒ s) ∷ Eq (𝑗 ⇒ A) t u) @𝑘 ⇝ s‹𝑘/𝑖› ∷ A‹𝑘/𝑗› + whnfNoLog defs ctx sg (DApp f p appLoc) = do + Element f fnf <- whnf defs ctx sg f + case nchoose $ isDLamHead f of + Left _ => case f of + Ann (DLam {body, _}) (Eq {ty, l, r, _}) _ => + whnf defs ctx sg $ + Ann (endsOr (setLoc appLoc l) (setLoc appLoc r) (dsub1 body p) p) + (dsub1 ty p) appLoc + Coe ty p' q' val _ => + eqCoe defs ctx sg ty p' q' val p appLoc + Right ndlh => case p of + K e _ => do + Eq {l, r, ty, _} <- computeWhnfElimType0 defs ctx sg f + | ty => throw $ ExpectedEq ty.loc ctx.names ty + whnf defs ctx sg $ + ends (Ann (setLoc appLoc l) ty.zero appLoc) + (Ann (setLoc appLoc r) ty.one appLoc) e + B {} => pure $ Element (DApp f p appLoc) (fnf `orNo` ndlh `orNo` Ah) + + -- e ∷ A ⇝ e + whnfNoLog defs ctx sg (Ann s a annLoc) = do + Element s snf <- whnf defs ctx sg s + case nchoose $ isE s of + Left _ => let E e = s in pure $ Element e $ noOr2 snf + Right ne => do + Element a anf <- whnf defs ctx SZero a + pure $ Element (Ann s a annLoc) (ne `orNo` snf `orNo` anf) + + whnfNoLog defs ctx sg (Coe sty@(S [< i] ty) p q val coeLoc) = + -- reduction if A‹0/𝑖› = A‹1/𝑖› lives in Equal + case p `decEqv` q of + -- coe (𝑖 ⇒ A) @p @p s ⇝ (s ∷ A‹p/𝑖›) + Yes _ => whnf defs ctx sg $ Ann val (dsub1 sty p) coeLoc + No npq => do + let ty = getTerm ty + Element ty tynf <- whnf defs (extendDim i ctx) SZero ty + case nchoose $ canPushCoe sg ty val of + Left pc => pushCoe defs ctx sg i ty p q val coeLoc + Right npc => pure $ Element (Coe (SY [< i] ty) p q val coeLoc) + (tynf `orNo` npc `orNo` notYesNo npq) + + whnfNoLog defs ctx sg (Comp ty p q val r zero one compLoc) = + case p `decEqv` q of + -- comp [A] @p @p s @r { ⋯ } ⇝ s ∷ A + Yes y => whnf defs ctx sg $ Ann val ty compLoc + No npq => case r of + -- comp [A] @p @q s @0 { 0 𝑗 ⇒ t₀; ⋯ } ⇝ t₀‹q/𝑗› ∷ A + K Zero _ => whnf defs ctx sg $ Ann (dsub1 zero q) ty compLoc + -- comp [A] @p @q s @1 { 1 𝑗 ⇒ t₁; ⋯ } ⇝ t₁‹q/𝑗› ∷ A + K One _ => whnf defs ctx sg $ Ann (dsub1 one q) ty compLoc + B {} => pure $ Element (Comp ty p q val r zero one compLoc) + (notYesNo npq `orNo` Ah) + + whnfNoLog defs ctx sg (TypeCase ty ret arms def tcLoc) = + case sg `decEq` SZero of + Yes Refl => do + Element ty tynf <- whnf defs ctx SZero ty + Element ret retnf <- whnf defs ctx SZero ret + case nchoose $ isAnnTyCon ty of + Left y => let Ann ty (TYPE u _) _ = ty in + reduceTypeCase defs ctx ty u ret arms def tcLoc + Right nt => pure $ Element (TypeCase ty ret arms def tcLoc) + (tynf `orNo` retnf `orNo` nt) + No _ => + throw $ ClashQ tcLoc sg.qty Zero + + whnfNoLog defs ctx sg (CloE (Sub el th)) = + whnfNoLog defs ctx sg $ pushSubstsWith' id th el + whnfNoLog defs ctx sg (DCloE (Sub el th)) = + whnfNoLog defs ctx sg $ pushSubstsWith' th id el + +covering +CanWhnf Term Interface.isRedexT where + whnf = whnfDefault "e" $ \ctx, s => prettyTerm ctx.dnames ctx.tnames s + + whnfNoLog _ _ _ t@(TYPE {}) = pure $ nred t + whnfNoLog _ _ _ t@(IOState {}) = pure $ nred t + whnfNoLog _ _ _ t@(Pi {}) = pure $ nred t + whnfNoLog _ _ _ t@(Lam {}) = pure $ nred t + whnfNoLog _ _ _ t@(Sig {}) = pure $ nred t + whnfNoLog _ _ _ t@(Pair {}) = pure $ nred t + whnfNoLog _ _ _ t@(Enum {}) = pure $ nred t + whnfNoLog _ _ _ t@(Tag {}) = pure $ nred t + whnfNoLog _ _ _ t@(Eq {}) = pure $ nred t + whnfNoLog _ _ _ t@(DLam {}) = pure $ nred t + whnfNoLog _ _ _ t@(NAT {}) = pure $ nred t + whnfNoLog _ _ _ t@(Nat {}) = pure $ nred t + whnfNoLog _ _ _ t@(STRING {}) = pure $ nred t + whnfNoLog _ _ _ t@(Str {}) = pure $ nred t + whnfNoLog _ _ _ t@(BOX {}) = pure $ nred t + whnfNoLog _ _ _ t@(Box {}) = pure $ nred t + + whnfNoLog _ _ _ (Succ p loc) = + case nchoose $ isNatConst p of + Left _ => case p of + Nat p _ => pure $ nred $ Nat (S p) loc + E (Ann (Nat p _) _ _) => pure $ nred $ Nat (S p) loc + Right nc => pure $ nred $ Succ p loc + + whnfNoLog defs ctx sg (Let _ rhs body _) = + whnf defs ctx sg $ sub1 body rhs + + -- s ∷ A ⇝ s (in term context) + whnfNoLog defs ctx sg (E e) = do + Element e enf <- whnf defs ctx sg e + case nchoose $ isAnn e of + Left _ => let Ann {tm, _} = e in pure $ Element tm $ noOr1 $ noOr2 enf + Right na => pure $ Element (E e) $ na `orNo` enf + + whnfNoLog defs ctx sg (CloT (Sub tm th)) = + whnfNoLog defs ctx sg $ pushSubstsWith' id th tm + whnfNoLog defs ctx sg (DCloT (Sub tm th)) = + whnfNoLog defs ctx sg $ pushSubstsWith' th id tm diff --git a/lib/Quox/Whnf/TypeCase.idr b/lib/Quox/Whnf/TypeCase.idr new file mode 100644 index 0000000..c9ffde2 --- /dev/null +++ b/lib/Quox/Whnf/TypeCase.idr @@ -0,0 +1,170 @@ +module Quox.Whnf.TypeCase + +import Quox.Whnf.Interface +import Quox.Whnf.ComputeElimType +import Data.SnocVect + +%default total + + +private +tycaseRhs : (k : TyConKind) -> TypeCaseArms d n -> + Maybe (ScopeTermN (arity k) d n) +tycaseRhs k arms = lookupPrecise k arms + +private +tycaseRhsDef : Term d n -> (k : TyConKind) -> TypeCaseArms d n -> + ScopeTermN (arity k) d n +tycaseRhsDef def k arms = fromMaybe (SN def) $ tycaseRhs k arms + +private +tycaseRhs0 : (k : TyConKind) -> TypeCaseArms d n -> + (0 eq : arity k = 0) => Maybe (Term d n) +tycaseRhs0 k arms = map (.term0) $ rewrite sym eq in tycaseRhs k arms + +private +tycaseRhsDef0 : Term d n -> (k : TyConKind) -> TypeCaseArms d n -> + (0 eq : arity k = 0) => Term d n +tycaseRhsDef0 def k arms = fromMaybe def $ tycaseRhs0 k arms + + +parameters {auto _ : CanWhnf Term Interface.isRedexT} + {auto _ : CanWhnf Elim Interface.isRedexE} + (defs : Definitions) (ctx : WhnfContext d n) + ||| for π.(x : A) → B, returns (A, B); + ||| for an elim returns a pair of type-cases that will reduce to that; + ||| for other intro forms error + export covering + tycasePi : (t : Term d n) -> (0 tnf : No (isRedexT defs ctx SZero t)) => + Eff Whnf (Term d n, ScopeTerm d n) + tycasePi (Pi {arg, res, _}) = pure (arg, res) + tycasePi (E e) {tnf} = do + ty <- computeElimType defs ctx SZero e {ne = noOr2 tnf} + let loc = e.loc + narg = mnb "Arg" loc; nret = mnb "Ret" loc + arg = E $ typeCase1Y e ty KPi [< !narg, !nret] (BVT 1 loc) loc + res' = typeCase1Y e (Arr Zero arg ty loc) KPi [< !narg, !nret] + (BVT 0 loc) loc + res = SY [< !narg] $ E $ App (weakE 1 res') (BVT 0 loc) loc + pure (arg, res) + tycasePi t = throw $ ExpectedPi t.loc ctx.names t + + ||| for (x : A) × B, returns (A, B); + ||| for an elim returns a pair of type-cases that will reduce to that; + ||| for other intro forms error + export covering + tycaseSig : (t : Term d n) -> (0 tnf : No (isRedexT defs ctx SZero t)) => + Eff Whnf (Term d n, ScopeTerm d n) + tycaseSig (Sig {fst, snd, _}) = pure (fst, snd) + tycaseSig (E e) {tnf} = do + ty <- computeElimType defs ctx SZero e {ne = noOr2 tnf} + let loc = e.loc + nfst = mnb "Fst" loc; nsnd = mnb "Snd" loc + fst = E $ typeCase1Y e ty KSig [< !nfst, !nsnd] (BVT 1 loc) loc + snd' = typeCase1Y e (Arr Zero fst ty loc) KSig [< !nfst, !nsnd] + (BVT 0 loc) loc + snd = SY [< !nfst] $ E $ App (weakE 1 snd') (BVT 0 loc) loc + pure (fst, snd) + tycaseSig t = throw $ ExpectedSig t.loc ctx.names t + + ||| for [π. A], returns A; + ||| for an elim returns a type-case that will reduce to that; + ||| for other intro forms error + export covering + tycaseBOX : (t : Term d n) -> (0 tnf : No (isRedexT defs ctx SZero t)) => + Eff Whnf (Term d n) + tycaseBOX (BOX {ty, _}) = pure ty + tycaseBOX (E e) {tnf} = do + ty <- computeElimType defs ctx SZero e {ne = noOr2 tnf} + pure $ E $ typeCase1Y e ty KBOX [< !(mnb "Ty" e.loc)] (BVT 0 e.loc) e.loc + tycaseBOX t = throw $ ExpectedBOX t.loc ctx.names t + + ||| for Eq [i ⇒ A] l r, returns (A‹0/i›, A‹1/i›, A, l, r); + ||| for an elim returns five type-cases that will reduce to that; + ||| for other intro forms error + export covering + tycaseEq : (t : Term d n) -> (0 tnf : No (isRedexT defs ctx SZero t)) => + Eff Whnf (Term d n, Term d n, DScopeTerm d n, Term d n, Term d n) + tycaseEq (Eq {ty, l, r, _}) = pure (ty.zero, ty.one, ty, l, r) + tycaseEq (E e) {tnf} = do + ty <- computeElimType defs ctx SZero e {ne = noOr2 tnf} + let loc = e.loc + names = traverse' (\x => mnb x loc) [< "A0", "A1", "A", "L", "R"] + a0 = E $ typeCase1Y e ty KEq !names (BVT 4 loc) loc + a1 = E $ typeCase1Y e ty KEq !names (BVT 3 loc) loc + a' = typeCase1Y e (Eq0 ty a0 a1 loc) KEq !names (BVT 2 loc) loc + a = SY [< !(mnb "i" loc)] $ E $ DApp (dweakE 1 a') (B VZ loc) loc + l = E $ typeCase1Y e a0 KEq !names (BVT 1 loc) loc + r = E $ typeCase1Y e a1 KEq !names (BVT 0 loc) loc + pure (a0, a1, a, l, r) + tycaseEq t = throw $ ExpectedEq t.loc ctx.names t + + ||| reduce a type-case applied to a type constructor + ||| + ||| `reduceTypeCase A i Q arms def _` reduces an expression + ||| `type-case A ∷ ★ᵢ return Q of { arms; _ ⇒ def }` + export covering + reduceTypeCase : (ty : Term d n) -> (u : Universe) -> (ret : Term d n) -> + (arms : TypeCaseArms d n) -> (def : Term d n) -> + (0 _ : So (isTyCon ty)) => Loc -> + Eff Whnf (Subset (Elim d n) (No . isRedexE defs ctx SZero)) + reduceTypeCase ty u ret arms def loc = case ty of + -- (type-case ★ᵢ ∷ _ return Q of { ★ ⇒ s; ⋯ }) ⇝ s ∷ Q + TYPE {} => + whnf defs ctx SZero $ Ann (tycaseRhsDef0 def KTYPE arms) ret loc + + -- (type-case IOState ∷ _ return Q of { IOState ⇒ s; ⋯ }) ⇝ s ∷ Q + IOState {} => + whnf defs ctx SZero $ Ann (tycaseRhsDef0 def KIOState arms) ret loc + + -- (type-case π.(x : A) → B ∷ ★ᵢ return Q of { (a → b) ⇒ s; ⋯ }) ⇝ + -- s[(A ∷ ★ᵢ)/a, ((λ x ⇒ B) ∷ 0.A → ★ᵢ)/b] ∷ Q + Pi {arg, res, loc = piLoc, _} => + let arg' = Ann arg (TYPE u arg.loc) arg.loc + res' = Ann (Lam res res.loc) + (Arr Zero arg (TYPE u arg.loc) arg.loc) res.loc + in + whnf defs ctx SZero $ + Ann (subN (tycaseRhsDef def KPi arms) [< arg', res']) ret loc + + -- (type-case (x : A) × B ∷ ★ᵢ return Q of { (a × b) ⇒ s; ⋯ }) ⇝ + -- s[(A ∷ ★ᵢ)/a, ((λ x ⇒ B) ∷ 0.A → ★ᵢ)/b] ∷ Q + Sig {fst, snd, loc = sigLoc, _} => + let fst' = Ann fst (TYPE u fst.loc) fst.loc + snd' = Ann (Lam snd snd.loc) + (Arr Zero fst (TYPE u fst.loc) fst.loc) snd.loc + in + whnf defs ctx SZero $ + Ann (subN (tycaseRhsDef def KSig arms) [< fst', snd']) ret loc + + -- (type-case {⋯} ∷ _ return Q of { {} ⇒ s; ⋯ }) ⇝ s ∷ Q + Enum {} => + whnf defs ctx SZero $ Ann (tycaseRhsDef0 def KEnum arms) ret loc + + -- (type-case Eq [i ⇒ A] L R ∷ ★ᵢ return Q + -- of { Eq a₀ a₁ a l r ⇒ s; ⋯ }) ⇝ + -- s[(A‹0/i› ∷ ★ᵢ)/a₀, (A‹1/i› ∷ ★ᵢ)/a₁, + -- ((δ i ⇒ A) ∷ Eq [★ᵢ] A‹0/i› A‹1/i›)/a, + -- (L ∷ A‹0/i›)/l, (R ∷ A‹1/i›)/r] ∷ Q + Eq {ty = a, l, r, loc = eqLoc, _} => + let a0 = a.zero; a1 = a.one in + whnf defs ctx SZero $ Ann + (subN (tycaseRhsDef def KEq arms) + [< Ann a0 (TYPE u a.loc) a.loc, Ann a1 (TYPE u a.loc) a.loc, + Ann (DLam a a.loc) (Eq0 (TYPE u a.loc) a0 a1 a.loc) a.loc, + Ann l a0 l.loc, Ann r a1 r.loc]) + ret loc + + -- (type-case ℕ ∷ _ return Q of { ℕ ⇒ s; ⋯ }) ⇝ s ∷ Q + NAT {} => + whnf defs ctx SZero $ Ann (tycaseRhsDef0 def KNat arms) ret loc + + -- (type-case String ∷ _ return Q of { String ⇒ s; ⋯ }) ⇝ s ∷ Q + STRING {} => + whnf defs ctx SZero $ Ann (tycaseRhsDef0 def KString arms) ret loc + + -- (type-case [π.A] ∷ ★ᵢ return Q of { [a] ⇒ s; ⋯ }) ⇝ s[(A ∷ ★ᵢ)/a] ∷ Q + BOX {ty = a, loc = boxLoc, _} => + whnf defs ctx SZero $ Ann + (sub1 (tycaseRhsDef def KBOX arms) (Ann a (TYPE u a.loc) a.loc)) + ret loc diff --git a/lib/Text/PrettyPrint/Bernardy/Core/Decorate.idr b/lib/Text/PrettyPrint/Bernardy/Core/Decorate.idr index 9e276d6..6e73cc6 100644 --- a/lib/Text/PrettyPrint/Bernardy/Core/Decorate.idr +++ b/lib/Text/PrettyPrint/Bernardy/Core/Decorate.idr @@ -1,28 +1,37 @@ -- this module has to be called this because a module A.B's private elements are -- still visible to A.B.C, even if they're in different packages. which i don't -- think is a good idea but i also don't want to fork prettier over it +-- +-- also i adapted this code from stefan höck's prettier-ansi package +-- (https://github.com/idris-community/idris2-ansi) module Text.PrettyPrint.Bernardy.Core.Decorate import public Text.PrettyPrint.Bernardy.Core import Data.DPair +import Data.String +import Derive.Prelude + +%language ElabReflection public export record Highlight where constructor MkHighlight before, after : String +%name Highlight h +%runElab derive "Highlight" [Eq] export -emptyHL : Highlight -> Bool -emptyHL (MkHighlight before after) = before == "" && after == "" +emptyHL : Highlight +emptyHL = MkHighlight "" "" --- taken from prettier-ansi +-- lifted from prettier-ansi private decorateImpl : Highlight -> (ss : SnocList String) -> (0 _ : NonEmptySnoc ss) => Subset (SnocList String) NonEmptySnoc -decorateImpl h [ SnocList String -> SnocList String @@ -34,12 +43,23 @@ decorateImpl h (sx :< x) = Element (go [] sx :< (x ++ h.after)) %search ||| changing its stats like width or height. export decorateLayout : Highlight -> Layout -> Layout -decorateLayout h l@(MkLayout content stats) = - if emptyHL h then l else +decorateLayout h (MkLayout content stats) = layout (decorateImpl h content) stats ||| Decorate a `Doc` with the given highlighting *without* ||| changing its stats like width or height. export -decorate : {opts : _} -> Highlight -> Doc opts -> Doc opts -decorate h doc = doc >>= \l => pure (decorateLayout h l) +decorate : {opts : LayoutOpts} -> Highlight -> Doc opts -> Doc opts +decorate h doc = + if h == emptyHL then doc else doc >>= pure . decorateLayout h + + +-- this function has nothing to do with highlighting but it's here because it +-- _also_ needs access to the private stuff +||| render a doc with no line breaks at all +export +renderInfinite : Doc opts -> String +renderInfinite (MkDoc (MkLayout content _) _) = unwords content where + unwords : SnocList String -> String + unwords [<] = "" + unwords (xs :< x) = foldMap (++ " ") xs ++ x diff --git a/lib/on-hold/Quox/Lexer.idr b/lib/on-hold/Quox/Lexer.idr deleted file mode 100644 index 3a299dd..0000000 --- a/lib/on-hold/Quox/Lexer.idr +++ /dev/null @@ -1,102 +0,0 @@ -module Quox.Lexer - -import public Quox.Token - -import Data.String -import Data.String.Extra -import public Text.Lexer -import public Text.Lexer.Tokenizer -import Control.Monad.Either -import Generics.Derive - -%default total -%language ElabReflection - - -public export -record Error where - constructor Err - reason : StopReason - line, col : Int - char : Char - - - -nameStart = pred $ \c => isAlpha c || c == '_' -nameCont = pred $ \c => isAlphaNum c || c == '_' || c == '\'' - -name = nameStart <+> many nameCont <+> reject nameCont - -wild = is '_' <+> reject nameCont - -%hide Text.Lexer.symbol -symbol = is '\'' <+> name - -decimal = some digit <+> reject nameCont - - -natToNumber : Nat -> Number -natToNumber 0 = Zero -natToNumber 1 = One -natToNumber k = Other k - - -skip : Lexer -> Tokenizer (Maybe a) -skip lex = match lex $ const Nothing - -simple : Char -> a -> Tokenizer (Maybe a) -simple ch = match (is ch) . const . Just - -keyword : String -> Keyword -> Tokenizer (Maybe Token) -keyword str = match (exact str <+> reject nameCont) . const . Just . K - -choice : (xs : List (Tokenizer a)) -> {auto 0 _ : NonEmpty xs} -> Tokenizer a -choice (t :: ts) = foldl (\a, b => a <|> b) t ts - -match : Lexer -> (String -> a) -> Tokenizer (Maybe a) -match lex f = Tokenizer.match lex (Just . f) -%hide Tokenizer.match - - -tokens : Tokenizer (Maybe Token) -tokens = choice [ - skip $ lineComment $ exact "--", - skip $ blockComment (exact "{-") (exact "-}"), - skip spaces, - - simple '(' $ P LParen, simple ')' $ P RParen, - simple '[' $ P LSquare, simple ']' $ P RSquare, - simple '{' $ P LBrace, simple '}' $ P RBrace, - simple ',' $ P Comma, - simple '∷' $ P DblColon, - simple ':' $ P Colon, -- needs to be after '::' - simple '.' $ P Dot, - - simple '→' $ P Arrow, - simple '⇒' $ P DblArrow, - simple '×' $ P Times, - simple '⊲' $ P Triangle, - match wild $ const $ P Wild, - - keyword "λ" Lam, - keyword "let" Let, keyword "in" In, - keyword "case" Case, keyword "of" Of, - keyword "ω" Omega, - keyword "Π" Pi, keyword "Σ" Sigma, keyword "W" W, - - match name $ Name, - match symbol $ Symbol . assert_total strTail, - - match decimal $ N . natToNumber . cast, - match (is '★' <+> decimal) $ TYPE . cast . assert_total strTail -] - - -export -lex : String -> Either Error (List BToken) -lex str = - let (res, (reason, line, col, str)) = lex tokens str in - case reason of - EndInput => Right $ mapMaybe sequence res - _ => let char = assert_total strIndex str 0 in - Left $ Err {reason, line, col, char} diff --git a/lib/on-hold/Quox/Parser.idr b/lib/on-hold/Quox/Parser.idr deleted file mode 100644 index f9f4b09..0000000 --- a/lib/on-hold/Quox/Parser.idr +++ /dev/null @@ -1,159 +0,0 @@ -module Quox.Parser - -import Quox.Syntax -import Quox.Token -import Quox.Lexer - -import Data.Maybe -import Data.SnocVect -import Data.SnocList -import Text.Parser - -%default total - - -public export -Vars : Nat -> Type -Vars n = SnocVect n String - -public export -Grammar : Bool -> Type -> Type -Grammar = Core.Grammar () Token -%hide Core.Grammar - -public export -data Error -= Lex (Lexer.Error) -| Parse (List1 (ParsingError Token)) -| Leftover (List BToken) -%hide Lexer.Error - - -public export -parseAll : {c : Bool} -> Grammar c a -> List BToken -> Either Error a -parseAll grm input = - case parse grm input of - Right (x, []) => Right x - Right (x, rest) => Left $ Leftover rest - Left errs => Left $ Parse errs - -public export -lexParseAll : {c : Bool} -> Grammar c a -> String -> Either Error a -lexParseAll grm = lex' >=> parseAll grm - where lex' : String -> Either Error (List BToken) - lex' = bimap Lex id . lex - - - -export -punc : Punc -> Grammar True () -punc p = terminal (show p) $ \case - P p' => if p == p' then Just () else Nothing - _ => Nothing - -export -keyword : Keyword -> Grammar True () -keyword k = terminal (show k) $ \case - K k' => if k == k' then Just () else Nothing - _ => Nothing - -export -between : Punc -> Punc -> Grammar True a -> Grammar True a -between opener closer inner = punc opener *> inner <* punc closer - -export -parens, squares, braces : Grammar True a -> Grammar True a -parens = between LParen RParen -squares = between LSquare RSquare -braces = between LBrace RBrace - - -export -number : Grammar True Nat -number = terminal "number" $ \case - N Zero => Just 0 - N One => Just 1 - N (Other k) => Just k - _ => Nothing - -export -universe : Grammar True Nat -universe = terminal "universe" $ \case TYPE k => Just k; _ => Nothing - -export -zero, one, omega : Grammar True () -zero = terminal "0" $ \case N Zero => Just (); _ => Nothing -one = terminal "1" $ \case N One => Just (); _ => Nothing -omega = terminal "ω" $ \case K Omega => Just (); _ => Nothing - -export -quantity : Grammar True Qty -quantity = Zero <$ zero <|> One <$ one <|> Any <$ omega - - -find1 : Eq a => SnocVect k a -> a -> Maybe (Var k) -find1 [<] y = Nothing -find1 (sx :< x) y = if x == y then Just VZ else VS <$> find1 sx y - -find : Vars k -> Name -> Maybe (Var k) -find vs (MakeName [<] (UN y)) = find1 vs y -find _ _ = Nothing - - -export -checkAvoid1 : Vars n -> String -> Grammar False () -checkAvoid1 avoid y = - when (isJust $ find1 avoid y) $ - fail "wrong type of bound variable: \{show y}" - -export -checkAvoid : Vars n -> Name -> Grammar False () -checkAvoid avoid (MakeName [<] (UN y)) = checkAvoid1 avoid y -checkAvoid _ _ = pure () - -export -bound : (what : String) -> (bound : Vars k) -> (avoid : Vars n) -> - Grammar True (Var k) -bound what vs avoid = do - x <- terminal "bound \{what} variable" $ \case Name x => Just x; _ => Nothing - checkAvoid1 avoid x - maybe (fail "not in scope: \{x}") pure $ find1 vs x - -export -sname : Grammar True String -sname = terminal "simple name" $ \case Name x => pure x; _ => Nothing - -export -qname : Grammar True Name -qname = do - parts <- sepBy1 (punc Dot) sname - pure $ MakeName {mods = cast $ init parts, base = UN $ last parts} - -export -nameWith : (bound : Vars k) -> (avoid : Vars n) -> - Grammar True (Either (Var k) Name) -nameWith bound avoid = do - y <- qname - checkAvoid avoid y - pure $ maybe (Right y) Left $ find bound y - - -export -dimension : (dvars : Vars d) -> (tvars : Vars n) -> Grammar True (Dim d) -dimension dvars tvars = - K Zero <$ zero - <|> K One <$ one - <|> B <$> bound "dimension" {bound = dvars, avoid = tvars} - - -mutual - export - term : (dvars : Vars d) -> (tvars : Vars n) -> Grammar True (Term d n) - term dvars tvars = - E <$> squares (elim {dvars, tvars}) - <|> TYPE . U <$> universe - - export - elim : (dvars : Vars d) -> (tvars : Vars n) -> Grammar True (Elim d n) - elim dvars tvars = - either B F <$> nameWith {bound = tvars, avoid = dvars} diff --git a/lib/on-hold/Quox/Syntax/DimEq.idr b/lib/on-hold/Quox/Syntax/DimEq.idr deleted file mode 100644 index 4730b35..0000000 --- a/lib/on-hold/Quox/Syntax/DimEq.idr +++ /dev/null @@ -1,363 +0,0 @@ -module Quox.Syntax.DimEq - -import public Quox.Syntax.Var -import public Quox.Syntax.Dim -import public Quox.Syntax.Subst -import public Quox.Context - -import Data.Maybe -import Data.DPair - -%default total - -mutual - ||| consistent (0≠1) set of constraints between dimension variables - public export - data DimEq' : Nat -> Type where - ||| empty context - Nil : DimEq' 0 - ||| Ψ, 𝑖, 𝑖=ε - Const : (eqs : DimEq' d) -> (e : DimConst) -> DimEq' (S d) - ||| Ψ, 𝑖, 𝑖=𝑗 (Ψ ⊢ 𝑗 and 𝑗 is unassigned) - Var : (eqs : DimEq' d) -> (i : Var d) -> (0 un : Unassigned eqs i) -> - DimEq' (S d) - ||| Ψ, 𝑖 (𝑖 unassigned) - None : (eqs : DimEq' d) -> DimEq' (S d) - %name DimEq' eqs - - public export - data Unassigned : DimEq' d -> Var d -> Type where - UZ : Unassigned (None eqs) VZ - USK : Unassigned eqs i -> Unassigned (Const eqs e) (VS i) - USV : Unassigned eqs i -> Unassigned (Var eqs j un) (VS i) - USN : Unassigned eqs i -> Unassigned (None eqs ) (VS i) - %name Unassigned un - - -||| set of constraints that might be inconsistent -public export -data DimEq : Nat -> Type where - ||| 0=1 - ZeroIsOne : DimEq d - ||| 0≠1, plus other constraints - C : (eqs : DimEq' d) -> DimEq d -%name DimEq eqs - - -||| contains a value iff the dim ctx is consistent -public export -data IfConsistent : DimEq d -> Type -> Type where - Nothing : IfConsistent ZeroIsOne a - Just : a -> IfConsistent (C eqs) a - -export -Functor (IfConsistent eqs) where - map f Nothing = Nothing - map f (Just x) = Just (f x) - -export -Foldable (IfConsistent eqs) where - foldr f z Nothing = z - foldr f z (Just x) = f x z - -export -Traversable (IfConsistent eqs) where - traverse f Nothing = pure Nothing - traverse f (Just x) = Just <$> f x - -||| performs an action if the dim ctx is consistent -public export -ifConsistent : Applicative f => (eqs : DimEq d) -> f a -> f (IfConsistent eqs a) -ifConsistent ZeroIsOne act = pure Nothing -ifConsistent (C _) act = Just <$> act - - -public export %inline -weakD : Dim d -> Dim (S d) -weakD p = p // SS SZ - - -public export -tail' : DimEq' (S d) -> DimEq' d -tail' (Const eqs e) = eqs -tail' (Var eqs i un) = eqs -tail' (None eqs ) = eqs - -public export -tail : DimEq (S d) -> DimEq d -tail ZeroIsOne = ZeroIsOne -tail (C eqs) = C $ tail' eqs - -public export -head' : DimEq' (S d) -> Maybe (Dim d) -head' (Const _ e) = Just $ K e -head' (Var _ i _) = Just $ B i -head' (None _) = Nothing - -export -tailU : Unassigned eqs (VS i) -> Unassigned (tail' eqs) i -tailU (USK un) = un -tailU (USV un) = un -tailU (USN un) = un - - -||| make a dim ctx where each variable has a constant assignment -public export -fromGround' : Context' DimConst d -> DimEq' d -fromGround' [<] = Nil -fromGround' (ctx :< e) = Const (fromGround' ctx) e - -||| make a dim ctx where each variable has a constant assignment -public export -fromGround : Context' DimConst d -> DimEq d -fromGround = C . fromGround' - - -||| make a dim ctx where each variable is unassigned -public export -new' : (d : Nat) -> DimEq' d -new' 0 = Nil -new' (S d) = None (new' d) - -||| make a dim ctx where each variable is unassigned -public export -new : (d : Nat) -> DimEq d -new d = C $ new' d - - -||| if the dim is a variable, then it is unassigned -public export -data UnassignedDim : DimEq' d -> Dim d -> Type where - UDK : UnassignedDim eqs (K e) - UDB : Unassigned eqs i -> UnassignedDim eqs (B i) - -export -weakUD : {eqs : DimEq' (S d)} -> {p : Dim d} -> - UnassignedDim (tail' eqs) p -> UnassignedDim eqs (weakD p) -weakUD UDK = UDK -weakUD (UDB un) {eqs = Const eqs e} = UDB $ USK un -weakUD (UDB un) {eqs = Var eqs _ _} = UDB $ USV un -weakUD (UDB un) {eqs = None eqs} = UDB $ USN un - - -||| get the constraint on a variable 𝑖. if it is equal to another var 𝑗, -||| then 𝑗 is not further constrained -public export -getVarPrf : (eqs : DimEq' d) -> Var d -> Subset (Dim d) (UnassignedDim eqs) -getVarPrf (Const eqs e) VZ = Element (K e) UDK -getVarPrf (Var eqs i un) VZ = Element (B $ VS i) (UDB $ USV un) -getVarPrf (None eqs) VZ = Element (B VZ) (UDB UZ) -getVarPrf (Const eqs _) (VS i) = let p = getVarPrf eqs i in - Element (weakD p.fst) (weakUD p.snd) -getVarPrf (Var eqs _ _) (VS i) = let p = getVarPrf eqs i in - Element (weakD p.fst) (weakUD p.snd) -getVarPrf (None eqs) (VS i) = let p = getVarPrf eqs i in - Element (weakD p.fst) (weakUD p.snd) - -public export -getVar : (eqs : DimEq' d) -> Var d -> Dim d -getVar eqs i = fst $ getVarPrf eqs i - -public export -getPrf : (eqs : DimEq' d) -> Dim d -> Subset (Dim d) (UnassignedDim eqs) -getPrf eqs (K e) = Element (K e) UDK -getPrf eqs (B i) = getVarPrf eqs i - -public export -get : DimEq' d -> Dim d -> Dim d -get eqs p = fst $ getPrf eqs p - - --- version of `get` that only shifts once but is even more annoying to prove --- anything about -private -getShift' : Shift d out -> DimEq' d -> Var d -> Maybe (Dim out) -getShift' by (Const eqs e) VZ = Just $ K e -getShift' by (Var eqs i un) VZ = Just $ B $ i // ssDown by -getShift' by (None eqs) VZ = Nothing -getShift' by eqs (VS i) = getShift' (ssDown by) (tail' eqs) i - -private -getShift0' : DimEq' d -> Var d -> Maybe (Dim d) -getShift0' = getShift' SZ - -private -get' : DimEq' d -> Dim d -> Dim d -get' eqs (K e) = K e -get' eqs (B i) = fromMaybe (B i) $ getShift0' eqs i - -%transform "DimEq.get" get = get' - - -public export -Equal' : DimEq' d -> Rel (Dim d) -Equal' eqs p q = get eqs p = get eqs q - -||| whether two dimensions are equal under the current constraints -public export -data Equal : DimEq d -> Rel (Dim d) where - Eq01 : Equal ZeroIsOne p q - EqC : Equal' eqs p q -> Equal (C eqs) p q -%name DimEq.Equal prf - -export -decEqual : (eqs : DimEq d) -> Dec2 (Equal eqs) -decEqual ZeroIsOne _ _ = Yes Eq01 -decEqual (C eqs) p q = case get eqs p `decEq` get eqs q of - Yes y => Yes $ EqC y - No n => No $ \case EqC p => n p - -export -equal : (eqs : DimEq d) -> Dim d -> Dim d -> Bool -equal eqs p q = isYes $ decEqual eqs p q - -export -{eqs : DimEq d} -> Reflexive _ (Equal eqs) where - reflexive = case eqs of - ZeroIsOne => Eq01 - C eqs => EqC Refl - -export -Symmetric _ (Equal eqs) where - symmetric Eq01 = Eq01 - symmetric (EqC eq) = EqC $ sym eq - -export -Transitive _ (Equal eqs) where - transitive Eq01 Eq01 = Eq01 - transitive (EqC p) (EqC q) = EqC $ p `trans` q - -export {eqs : DimEq d} -> Equivalence _ (Equal eqs) where - - -||| extend the context with a new variable, possibly constrained -public export -(:<) : DimEq' d -> Maybe (Dim d) -> DimEq' (S d) -eqs :< Nothing = None eqs -eqs :< Just (K e) = Const eqs e -eqs :< Just (B i) with (getVarPrf eqs i) - _ | Element (K e) _ = Const eqs e - _ | Element (B j) un = Var eqs j $ let UDB un = un in un - -infixl 7 : Maybe (Dim d) -> DimEq (S d) -ZeroIsOne : DimConst -> DimEq' d -> DimEq d -checkConst e f eqs = case decEq e f of Yes _ => C eqs; No _ => ZeroIsOne - -public export -setConst : Var d -> DimConst -> DimEq' d -> DimEq d -setConst VZ e (Const eqs f) = checkConst e f $ eqs :< Just (K e) -setConst VZ e (Var eqs i un) = setConst i e eqs : Var d -> DimEq' d -> DimEq d -setVar VZ VZ eqs = C eqs -setVar VZ (VS j) (Const eqs e) = setConst j e eqs : Dim d -> DimEq d -> DimEq d -set p q ZeroIsOne = ZeroIsOne -set (K e) (K f) (C eqs) = checkConst e f eqs -set (K e) (B j) (C eqs) = setConst j e eqs -set (B i) (K f) (C eqs) = setConst i f eqs -set (B i) (B j) (C eqs) = setVar i j eqs - - -private -splitV0 : (p : Dim (S d)) -> Either (p = B VZ) (q : Dim d ** p = weakD q) -splitV0 (K e) = Right (K e ** Refl) -splitV0 (B VZ) = Left Refl -splitV0 (B (VS i)) = Right (B i ** Refl) - - -export -0 getSnoc : (eqs : DimEq' d) -> (u : Maybe (Dim d)) -> (i : Var d) -> - getVar (eqs :< u) (VS i) = weakD (getVar eqs i) -getSnoc eqs Nothing i = Refl -getSnoc eqs (Just (K e)) i = Refl -getSnoc eqs (Just (B j)) i with (getVarPrf eqs j) - _ | Element (K _) _ = Refl - _ | Element (B _) _ = Refl - -export -0 snocStrengthen : (p, q : Dim d) -> - Equal' (eqs :< u) (weakD p) (weakD q) -> Equal' eqs p q -snocStrengthen (K e) (K e) Refl = Refl -snocStrengthen (K e) (B i) prf = - shiftInj (SS SZ) _ _ $ - rewrite sym $ getSnoc eqs u i in prf -snocStrengthen (B i) (K e) prf = - shiftInj (SS SZ) _ _ $ - rewrite sym $ getSnoc eqs u i in prf -snocStrengthen (B i) (B j) prf = - shiftInj (SS SZ) _ _ $ - rewrite sym $ getSnoc eqs u i in - rewrite sym $ getSnoc eqs u j in prf - -export -0 snocStable : (eqs : DimEq d) -> (u : Maybe (Dim d)) -> (p, q : Dim d) -> - Equal eqs p q -> Equal (eqs : (e, f : DimConst) -> - (p, q : Dim d) -> Equal' eqs p q -> - Equal (checkConst e f eqs) p q -checkConstStable eqs e f p q prf with (decEq e f) - _ | Yes _ = EqC prf - _ | No _ = Eq01 - -export -0 setConstStable : (eqs : DimEq' d) -> (i : Var d) -> (e : DimConst) -> - (p, q : Dim d) -> Equal' eqs p q -> - Equal (setConst i e eqs) p q -setConstStable (Const eqs f) VZ e p q prf with (decEq e f) - _ | Yes _ = EqC prf - _ | No _ = Eq01 -setConstStable (Const eqs f) (VS i) e p q prf = ?setConstStable_rhs_5 -setConstStable (Var eqs j un) VZ e p q prf = ?setConstStable_rhs_6 -setConstStable (Var eqs j un) (VS i) e p q prf = ?setConstStable_rhs_7 -setConstStable (None eqs) VZ e p q prf = ?setConstStable_rhs_8 -setConstStable (None eqs) (VS i) e p q prf = ?setConstStable_rhs_9 - -export -0 setVarStable : (eqs : DimEq' d) -> (i, j : Var d) -> - (p, q : Dim d) -> Equal' eqs p q -> - Equal (setVar i j eqs) p q - -export -0 setStable : (eqs : DimEq d) -> (u, v, p, q : Dim d) -> - Equal eqs p q -> Equal (set u v eqs) p q -setStable ZeroIsOne p q u v Eq01 = Eq01 -setStable (C eqs) (K e) (K f) p q (EqC prf) = checkConstStable eqs e f p q prf -setStable (C eqs) (K e) (B i) p q (EqC prf) = setConstStable eqs i e p q prf -setStable (C eqs) (B i) (K e) p q (EqC prf) = setConstStable eqs i e p q prf -setStable (C eqs) (B i) (B j) p q (EqC prf) = setVarStable eqs i j p q prf diff --git a/lib/on-hold/Quox/Token.idr b/lib/on-hold/Quox/Token.idr deleted file mode 100644 index 432dd22..0000000 --- a/lib/on-hold/Quox/Token.idr +++ /dev/null @@ -1,49 +0,0 @@ -module Quox.Token - -import Generics.Derive -import Text.Lexer - -%default total -%language ElabReflection - - -public export -data Punc -= LParen | RParen -| LSquare | RSquare -| LBrace | RBrace -| Comma -| Colon | DblColon -| Dot -| Arrow | DblArrow -| Times | Triangle -| Wild -%runElab derive "Punc" [Generic, Meta, Eq, Ord, DecEq, Show] - - -public export -data Keyword -= Lam | Let | In | Case | Of | Omega -| Pi | Sigma | W -%runElab derive "Keyword" [Generic, Meta, Eq, Ord, DecEq, Show] - - -||| zero and one are separate because they are -||| quantity & dimension constants -public export -data Number = Zero | One | Other Nat -%runElab derive "Number" [Generic, Meta, Eq, Ord, DecEq, Show] - - -public export -data Token -= P Punc -| K Keyword -| Name String | Symbol String -| N Number | TYPE Nat -%runElab derive "Token" [Generic, Meta, Eq, Ord, DecEq, Show] - - -public export -BToken : Type -BToken = WithBounds Token diff --git a/lib/quox-lib.ipkg b/lib/quox-lib.ipkg index 17ec5b8..85817f0 100644 --- a/lib/quox-lib.ipkg +++ b/lib/quox-lib.ipkg @@ -5,31 +5,27 @@ authors = "rhiannon morris" sourceloc = "https://git.rhiannon.website/rhi/quox" license = "acsl" -depends = base, contrib, elab-util, sop, snocvect, eff, prettier +depends = + base, contrib, elab-util, sop, snocvect, eff, prettier, + pretty-show, parser-show modules = Text.PrettyPrint.Bernardy.Core.Decorate, + Control.Monad.ST.Extra, Quox.BoolExtra, Quox.CharExtra, Quox.NatExtra, Quox.EffExtra, + Quox.PrettyValExtra, Quox.Decidable, Quox.No, + Quox.Log, Quox.Loc, + Quox.Var, + Quox.Scoped, Quox.Pretty, - Quox.Thin.Base, - Quox.Thin.View, - Quox.Thin.Eqv, - Quox.Thin.Cons, - Quox.Thin.List, - Quox.Thin.Append, - Quox.Thin.Comp, - Quox.Thin.Cover, - Quox.Thin.Coprod, - Quox.Thin.Split, - Quox.Thin.Term, - Quox.Thin, Quox.Syntax, + Quox.Syntax.Builtin, Quox.Syntax.Dim, Quox.Syntax.DimEq, Quox.Syntax.Qty, @@ -38,13 +34,17 @@ modules = Quox.Syntax.Term, Quox.Syntax.Term.TyConKind, Quox.Syntax.Term.Base, - Quox.Syntax.Term.Tighten, Quox.Syntax.Term.Pretty, Quox.Syntax.Term.Subst, - Quox.Syntax.Var, + Quox.FreeVars, Quox.Displace, Quox.Definition, - Quox.Reduce, + Quox.Whnf.Interface, + Quox.Whnf.ComputeElimType, + Quox.Whnf.TypeCase, + Quox.Whnf.Coercion, + Quox.Whnf.Main, + Quox.Whnf, Quox.Context, Quox.Equal, Quox.Name, @@ -53,9 +53,14 @@ modules = Quox.Typing.Error, Quox.Typing, Quox.Typechecker, + Quox.CheckBuiltin, Quox.Parser.Lexer, Quox.Parser.Syntax, Quox.Parser.Parser, + Quox.Parser.LoadFile, Quox.Parser.FromParser, Quox.Parser.FromParser.Error, - Quox.Parser + Quox.Parser, + Quox.Untyped.Syntax, + Quox.Untyped.Erase, + Quox.Untyped.Scheme diff --git a/pack.toml b/pack.toml index 35f81cf..2673417 100644 --- a/pack.toml +++ b/pack.toml @@ -1,4 +1,4 @@ -collection = "nightly-230622" +collection = "nightly-240413" [custom.all.tap] type = "git" @@ -20,3 +20,8 @@ ipkg = "quox.ipkg" type = "local" path = "./tests" ipkg = "quox-tests.ipkg" + +[custom.all.quox-golden-tests] +type = "local" +path = "./golden-tests" +ipkg = "quox-golden-tests.ipkg" diff --git a/quox.bib b/quox.bib index 2687e15..5c2ca0a 100644 --- a/quox.bib +++ b/quox.bib @@ -1,4 +1,4 @@ -% quantitative stuff +% quantitative/modal stuff {{{1 @inproceedings{grtt, author = {Moon, Benjamin and @@ -17,6 +17,18 @@ doi = {10.1007/978-3-030-72019-3\_17} } +@article{granule, + author = {Dominic Orchard and Vilem{-}Benjamin Liepelt and Harley Eades III}, + title = {Quantitative program reasoning with graded modal types}, + journal = {Proceedings of the {ACM} on Programming Languages}, + volume = {3}, + number = {{ICFP}}, + pages = {110:1--110:30}, + year = {2019}, + url = {https://doi.org/10.1145/3341714}, + doi = {10.1145/3341714}, +} + @inproceedings{nuttin, author = {Conor McBride}, editor = {Sam Lindley and @@ -51,8 +63,118 @@ doi = {10.1145/3209108.3209189} } +@article{frac-uniq, + author = {Marshall, Daniel and Orchard, Dominic}, + title = {Functional Ownership through Fractional Uniqueness}, + year = {2024}, + publisher = {Association for Computing Machinery}, + address = {New York, NY, USA}, + volume = {8}, + number = {OOPSLA1}, + url = {https://doi.org/10.1145/3649848}, + doi = {10.1145/3649848}, + journal = {Proc. ACM Program. Lang.}, +} -% observational stuff +@article{rustbelt, + author = {Jung, Ralf and + Jourdan, Jacques-Henri and + Krebbers, Robbert and + Dreyer, Derek}, + title = {{RustBelt}: + securing the foundations of the {R}ust programming language}, + year = {2017}, + publisher = {Association for Computing Machinery}, + address = {New York, NY, USA}, + volume = {2}, + number = {POPL}, + url = {https://doi.org/10.1145/3158154}, + doi = {10.1145/3158154}, + journal = {Proc. ACM Program. Lang.}, +} + +@article{lightweight-rust, + author = {Pearce, David J.}, + title = {A Lightweight Formalism for Reference Lifetimes + and Borrowing in Rust}, + year = {2021}, + publisher = {Association for Computing Machinery}, + volume = {43}, + number = {1}, + url = {https://doi.org/10.1145/3443420}, + doi = {10.1145/3443420}, + journal = {ACM Trans. Program. Lang. Syst.}, +} + +@misc{oxide, + title = {Oxide: The Essence of Rust}, + author = {Aaron Weiss and + Olek Gierczak and + Daniel Patterson and + Amal Ahmed}, + year = {2021}, + eprint = {1903.00982}, + archivePrefix = {arXiv}, + primaryClass = {cs.PL} +} + +@inproceedings{frac-perms, + author = {John Boyland}, + editor = {Radhia Cousot}, + title = {Checking Interference with Fractional Permissions}, + booktitle = {Static Analysis, 10th International Symposium, {SAS} 2003, + San Diego, CA, USA, June 11-13, 2003, Proceedings}, + series = {Lecture Notes in Computer Science}, + volume = {2694}, + pages = {55--72}, + publisher = {Springer}, + year = {2003}, + url = {https://doi.org/10.1007/3-540-44898-5\_4}, + doi = {10.1007/3-540-44898-5\_4}, +} + +@inproceedings{linexp-graded, + title = {Linear Exponentials as Graded Modal Types}, + author = {Hughes, Jack and + Marshall, Daniel and + Wood, James and + Orchard, Dominic}, + url = {https://hal-lirmm.ccsd.cnrs.fr/lirmm-03271465}, + booktitle = {5th International Workshop on + Trends in Linear Logic and Applications ({TLLA} 2021)}, + year = {2021}, + month = Jun, +} + +@inproceedings{alms, + author = {Tov, Jesse A. and Pucella, Riccardo}, + title = {Practical affine types}, + year = {2011}, + publisher = {Association for Computing Machinery}, + url = {https://users.cs.northwestern.edu/~jesse/pubs/alms/tovpucella-alms.pdf}, + doi = {10.1145/1926385.1926436}, + booktitle = {Proceedings of the 38th Annual ACM SIGPLAN-SIGACT + Symposium on Principles of Programming Languages}, +} + +@inproceedings{rrr, + author = {Daniel Marshall and Dominic Orchard}, + editor = {Marco Carbone and Rumyana Neykova}, + title = {Replicate, Reuse, Repeat: Capturing Non-Linear Communication + via Session Types and Graded Modal Types}, + booktitle = {Proceedings of the 13th International Workshop on Programming + Language Approaches to Concurrency and Communication-cEntric + Software, PLACES@ETAPS 2022, Munich, Germany, 3rd April 2022}, + series = {{EPTCS}}, + volume = {356}, + pages = {1--11}, + year = {2022}, + url = {https://arxiv.org/abs/2203.12875}, + doi = {10.4204/EPTCS.356.1}, +} + + +% observational stuff {{{1 @inproceedings{ott-now, author = {Thorsten Altenkirch and @@ -99,8 +221,26 @@ doi = {10.4230/LIPIcs.FSCD.2019.31} } +@article{xtt2, + author = {Jonathan Sterling and Carlo Angiuli and Daniel Gratzer}, + title = {A Cubical Language for Bishop Sets}, + journal = {Log. Methods Comput. Sci.}, + volume = {18}, + number = {1}, + year = {2022}, + url = {https://doi.org/10.46298/lmcs-18(1:43)2022}, + doi = {10.46298/LMCS-18(1:43)2022}, +} -% NbE +@unpublished{cubical-ott, + author = {James Chapman and Fredrik Nordvall Forsberg and Conor {McBride}}, + title = {The Box of Delights (Cubical Observational Type Theory)}, + year = {2018}, + url = {https://github.com/msp-strath/platypus/blob/138daf7/January18/doc/CubicalOTT/CubicalOTT.pdf}, +} + + +% NbE {{{1 @article{nbe-mltt, title = {Normalization by Evaluation for Martin-Löf Type Theory with @@ -172,7 +312,7 @@ doi = {10.4204/EPTCS.153.4} } -% Misc type stuff +% Misc type stuff {{{1 @article{calf, author = {Niu, Yue and @@ -186,7 +326,7 @@ number = {POPL}, url = {https://doi.org/10.1145/3498670}, doi = {10.1145/3498670}, - journal = {Proc. ACM Program. Lang.}, + journal = {Proc. {ACM} Program. Lang.}, month = {jan}, articleno = {9}, numpages = {31}, @@ -227,7 +367,7 @@ for universe levels based on displacement algebras, for use in proof assistant implementations. }, - journal = {Proc. ACM Program. Lang.}, + journal = {Proc. {ACM} Program. Lang.}, month = {jan}, articleno = {57}, numpages = {27}, @@ -317,8 +457,71 @@ doi = {10.1109/LICS.2000.855774}, } +@misc{ornaments, + author = {Conor {McBride}}, + title = {Ornamental Algebras, Algebraic Ornaments}, + year = {2011}, + url = {https://personal.cis.strath.ac.uk/conor.mcbride/pub/OAAO/LitOrn.pdf}, +} -% Misc implementation + +% Misc type stuff {{{1 + +% not open access. i cry +@inproceedings{simple-quotient, + author = {Martin Hofmann}, + editor = {Mariangiola Dezani{-}Ciancaglini and Gordon D. Plotkin}, + title = {A Simple Model for Quotient Types}, + booktitle = {Typed Lambda Calculi and Applications, + Second International Conference on Typed Lambda Calculi and + Applications, {TLCA} '95, Edinburgh, UK, April 10-12, 1995, + Proceedings}, + series = {Lecture Notes in Computer Science}, + volume = {902}, + pages = {216--234}, + publisher = {Springer}, + year = {1995}, + url = {https://doi.org/10.1007/BFb0014055}, + doi = {10.1007/BFB0014055}, +} + +@inproceedings{local, + author = {Michael Vollmer and + Chaitanya Koparkar and + Mike Rainey and + Laith Sakka and + Milind Kulkarni and + Ryan R. Newton}, + editor = {Kathryn S. McKinley and + Kathleen Fisher}, + title = {{LoCal}: a language for programs operating on serialized data}, + booktitle = {Proceedings of the 40th {ACM} {SIGPLAN} Conference on Programming + Language Design and Implementation, {PLDI} 2019, Phoenix, AZ, + USA, June 22-26, 2019}, + pages = {48--62}, + publisher = {{ACM}}, + year = {2019}, + url = {http://recurial.com/pldi19main.pdf}, + doi = {10.1145/3314221.3314631}, +} + +@article{mlsub-pearl, + author = {Parreaux, Lionel}, + title = {The simple essence of algebraic subtyping: principal type + inference with subtyping made easy (functional pearl)}, + year = {2020}, + publisher = {Association for Computing Machinery}, + address = {New York, NY, USA}, + volume = {4}, + number = {ICFP}, + url = {https://doi.org/10.1145/3409006}, + doi = {10.1145/3409006}, + journal = {Proc. ACM Program. Lang.}, + month = {aug}, +} + + +% Misc implementation {{{1 @article{expl-sub, author = {Martín Abadi and @@ -343,9 +546,9 @@ date = {2019-07}, doi = {10.1145/3341711}, issn = {2475-1421}, - journaltitle = {Proceedings of the ACM on Programming Languages}, + journaltitle = {Proceedings of the {ACM} on Programming Languages}, keywords = {Modal types,dependent types,normalization by evaluation,type-checking}, - number = {ICFP}, + number = {{ICFP}}, pages = {107:1--107:29}, title = {Implementing a Modal Dependent Type Theory}, volume = {3}, @@ -367,15 +570,31 @@ doi = {10.1007/s10990-006-0480-6}, } -@article{egtbs, - doi = {10.4204/eptcs.275.6}, - url = {https://doi.org/10.4204%2Feptcs.275.6}, - year = 2018, - month = {jul}, - publisher = {Open Publishing Association}, - volume = {275}, - pages = {53--69}, - author = {Conor McBride}, - title = {Everybody's Got To Be Somewhere}, - journal = {Electronic Proceedings in Theoretical Computer Science} +@article{defunc, + author = {Yulong Huang and Jeremy Yallop}, + title = {Defunctionalization with Dependent Types}, + journal = {Proceedings of the {ACM} on Programming Languages}, + volume = {7}, + number = {{PLDI}}, + pages = {516--538}, + year = {2023}, + url = {https://doi.org/10.1145/3591241}, + doi = {10.1145/3591241}, } + +@inproceedings{delcont-callcc, + author = {Martin Gasbichler and Michael Sperber}, + editor = {Mitchell Wand and Simon L. Peyton Jones}, + title = {Final shift for \texttt{call/cc}: + direct implementation of shift and reset}, + journaltitle = {Proceedings of the {ACM} on Programming Languages}, + number = {{ICFP}}, + pages = {271--282}, + publisher = {{ACM}}, + year = {2002}, + % url = {https://doi.org/10.1145/581478.581504}, + url = {https://www.cs.tufts.edu/~nr/cs257/archive/mike-sperber/shift-reset-direct.pdf}, + doi = {10.1145/581478.581504}, +} + +% vim: set fdm=marker : diff --git a/stdlib/bool.quox b/stdlib/bool.quox new file mode 100644 index 0000000..855f064 --- /dev/null +++ b/stdlib/bool.quox @@ -0,0 +1,49 @@ +load "misc.quox" + +namespace bool { + +def0 Bool : ★ = {true, false} + +def if-dep : 0.(P : Bool → ★) → (b : Bool) → ω.(P 'true) → ω.(P 'false) → P b = + λ P b t f ⇒ case b return b' ⇒ P b' of { 'true ⇒ t; 'false ⇒ f } + +def if : 0.(A : ★) → (b : Bool) → ω.A → ω.A → A = + λ A ⇒ if-dep (λ _ ⇒ A) + +def0 if-same : (A : ★) → (b : Bool) → (x : A) → if A b x x ≡ x : A = + λ A b x ⇒ if-dep (λ b' ⇒ if A b' x x ≡ x : A) b (δ _ ⇒ x) (δ _ ⇒ x) + +def if2 : 0.(A B : ★) → (b : Bool) → ω.A → ω.B → if¹ ★ b A B = + λ A B ⇒ if-dep (λ b ⇒ if¹ ★ b A B) + +def0 T : Bool → ★ = λ b ⇒ if¹ ★ b True False + +def dup! : (b : Bool) → Dup Bool b = + λ b ⇒ + case b return b' ⇒ Dup Bool b' of { + 'true ⇒ (['true], [δ _ ⇒ ['true]]); + 'false ⇒ (['false], [δ _ ⇒ ['false]]) + } + +def dup : Bool → [ω.Bool] = + λ b ⇒ + case dup! b return [ω.Bool] of { + (b!, p0) ⇒ drop0 (b! ≡ [b] : [ω.Bool]) [ω.Bool] p0 b! + } + +def true-not-false : Not ('true ≡ 'false : Bool) = + λ eq ⇒ coe (𝑖 ⇒ T (eq @𝑖)) 'true + + +-- [todo] infix +def and : Bool → ω.Bool → Bool = λ a b ⇒ if Bool a b 'false +def or : Bool → ω.Bool → Bool = λ a b ⇒ if Bool a 'true b +def not : Bool → Bool = λ b ⇒ if Bool b 'false 'true + + +def0 not-not : (b : Bool) → not (not b) ≡ b : Bool = + λ b ⇒ if-dep (λ b ⇒ not (not b) ≡ b : Bool) b (δ _ ⇒ 'true) (δ _ ⇒ 'false) + +} + +def0 Bool = bool.Bool diff --git a/stdlib/either.quox b/stdlib/either.quox new file mode 100644 index 0000000..fa67ea2 --- /dev/null +++ b/stdlib/either.quox @@ -0,0 +1,116 @@ +load "misc.quox" +load "bool.quox" + +namespace either { + +def0 Tag : ★ = {left, right} + +def0 Payload : ★ → ★ → Tag → ★ = + λ A B tag ⇒ case tag return ★ of { 'left ⇒ A; 'right ⇒ B } + +def0 Either : ★ → ★ → ★ = + λ A B ⇒ (tag : Tag) × Payload A B tag + +def Left : 0.(A B : ★) → A → Either A B = + λ A B x ⇒ ('left, x) + +def Right : 0.(A B : ★) → B → Either A B = + λ A B x ⇒ ('right, x) + +def elim : + 0.(A B : ★) → 0.(P : 0.(Either A B) → ★) → + ω.((x : A) → P (Left A B x)) → + ω.((x : B) → P (Right A B x)) → + (x : Either A B) → P x = + λ A B P f g e ⇒ + case e return e' ⇒ P e' of { (t, a) ⇒ + case t return t' ⇒ (a : Payload A B t') → P (t', a) + of { 'left ⇒ f; 'right ⇒ g } a + } + +def elimω : + 0.(A B : ★) → 0.(P : 0.(Either A B) → ★) → + ω.(ω.(x : A) → P (Left A B x)) → + ω.(ω.(x : B) → P (Right A B x)) → + ω.(x : Either A B) → P x = + λ A B P f g e ⇒ + case fst e return t' ⇒ ω.(a : Payload A B t') → P (t', a) + of { 'left ⇒ f; 'right ⇒ g } (snd e) + +def fold : + 0.(A B C : ★) → ω.(A → C) → ω.(B → C) → Either A B → C = + λ A B C ⇒ elim A B (λ _ ⇒ C) + +def foldω : + 0.(A B C : ★) → ω.(ω.A → C) → ω.(ω.B → C) → ω.(Either A B) → C = + λ A B C ⇒ elimω A B (λ _ ⇒ C) + + +} + +def0 Either = either.Either +def Left = either.Left +def Right = either.Right + + +namespace dec { + +def0 Dec : ★ → ★ = λ A ⇒ Either [0.A] [0.Not A] + +def Yes : 0.(A : ★) → 0.A → Dec A = λ A y ⇒ Left [0.A] [0.Not A] [y] +def No : 0.(A : ★) → 0.(Not A) → Dec A = λ A n ⇒ Right [0.A] [0.Not A] [n] + +def yes-refl : 0.(A : ★) → 0.(x : A) → Dec (x ≡ x : A) = + λ A x ⇒ Yes (x ≡ x : A) (δ 𝑖 ⇒ x) + +def0 DecEq : ★ → ★ = + λ A ⇒ ω.(x y : A) → Dec (x ≡ y : A) + +def elim : + 0.(A : ★) → 0.(P : 0.(Dec A) → ★) → + ω.(0.(y : A) → P (Yes A y)) → + ω.(0.(n : Not A) → P (No A n)) → + (x : Dec A) → P x = + λ A P f g ⇒ + either.elim [0.A] [0.Not A] P + (λ y ⇒ case y return y' ⇒ P (Left [0.A] [0.Not A] y') of {[y'] ⇒ f y'}) + (λ n ⇒ case n return n' ⇒ P (Right [0.A] [0.Not A] n') of {[n'] ⇒ g n'}) + +def bool : 0.(A : ★) → Dec A → Bool = + λ A ⇒ elim A (λ _ ⇒ Bool) (λ _ ⇒ 'true) (λ _ ⇒ 'false) + +def drop' : 0.(A : ★) → Dec A → True = + λ A ⇒ elim A (λ _ ⇒ True) (λ _ ⇒ 'true) (λ _ ⇒ 'true) + +def drop : 0.(A B : ★) → Dec A → B → B = + λ A B x y ⇒ true.drop B (drop' A x) y + +} + +def0 Dec = dec.Dec +def0 DecEq = dec.DecEq +def Yes = dec.Yes +def No = dec.No + + +namespace dect { + +def0 DecT : ★ → ★ = λ A ⇒ Either A [0.Not A] + +def YesT : 0.(A : ★) → 1.A → DecT A = λ A y ⇒ Left A [0.Not A] y +def NoT : 0.(A : ★) → 0.(Not A) → DecT A = λ A n ⇒ Right A [0.Not A] [n] + +def elim : + 0.(A : ★) → 0.(P : 0.(DecT A) → ★) → + ω.(1.(y : A) → P (YesT A y)) → + ω.(0.(n : Not A) → P (NoT A n)) → + (x : DecT A) → P x = + λ A P f g ⇒ + either.elim A [0.Not A] P + f + (λ n ⇒ case n return n' ⇒ P (Right A [0.Not A] n') of {[n'] ⇒ g n'}) +} + +def0 DecT = dect.DecT +def YesT = dect.YesT +def NoT = dect.NoT diff --git a/stdlib/fin.quox b/stdlib/fin.quox new file mode 100644 index 0000000..2491c90 --- /dev/null +++ b/stdlib/fin.quox @@ -0,0 +1,259 @@ +load "nat.quox" +load "either.quox" +load "maybe.quox" +load "sub.quox" + + +namespace nat.lt { + +def0 LT : ℕ → ℕ → ★ = + elim-pair¹ (λ _ _ ⇒ ★) + False -- 0 ≮ 0 + (λ n p ⇒ True) -- 0 < succ n + (λ m p ⇒ False) -- succ m ≮ 0 + (λ m n p ⇒ p) -- succ m < succ n ⇔ m < n + + +def0 irr : sub.Irr2 ℕ ℕ LT = + elim-pair (λ m n ⇒ (p q : LT m n) → p ≡ q : LT m n) + false.irr (λ _ _ ⇒ true.irr) (λ _ _ ⇒ false.irr) (λ _ _ p ⇒ p) + + +-- [todo] quantities (which will need to inline and adapt elim-pair) +def elimω : 0.(P : (m n : ℕ) → LT m n → ★) → + ω.(0.(n : ℕ) → P 0 (succ n) 'true) → + ω.(0.(m n : ℕ) → 0.(lt : LT m n) → + ω.(P m n lt) → P (succ m) (succ n) lt) → + ω.(m n : ℕ) → 0.(lt : LT m n) → P m n lt = + λ P p0s pss ⇒ + elim-pairω (λ m n ⇒ 0.(lt : LT m n) → P m n lt) + (λ ff ⇒ void (P 0 0 ff) ff) + (λ n p tt ⇒ p0s n) + (λ m p ff ⇒ void (P (succ m) 0 ff) ff) + (λ m n p tt ⇒ pss m n tt (p tt)) + +def0 true-ty : (m n : ℕ) → LT m n → LT m n ≡ True : ★ = + elim-pair¹ (λ m n ⇒ LT m n → LT m n ≡ True : ★) + (λ ff ⇒ void¹ (False ≡ True : ★) ff) + (λ n p tt ⇒ δ _ ⇒ True) + (λ m p ff ⇒ void¹ (False ≡ True : ★) ff) + (λ n m p tf ⇒ p tf) + +def0 true-val : + (m n : ℕ) → (lt : LT m n) → Eq (𝑖 ⇒ true-ty m n lt @𝑖) lt 'true = + let IsTrue : (m n : ℕ) → LT m n → ★ = + λ m n lt ⇒ Eq (𝑖 ⇒ true-ty m n lt @𝑖) lt 'true in + elim-pair (λ m n ⇒ (lt : LT m n) → IsTrue m n lt) + (λ ff ⇒ void (IsTrue 0 0 ff) ff) + (λ n p tt ⇒ δ _ ⇒ 'true) + (λ m p ff ⇒ void (IsTrue (succ m) 0 ff) ff) + (λ n m p tf ⇒ p tf) + +def revive : 0.(m n : ℕ) → 0.(LT m n) → LT m n = + λ m n lt ⇒ coe (𝑘 ⇒ true-ty m n lt @𝑘) @1 @0 'true + + +def drop : 0.(A : ★) → 0.(m n : ℕ) → LT m n → A → A = + λ A m n lt x ⇒ true.drop A (coe (𝑖 ⇒ true-ty m n lt @𝑖) lt) x + +def0 succ-both : (m n : ℕ) → LT m n → LT (succ m) (succ n) = + λ m n p ⇒ p + +def0 succ-right : (m n : ℕ) → LT m n → LT m (succ n) = + λ m n lt ⇒ + elimω (λ m n _ ⇒ LT m (succ n)) + (λ _ ⇒ 'true) + (λ _ _ _ ih ⇒ ih) + m n lt + +def0 right-is-succ : (m n : ℕ) → LT m n → IsSucc n = + λ m n lt ⇒ + elimω (λ _ n _ ⇒ IsSucc n) (λ _ ⇒ 'true) (λ _ _ _ _ ⇒ 'true) m n lt + +def right-has-succ : 0.(m : ℕ) → (n : ℕ) → 0.(LT m n) → HasSucc n = + λ m n lt ⇒ + case n return n' ⇒ 0.(LT m n') → HasSucc n' of { + 0 ⇒ λ lt ⇒ void (HasSucc 0) (right-is-succ m 0 lt); + succ n ⇒ λ _ ⇒ (n, [δ _ ⇒ succ n]) + } lt + +def0 right-not-zero : (m : ℕ) → Not (LT m 0) = + λ m ⇒ case m return m' ⇒ Not (LT m' 0) of { 0 ⇒ λ v ⇒ v; succ _ ⇒ λ v ⇒ v } + +def0 plus-right : (m n₀ n₁ : ℕ) → LT m n₀ → LT m (plus n₀ n₁) = + λ m n₀ n₁ lt ⇒ + elimω (λ m n _ ⇒ LT m (plus n n₁)) (λ _ ⇒ 'true) (λ _ _ _ ih ⇒ ih) m n₀ lt + +#[compile-scheme "(lambda% (m n) (if (< m n) dec.Yes dec.No))"] +def lt? : ω.(m n : ℕ) → Dec (LT m n) = + elim-pairω (λ m n ⇒ Dec (LT m n)) + (No (LT 0 0) (λ v ⇒ v)) + (λ n p ⇒ Yes (LT 0 (succ n)) 'true) + (λ m p ⇒ No (LT (succ m) 0) (λ v ⇒ v)) + (λ m n p ⇒ + dec.elim (LT m n) (λ _ ⇒ Dec (LT (succ m) (succ n))) + (λ yes ⇒ Yes (LT (succ m) (succ n)) yes) + (λ no ⇒ No (LT (succ m) (succ n)) no) p) + + +def0 irrefl : (m n : ℕ) → LT m n → Not (m ≡ n : ℕ) = + λ m n lt ⇒ + elimω (λ m n _ ⇒ Not (m ≡ n : ℕ)) + (λ n eq ⇒ zero-not-succ n eq) + (λ m n _ ih eq ⇒ ih (succ-inj m n eq)) + m n lt + +def0 asym : (m n : ℕ) → LT m n → Not (LT n m) = + λ m n lt ⇒ + elimω (λ m n _ ⇒ Not (LT n m)) (λ _ ff ⇒ ff) (λ _ _ _ ih ff ⇒ ih ff) m n lt + +def0 trans : (n₀ n₁ n₂ : ℕ) → LT n₀ n₁ → LT n₁ n₂ → LT n₀ n₂ = + λ n₀ n₁ n₂ lt₀₁ lt₁₂ ⇒ + elimω (λ n₀ n₁ lt₀₁ ⇒ (n₂ : ℕ) → (lt₁₂ : LT n₁ n₂) → LT n₀ n₂) + (λ n₁ n₂ ⇒ + case n₂ return n₂' ⇒ LT (succ n₁) n₂' → LT 0 n₂' of { + 0 ⇒ λ v ⇒ v; + succ _ ⇒ λ _ ⇒ 'true + }) + (λ n₀ n₁ lt₀₁ ih n₂ ⇒ + case n₂ return n₂' ⇒ LT (succ n₁) n₂' → LT (succ n₀) n₂' of { + 0 ⇒ λ v ⇒ v; + succ n₂ ⇒ λ lt₁₂ ⇒ ih n₂ lt₁₂ + }) + n₀ n₁ lt₀₁ n₂ lt₁₂ + +} + +namespace nat { +def0 LT = lt.LT +def lt? = lt.lt? +} + + +namespace fin { + +def0 Bounded : ℕ → ℕ → ★ = λ n i ⇒ nat.LT i n + +def0 Fin : ℕ → ★ = λ n ⇒ Sub ℕ (Bounded n) + +def fin : 0.(n : ℕ) → (i : ℕ) → 0.(Bounded n i) → Fin n = + λ n ⇒ sub.sub ℕ (Bounded n) + +def val : 0.(n : ℕ) → Fin n → ℕ = + λ n ⇒ sub.val ℕ (Bounded n) + +def0 val-eq : (n : ℕ) → (i j : Fin n) → val n i ≡ val n j : ℕ → i ≡ j : Fin n = + λ n ⇒ sub.sub-eq ℕ (Bounded n) (λ i ⇒ nat.lt.irr i n) + +def0 proof : (n : ℕ) → (i : Fin n) → nat.LT (val n i) n = + λ n ⇒ sub.proof ℕ (Bounded n) + + +def0 no-fin0 : Not (Fin 0) = + λ f0 ⇒ case f0 return False of { (i, lt) ⇒ + nat.lt.right-not-zero i (get0 (nat.LT i 0) lt) + } + + +def fin? : ω.(n i : ℕ) → Maybe (Fin n) = + λ n ⇒ sub.sub? ℕ (Bounded n) (λ i ⇒ nat.lt? i n) + +def F0 : 0.(n : ℕ) → Fin (succ n) = + λ n ⇒ fin (succ n) 0 'true +def FS : 0.(n : ℕ) → Fin n → Fin (succ n) = + λ n i ⇒ fin (succ n) (succ (val n i)) (proof n i) + +def weak : 0.(m n : ℕ) → 0.(nat.LT m n) → Fin m → Fin n = + λ m n mn i' ⇒ + let i = val m i'; 0.im = proof m i' in + fin n i (nat.lt.trans i m n im mn) + + +def bound-has-succ : (n : ℕ) → 0.(Fin n) → nat.HasSucc n = + λ n i ⇒ nat.lt.right-has-succ (fst i) n (get0 (nat.LT (fst i) n) (snd i)) + +def elim' : + 0.(P : (n i : ℕ) → nat.LT i n → ★) → + 1.(pz : 0.(n : ℕ) → P (succ n) 0 'true) → + ω.(ps : 0.(n i : ℕ) → 0.(lt : nat.LT i n) → + P n i lt → P (succ n) (succ i) lt) → + 0.(n : ℕ) → (i : ℕ) → 0.(lt : nat.LT i n) → P n i lt = + λ P pz ps n i lt ⇒ + case i return i' ⇒ 0.(n : ℕ) → 0.(lt : nat.LT i' n) → P n i' lt of { + 0 ⇒ λ n lt ⇒ + let0 npp = nat.lt.right-has-succ 0 n lt; + p = nat.has-succ.val n npp; + np = nat.has-succ.proof n npp in + coe (𝑘 ⇒ P (np @𝑘) 0 (coe (𝑙 ⇒ nat.LT 0 (np @𝑙)) @0 @𝑘 lt)) @1 @0 + (pz p); + succ i, ih ⇒ λ n lt ⇒ + let 0.npp = nat.lt.right-has-succ (succ i) n lt; + 0.p = nat.has-succ.val n npp; + 0.np = nat.has-succ.proof n npp; + 0.lt' : nat.LT i p = coe (𝑘 ⇒ nat.LT (succ i) (np @𝑘)) lt; + 0.lteq : Eq (𝑘 ⇒ nat.LT (succ i) (np @𝑘)) lt lt' = + δ 𝑘 ⇒ coe (𝑙 ⇒ nat.LT (succ i) (np @𝑙)) @0 @𝑘 lt; + 1.almost : P (succ p) (succ i) lt' = ps p i lt' (ih p lt') in + coe (𝑘 ⇒ P (np @𝑘) (succ i) (lteq @𝑘)) @1 @0 almost; + } n lt + +def elim : 0.(P : (n : ℕ) → Fin n → ★) → + (pz : 0.(n : ℕ) → P (succ n) (F0 n)) → + (ps : 0.(n : ℕ) → 0.(i : Fin n) → + P n i → P (succ n) (FS n i)) → + 0.(n : ℕ) → (i : Fin n) → P n i = + λ P pz ps n ilt ⇒ + case ilt return ilt' ⇒ P n ilt' of { (i, lt) ⇒ + let0 lt = get0 (nat.LT i n) lt in + drop0 (nat.LT i n) (P n (i, [lt])) lt + (elim' (λ n i lt ⇒ P n (i, [lt])) pz (λ n i lt ⇒ ps n (i, [lt])) n i lt) + } + +{- +def elim : 0.(P : (n : ℕ) → Fin n → ★) → + (pz : 0.(n : ℕ) → P (succ n) (F0 n)) → + (ps : 0.(n : ℕ) → 0.(i : Fin n) → + P n i → P (succ n) (FS n i)) → + 0.(n : ℕ) → (i : Fin n) → P n i = + λ P pz ps n ilt ⇒ + let i = val n ilt; 0.lt : nat.LT i n = proof n ilt; + 0.pp = nat.lt.right-has-succ i n lt; + 0.p = nat.has-succ.val n pp; 0.np = nat.has-succ.proof n pp; + 0.RES : ℕ → ℕ → ★ = + λ i n ⇒ (lt : nat.LT i n) × P n (i, [lt]); + res : RES i (succ p) = + case i + return i' ⇒ 0.(p : ℕ) → 0.(nat.LT i' (succ p)) → RES i' (succ p) + of { + 0 ⇒ λ p _ ⇒ ('true, pz p); + succ i, IH ⇒ λ p lt ⇒ + let 0.qq = nat.lt.right-has-succ i p lt; + 0.q = nat.has-succ.val p qq; 0.pq = nat.has-succ.proof p qq; + 0.lt : nat.LT i (succ q) = coe (𝑘 ⇒ nat.LT i (pq @𝑘)) lt; + in + case IH q lt return RES (succ i) (succ p) of { (lt', ih') ⇒ + let lt : nat.LT (succ i) (succ p) = + coe (𝑘 ⇒ nat.LT i (pq @𝑘)) @1 @0 lt'; + ih : P p (i, [lt]) = + coe (𝑘 ⇒ P (pq @𝑘) (i, [coe (𝑙 ⇒ nat.LT i (pq @𝑙)) @1 @𝑘 lt'])) + @1 @0 ih'; + res : P (succ p) (succ i, [lt]) = + ps p (i, [lt]) ih; + in + (lt, res) + } + } p (coe (𝑘 ⇒ nat.LT i (np @𝑘)) lt); + in + case coe (𝑘 ⇒ RES i (np @𝑘)) @1 @0 res + return P n ilt + of { (lt', res) ⇒ + nat.lt.drop (P n ilt) i n lt' res + } +-} + +} + + +def0 Fin = fin.Fin +def F0 = fin.F0 +def FS = fin.FS diff --git a/stdlib/int.quox b/stdlib/int.quox new file mode 100644 index 0000000..3ca1478 --- /dev/null +++ b/stdlib/int.quox @@ -0,0 +1,149 @@ +load "nat.quox" + +namespace int { + +def0 Sign : ★ = {pos, neg-succ} +def0 ℤ : ★ = Sign × ℕ + +def from-ℕ : ℕ → ℤ = λ n ⇒ ('pos, n) + +def neg-ℕ : ℕ → ℤ = + λ n ⇒ case n return ℤ of { 0 ⇒ ('pos, 0); succ n ⇒ ('neg-succ, n) } + +def zeroℤ : ℤ = ('pos, 0) + + +def match : 0.(A : ★) → ω.(pos neg : ℕ → A) → ℤ → A = + λ A pos neg x ⇒ + case x return A of { (s, x) ⇒ + case s return A of { 'pos ⇒ pos x; 'neg-succ ⇒ neg x } + } + +def negate : ℤ → ℤ = + match ℤ neg-ℕ (λ x ⇒ from-ℕ (succ x)) + +def minus-ℕ-ℕ : ℕ → ℕ → ℤ = + λ m n ⇒ + letω f : ω.ℕ → ω.ℕ → ℤ = λ m n ⇒ + bool.if ℤ (nat.ge m n) (from-ℕ (nat.minus m n)) + (neg-ℕ (nat.minus n m)) in + getω ℤ (app2ω ℕ ℕ ℤ f (nat.dup m) (nat.dup n)) + +def plus-ℕ : ℤ → ℕ → ℤ = + match (ℕ → ℤ) (λ x n ⇒ from-ℕ (nat.plus x n)) + (λ x n ⇒ minus-ℕ-ℕ n (succ x)) + +def minus-ℕ : ℤ → ℕ → ℤ = + match (ℕ → ℤ) minus-ℕ-ℕ (λ x n ⇒ ('neg-succ, nat.plus x n)) + + +def plus : ℤ → ℤ → ℤ = + match (ℤ → ℤ) (λ x y ⇒ plus-ℕ y x) (λ x y ⇒ minus-ℕ y (succ x)) + +def minus : ℤ → ℤ → ℤ = λ x y ⇒ plus x (negate y) + + +def dup-sign : Sign → [ω. Sign] = + λ s ⇒ case s return [ω. Sign] of { + 'pos ⇒ ['pos]; + 'neg-succ ⇒ ['neg-succ] + } + +def0 dup-sign-ok : (s : Sign) → dup-sign s ≡ [s] : [ω. Sign] = + λ s ⇒ case s return s' ⇒ dup-sign s' ≡ [s'] : [ω. Sign] of { + 'pos ⇒ δ 𝑖 ⇒ ['pos]; + 'neg-succ ⇒ δ 𝑖 ⇒ ['neg-succ] + } + +def dup : ℤ → [ω.ℤ] = + λ x ⇒ case x return [ω.ℤ] of { (s, n) ⇒ + app2ω Sign ℕ ℤ (λ s n ⇒ (s, n)) (dup-sign s) (nat.dup n) + } + +def0 dup-ok : (x : ℤ) → dup x ≡ [x] : [ω.ℤ] = + λ x ⇒ + case x return x' ⇒ dup x' ≡ [x'] : [ω.ℤ] of { (s, n) ⇒ δ 𝑖 ⇒ + app2ω Sign ℕ ℤ (λ s n ⇒ (s, n)) (dup-sign-ok s @𝑖) (nat.dup-ok n @𝑖) + } + + +def times-ℕ : ℤ → ℕ → ℤ = + match (ℕ → ℤ) + (λ m n ⇒ from-ℕ (nat.times m n)) + (λ m' n ⇒ neg-ℕ (nat.times (succ m') n)) + +def times : ℤ → ℤ → ℤ = + match (ℤ → ℤ) (λ p x ⇒ times-ℕ x p) (λ n x ⇒ negate (times-ℕ x (succ n))) + + +def abs : ℤ → ℕ = match ℕ (λ p ⇒ p) (λ n ⇒ succ n) + + +def pair-eq? : 0.(A B : ★) → ω.(DecEq A) → ω.(DecEq B) → DecEq (A × B) = + λ A B eqA? eqB? x y ⇒ + let0 Ret : ★ = x ≡ y : (A × B) in + letω a0 = fst x; a1 = fst y; + b0 = snd x; b1 = snd y in + dec.elim (a0 ≡ a1 : A) (λ _ ⇒ Dec Ret) + (λ ya ⇒ + dec.elim (b0 ≡ b1 : B) (λ _ ⇒ Dec Ret) + (λ yb ⇒ Yes Ret (δ 𝑖 ⇒ (ya @𝑖, yb @𝑖))) + (λ nb ⇒ No Ret (λ eq ⇒ nb (δ 𝑖 ⇒ snd (eq @𝑖)))) + (eqB? b0 b1)) + (λ na ⇒ No Ret (λ eq ⇒ na (δ 𝑖 ⇒ fst (eq @𝑖)))) + (eqA? a0 a1) + + +def sign-eq? : DecEq Sign = + λ x y ⇒ + let0 disc : Sign → ★ = + λ s ⇒ case s return ★ of { 'pos ⇒ True; 'neg-succ ⇒ False } in + case x return x' ⇒ Dec (x' ≡ y : Sign) of { + 'pos ⇒ + case y return y' ⇒ Dec ('pos ≡ y' : Sign) of { + 'pos ⇒ dec.yes-refl Sign 'pos; + 'neg-succ ⇒ + No ('pos ≡ 'neg-succ : Sign) + (λ eq ⇒ coe (𝑖 ⇒ disc (eq @𝑖)) 'true) + }; + 'neg-succ ⇒ + case y return y' ⇒ Dec ('neg-succ ≡ y' : Sign) of { + 'neg-succ ⇒ dec.yes-refl Sign 'neg-succ; + 'pos ⇒ + No ('neg-succ ≡ 'pos : Sign) + (λ eq ⇒ coe (𝑖 ⇒ disc (eq @𝑖)) @1 @0 'true) + } + } + +#[compile-scheme "(lambda% (x y) (if (equal? x y) Yes No))"] +def eq? : DecEq ℤ = pair-eq? Sign ℕ sign-eq? nat.eq? + +def eq : ω.ℤ → ω.ℤ → Bool = + λ x y ⇒ dec.bool (x ≡ y : ℤ) (eq? x y) + +} + +def0 ℤ = int.ℤ + + +namespace scheme-int { + postulate0 Int : ★ + + #[compile-scheme "(lambda (x) x)"] + postulate from-ℕ : ℕ → Int + + #[compile-scheme "(lambda% (x y) (+ x y))"] + postulate plus : Int → Int → Int + + #[compile-scheme "(lambda% (x y) (- x y))"] + postulate minus : Int → Int → Int + + #[compile-scheme "(lambda% (x y) (* x y))"] + postulate times : Int → Int → Int + + #[compile-scheme "(lambda% (x y) (if (= x y) 'true 'false))"] + postulate eq : Int → Int → Bool + + #[compile-scheme "abs"] + postulate abs : Int → ℕ +} diff --git a/stdlib/io.quox b/stdlib/io.quox new file mode 100644 index 0000000..36ebe69 --- /dev/null +++ b/stdlib/io.quox @@ -0,0 +1,100 @@ +load "misc.quox" +load "maybe.quox" +load "list.quox" + +namespace io { + +def0 IORes : ★ → ★ = λ A ⇒ A × IOState + +def0 IO : ★ → ★ = λ A ⇒ IOState → IORes A + +def pure : 0.(A : ★) → A → IO A = λ A x s ⇒ (x, s) + +def bind : 0.(A B : ★) → IO A → (A → IO B) → IO B = + λ A B m k s0 ⇒ + case m s0 return IORes B of { (x, s1) ⇒ k x s1 } + +def bindω : 0.(A B : ★) → IO [ω.A] → (ω.A → IO B) → IO B = + λ A B m k s0 ⇒ + case m s0 return IORes B of { (x, s1) ⇒ + case x return IORes B of { [x] ⇒ k x s1 } + } + +def map : 0.(A B : ★) → (A → B) → IO A → IO B = + λ A B f m ⇒ bind A B m (λ x ⇒ pure B (f x)) + +def mapω : 0.(A B : ★) → (ω.A → B) → IO [ω.A] → IO B = + λ A B f m ⇒ bindω A B m (λ x ⇒ pure B (f x)) + +def seq : 0.(B : ★) → IO True → IO B → IO B = + λ B x y ⇒ bind True B x (λ u ⇒ case u return IO B of { 'true ⇒ y }) + +def seq' : IO True → IO True → IO True = seq True + +def pass : IO True = pure True 'true + +#[compile-scheme "(lambda (str) (builtin-io (display str) 'true))"] +postulate print : String → IO True + +#[compile-scheme "(lambda (str) (builtin-io (write str) (newline) 'true))"] +postulate dump : 0.(A : ★) → A → IO True + +def newline = print "\n" + +def println : String → IO True = + λ str ⇒ seq' (print str) newline + +#[compile-scheme "(builtin-io (get-line (current-input-port)))"] +postulate readln : IO String + + +-- [todo] errors lmao + +{- +postulate0 File : ★ + +#[compile-scheme "(lambda (path) (builtin-io (open-input-file path)))"] +postulate open-read : String → IO File + +#[compile-scheme "(lambda (file) (builtin-io (close-port file) 'true))"] +postulate close : File → IO True + +#[compile-scheme + "(lambda% (file if-eof if-line) + (builtin-io + (let ([result (get-line file)]) + (if (eof-object? result) + (cons if-eof file) + (cons (if-line result) file)))))"] +postulate prim-read-line : + File → + ω.(if-eof : Maybe [ω.String]) → + ω.(if-line : ω.String → Maybe [ω.String]) → + IO (Maybe [ω.String] × File) + +def read-line : File → IO (Maybe [ω.String] × File) = + λ f ⇒ prim-read-line f (Nothing [ω.String]) (λ x ⇒ Just [ω.String] [x]) +-} + + +#[compile-scheme + "(lambda (path) (builtin-io (call-with-input-file path get-string-all)))"] +postulate read-fileω : ω.(path : String) → IO [ω.String] + +def read-file : ω.(path : String) → IO String = + λ path ⇒ + map [ω.String] String (getω String) (read-fileω path) + + +#[compile-scheme + "(lambda (path) (builtin-io + (call-with-input-file path + (lambda (file) + (do [(line (get-line file) (get-line file)) + (acc '() (cons line acc))] + [(eof-object? line) (reverse acc)])))))"] +postulate read-file-lines : ω.(path : String) → IO (List String) + +} + +def0 IO = io.IO diff --git a/stdlib/irrel.quox b/stdlib/irrel.quox new file mode 100644 index 0000000..87537a4 --- /dev/null +++ b/stdlib/irrel.quox @@ -0,0 +1,43 @@ +load "misc.quox" + +def0 Irr1 : (A : ★) → (A → ★) → ★ = + λ A P ⇒ (x : A) → (p q : P x) → p ≡ q : P x + +def0 Sub : (A : ★) → (P : A → ★) → ★ = + λ A P ⇒ (x : A) × [0. P x] + +def0 SubDup : (A : ★) → (P : A → ★) → Sub A P → ★ = + λ A P s ⇒ Dup A (fst s) + -- (x! : [ω.A]) × [0. x! ≡ [fst s] : [ω.A]] + +def subdup-to-dup : + 0.(A : ★) → 0.(P : A → ★) → 0.(Irr1 A P) → + 0.(s : Sub A P) → SubDup A P s → Dup (Sub A P) s = + λ A P pirr s sd ⇒ + case sd return Dup (Sub A P) s of { (sω, ss0) ⇒ + case ss0 return Dup (Sub A P) s of { [ss0] ⇒ + case sω + return sω' ⇒ 0.(sω' ≡ [fst s] : [ω.A]) → Dup (Sub A P) s + of { [s!] ⇒ λ ss' ⇒ + let ω.p : [0.P (fst s)] = revive0 (P (fst s)) (snd s); + 0.ss : s! ≡ fst s : A = boxω-inj A s! (fst s) ss' in + ([(s!, coe (𝑖 ⇒ [0.P (ss @𝑖)]) @1 @0 p)], + [δ 𝑗 ⇒ [(ss @𝑗, coe (𝑖 ⇒ [0.P (ss @𝑖)]) @1 @𝑗 p)]]) + } ss0 + }} + +def subdup : 0.(A : ★) → 0.(P : A → ★) → 0.(Irr1 A P) → + ((x : A) → Dup A x) → + (s : Sub A P) → SubDup A P s = + λ A P pirr dup s ⇒ + case s return s' ⇒ SubDup A P s' of { (x, p) ⇒ + drop0 (P x) (Dup A x) p (dup x) + } + +def dup : 0.(A : ★) → 0.(P : A → ★) → 0.(Irr1 A P) → + ((x : A) → Dup A x) → + (s : Sub A P) → Dup (Sub A P) s = + λ A P pirr dup s ⇒ subdup-to-dup A P pirr s (subdup A P pirr dup s) + +def forget : 0.(A : ★) → 0.(P : A → ★) → Sub A P → A = + λ A P s ⇒ case s return A of { (x, p) ⇒ drop0 (P x) A p x } diff --git a/stdlib/list.quox b/stdlib/list.quox new file mode 100644 index 0000000..feaa0a7 --- /dev/null +++ b/stdlib/list.quox @@ -0,0 +1,595 @@ +load "misc.quox" +load "nat.quox" +load "maybe.quox" +load "bool.quox" +load "qty.quox" + +namespace vec { + +def0 Vec : ℕ → ★ → ★ = + λ n A ⇒ + caseω n return ★ of { + zero ⇒ {nil}; + succ _, 0.Tail ⇒ A × Tail + } + +def drop-nil-dep : 0.(A : ★) → 0.(P : Vec 0 A → ★) → + (xs : Vec 0 A) → P 'nil → P xs = + λ A P xs p ⇒ case xs return xs' ⇒ P xs' of { 'nil ⇒ p } + +def drop-nil : 0.(A B : ★) → Vec 0 A → B → B = + λ A B ⇒ drop-nil-dep A (λ _ ⇒ B) + +def match-dep : + 0.(A : ★) → 0.(P : (n : ℕ) → Vec n A → ★) → + ω.(P 0 'nil) → + ω.((n : ℕ) → (x : A) → (xs : Vec n A) → P (succ n) (x, xs)) → + (n : ℕ) → (xs : Vec n A) → P n xs = + λ A P pn pc n ⇒ + case n return n' ⇒ (xs : Vec n' A) → P n' xs of { + 0 ⇒ λ nil ⇒ drop-nil-dep A (P 0) nil pn; + succ len ⇒ λ cons ⇒ + case cons return cons' ⇒ P (succ len) cons' of { + (first, rest) ⇒ pc len first rest + } + } + +def match-depω : + 0.(A : ★) → 0.(P : (n : ℕ) → Vec n A → ★) → + ω.(P 0 'nil) → + ω.(ω.(n : ℕ) → ω.(x : A) → ω.(xs : Vec n A) → P (succ n) (x, xs)) → + ω.(n : ℕ) → ω.(xs : Vec n A) → P n xs = + λ A P pn pc n ⇒ + caseω n return n' ⇒ ω.(xs : Vec n' A) → P n' xs of { + 0 ⇒ λ nil ⇒ drop-nil-dep A (P 0) nil pn; + succ len ⇒ λ cons ⇒ + caseω cons return cons' ⇒ P (succ len) cons' of { + (first, rest) ⇒ pc len first rest + } + } +def match-dep# = match-depω + +def elim : 0.(A : ★) → 0.(P : (n : ℕ) → Vec n A → ★) → + P 0 'nil → + ω.((x : A) → 0.(n : ℕ) → 0.(xs : Vec n A) → + P n xs → P (succ n) (x, xs)) → + (n : ℕ) → (xs : Vec n A) → P n xs = + λ A P pn pc n ⇒ + case n return n' ⇒ (xs' : Vec n' A) → P n' xs' of { + zero ⇒ λ nil ⇒ + case nil return nil' ⇒ P 0 nil' of { 'nil ⇒ pn }; + succ n, IH ⇒ λ cons ⇒ + case cons return cons' ⇒ P (succ n) cons' of { + (first, rest) ⇒ pc first n rest (IH rest) + } + } + +def elim2 : 0.(A B : ★) → 0.(P : (n : ℕ) → Vec n A → Vec n B → ★) → + P 0 'nil 'nil → + ω.((x : A) → (y : B) → 0.(n : ℕ) → + 0.(xs : Vec n A) → 0.(ys : Vec n B) → + P n xs ys → P (succ n) (x, xs) (y, ys)) → + (n : ℕ) → (xs : Vec n A) → (ys : Vec n B) → P n xs ys = + λ A B P pn pc n ⇒ + case n return n' ⇒ (xs : Vec n' A) → (ys : Vec n' B) → P n' xs ys of { + zero ⇒ λ nila nilb ⇒ + drop-nil-dep A (λ n ⇒ P 0 n nilb) nila + (drop-nil-dep B (λ n ⇒ P 0 'nil n) nilb pn); + succ n, IH ⇒ λ consa consb ⇒ + case consa return consa' ⇒ P (succ n) consa' consb of { (a, as) ⇒ + case consb return consb' ⇒ P (succ n) (a, as) consb' of { (b, bs) ⇒ + pc a b n as bs (IH as bs) + } + } + } + +def elim2-uneven : + 0.(A B : ★) → 0.(P : (m n : ℕ) → Vec m A → Vec n B → ★) → + -- both nil + ω.(P 0 0 'nil 'nil) → + -- first nil + ω.((y : B) → 0.(n : ℕ) → 0.(ys : Vec n B) → + P 0 n 'nil ys → P 0 (succ n) 'nil (y, ys)) → + -- second nil + ω.((x : A) → 0.(m : ℕ) → 0.(xs : Vec m A) → + P m 0 xs 'nil → P (succ m) 0 (x, xs) 'nil) → + -- both cons + ω.((x : A) → (y : B) → 0.(m n : ℕ) → + 0.(xs : Vec m A) → 0.(ys : Vec n B) → + P m n xs ys → P (succ m) (succ n) (x, xs) (y, ys)) → + (m n : ℕ) → (xs : Vec m A) → (ys : Vec n B) → P m n xs ys = + λ A B P pnn pnc pcn pcc ⇒ + nat.elim-pair (λ m n ⇒ (xs : Vec m A) → (ys : Vec n B) → P m n xs ys) + (λ xnil ynil ⇒ + let0 Ret = P 0 0 'nil 'nil in + drop-nil A Ret xnil (drop-nil B Ret ynil pnn)) + (λ n IH xnil yys ⇒ + case yys return yys' ⇒ P 0 (succ n) 'nil yys' of { (y, ys) ⇒ + pnc y n ys (IH xnil ys) + }) + (λ m IH xxs ynil ⇒ + case xxs return xxs' ⇒ P (succ m) 0 xxs' 'nil of { (x, xs) ⇒ + pcn x m xs (IH xs ynil) + }) + (λ m n IH xxs yys ⇒ + case xxs return xxs' ⇒ P (succ m) (succ n) xxs' yys of { (x, xs) ⇒ + case yys return yys' ⇒ P (succ m) (succ n) (x, xs) yys' of { (y, ys) ⇒ + pcc x y m n xs ys (IH xs ys) + }}) + +-- haha gross +def elimω : 0.(A : ★) → 0.(P : (n : ℕ) → Vec n A → ★) → + ω.(P 0 'nil) → + ω.(ω.(x : A) → ω.(n : ℕ) → ω.(xs : Vec n A) → + ω.(P n xs) → P (succ n) (x, xs)) → + ω.(n : ℕ) → ω.(xs : Vec n A) → P n xs = + λ A P pn pc n ⇒ + caseω n return n' ⇒ ω.(xs' : Vec n' A) → P n' xs' of { + zero ⇒ λ _ ⇒ pn; + succ n, ω.IH ⇒ λ xxs ⇒ + letω x = fst xxs; xs = snd xxs in pc x n xs (IH xs) + } + +def elimω2 : 0.(A B : ★) → 0.(P : (n : ℕ) → Vec n A → Vec n B → ★) → + ω.(P 0 'nil 'nil) → + ω.(ω.(x : A) → ω.(y : B) → ω.(n : ℕ) → + ω.(xs : Vec n A) → ω.(ys : Vec n B) → + ω.(P n xs ys) → P (succ n) (x, xs) (y, ys)) → + ω.(n : ℕ) → ω.(xs : Vec n A) → ω.(ys : Vec n B) → P n xs ys = + λ A B P pn pc n ⇒ + caseω n return n' ⇒ ω.(xs : Vec n' A) → ω.(ys : Vec n' B) → P n' xs ys of { + zero ⇒ λ _ _ ⇒ pn; + succ n, ω.IH ⇒ λ xxs yys ⇒ + letω x = fst xxs; xs = snd xxs; y = fst yys; ys = snd yys in + pc x y n xs ys (IH xs ys) + } + +{- +postulate elimP : + ω.(π : NzQty) → ω.(ρₙ ρₗ : Qty) → + 0.(A : ★) → 0.(P : (n : ℕ) → Vec n A → ★) → + FunNz π (P 0 'nil) + (Fun 'any + (FUN-NZ π A (λ x ⇒ FUN ρₙ ℕ (λ n ⇒ FUN ρₗ (Vec n A) (λ xs ⇒ + FunNz π (P n xs) (P (succ n) (x, xs)))))) + (FUN-NZ π ℕ (λ n ⇒ FUN-NZ π (Vec n A) (λ xs ⇒ P n xs)))) +{- + = + λ π ρₙ ρₗ A P ⇒ uhhhhhhhhhhhhhhhhhhh +-} +-} + +def elimω2-uneven : + 0.(A B : ★) → 0.(P : (m n : ℕ) → Vec m A → Vec n B → ★) → + -- both nil + ω.(P 0 0 'nil 'nil) → + -- first nil + ω.(ω.(y : B) → ω.(n : ℕ) → ω.(ys : Vec n B) → + ω.(P 0 n 'nil ys) → P 0 (succ n) 'nil (y, ys)) → + -- second nil + ω.(ω.(x : A) → ω.(m : ℕ) → ω.(xs : Vec m A) → + ω.(P m 0 xs 'nil) → P (succ m) 0 (x, xs) 'nil) → + -- both cons + ω.(ω.(x : A) → ω.(y : B) → ω.(m n : ℕ) → + ω.(xs : Vec m A) → ω.(ys : Vec n B) → + ω.(P m n xs ys) → P (succ m) (succ n) (x, xs) (y, ys)) → + ω.(m n : ℕ) → ω.(xs : Vec m A) → ω.(ys : Vec n B) → P m n xs ys = + λ A B P pnn pnc pcn pcc ⇒ + nat.elim-pairω (λ m n ⇒ ω.(xs : Vec m A) → ω.(ys : Vec n B) → P m n xs ys) + (λ _ _ ⇒ pnn) + (λ n IH xnil yys ⇒ + letω y = fst yys; ys = snd yys in pnc y n ys (IH xnil ys)) + (λ m IH xxs ynil ⇒ + letω x = fst xxs; xs = snd xxs in pcn x m xs (IH xs ynil)) + (λ m n IH xxs yys ⇒ + letω x = fst xxs; xs = snd xxs; y = fst yys; ys = snd yys in + pcc x y m n xs ys (IH xs ys)) + +def zip-with : 0.(A B C : ★) → ω.(A → B → C) → + (n : ℕ) → Vec n A → Vec n B → Vec n C = + λ A B C f ⇒ + elim2 A B (λ n _ _ ⇒ Vec n C) 'nil (λ a b _ _ _ abs ⇒ (f a b, abs)) + +def zip-withω : 0.(A B C : ★) → ω.(ω.A → ω.B → C) → + ω.(n : ℕ) → ω.(Vec n A) → ω.(Vec n B) → Vec n C = + λ A B C f ⇒ + elimω2 A B (λ n _ _ ⇒ Vec n C) 'nil (λ a b _ _ _ abs ⇒ (f a b, abs)) + + +namespace zip-with { + def0 Failure : (A B : ★) → (m n : ℕ) → Vec m A → Vec n B → ★ = + λ A B m n xs ys ⇒ + Sing (Vec m A) xs × Sing (Vec n B) ys × [0. Not (m ≡ n : ℕ)] + + def0 Success : (C : ★) → (m n : ℕ) → ★ = + λ C m n ⇒ Vec n C × [0. m ≡ n : ℕ] + + def0 Result : (A B C : ★) → (m n : ℕ) → Vec m A → Vec n B → ★ = + λ A B C m n xs ys ⇒ + Either (Failure A B m n xs ys) (Success C m n) + + def zip-with-hetω : 0.(A B C : ★) → ω.(A → B → C) → + ω.(m n : ℕ) → (xs : Vec m A) → (ys : Vec n B) → + Result A B C m n xs ys = + λ A B C f m n xs ys ⇒ + let0 TNo : Vec m A → Vec n B → ★ = Failure A B m n; + TYes : ★ = Success C m n; + TRes : Vec m A → Vec n B → ★ = λ xs ys ⇒ Either (TNo xs ys) TYes in + dec.elim (m ≡ n : ℕ) + (λ _ ⇒ (xs : Vec m A) → (ys : Vec n B) → TRes xs ys) + (λ eq xs ys ⇒ + let zs : Vec n C = + zip-with A B C f n (coe (𝑖 ⇒ Vec (eq @𝑖) A) xs) ys in + Right (TNo xs ys) TYes (zs, [eq])) + (λ neq xs ys ⇒ Left (TNo xs ys) TYes + (sing (Vec m A) xs, sing (Vec n B) ys, [neq])) + (nat.eq? m n) xs ys + + def zip-with-het : 0.(A B C : ★) → ω.(A → B → C) → + (m n : ℕ) → (xs : Vec m A) → (ys : Vec n B) → + Result A B C m n xs ys = + λ A B C f m n ⇒ + let0 Ret : ℕ → ℕ → ★ = + λ m n ⇒ (xs : Vec m A) → (ys : Vec n B) → Result A B C m n xs ys in + dup.elim ℕ m (λ m' ⇒ Ret m' n) + (λ m ⇒ dup.elim ℕ n (λ n' ⇒ Ret m n') + (λ n ⇒ zip-with-hetω A B C f m n) (nat.dup! n)) + (nat.dup! m) +} +def0 ZipWith = zip-with.Result +def zip-with-het = zip-with.zip-with-het +def zip-with-hetω = zip-with.zip-with-hetω + +def map : 0.(A B : ★) → ω.(A → B) → (n : ℕ) → Vec n A → Vec n B = + λ A B f ⇒ elim A (λ n _ ⇒ Vec n B) 'nil (λ x _ _ ys ⇒ (f x, ys)) + +#[compile-scheme "(lambda% (n xs) xs)"] +def up : 0.(A : ★) → (n : ℕ) → Vec n A → Vec¹ n A = + λ A n ⇒ + case n return n' ⇒ Vec n' A → Vec¹ n' A of { + zero ⇒ λ xs ⇒ + case xs return Vec¹ 0 A of { 'nil ⇒ 'nil }; + succ n', f' ⇒ λ xs ⇒ + case xs return Vec¹ (succ n') A of { + (first, rest) ⇒ (first, f' rest) + } + } + +def append : 0.(A : ★) → (m : ℕ) → 0.(n : ℕ) → + Vec m A → Vec n A → Vec (nat.plus m n) A = + λ A m n xs ys ⇒ + elim A (λ m _ ⇒ Vec (nat.plus m n) A) ys (λ x _ _ xsys ⇒ (x, xsys)) m xs + +} + +def0 Vec = vec.Vec + + +namespace list { + +def0 List : ★ → ★ = + λ A ⇒ (len : ℕ) × Vec len A + +def Nil : 0.(A : ★) → List A = + λ A ⇒ (0, 'nil) + +def Cons : 0.(A : ★) → A → List A → List A = + λ A x xs ⇒ case xs return List A of { (len, elems) ⇒ (succ len, x, elems) } + +def single : 0.(A : ★) → A → List A = + λ A x ⇒ Cons A x (Nil A) + +def elim : 0.(A : ★) → 0.(P : List A → ★) → + P (Nil A) → + ω.((x : A) → 0.(xs : List A) → P xs → P (Cons A x xs)) → + (xs : List A) → P xs = + λ A P pn pc xs ⇒ + case xs return xs' ⇒ P xs' of { (len, elems) ⇒ + vec.elim A (λ n xs ⇒ P (n, xs)) + pn (λ x n xs IH ⇒ pc x (n, xs) IH) + len elems + } + +def elimω : 0.(A : ★) → 0.(P : List A → ★) → + ω.(P (Nil A)) → + ω.(ω.(x : A) → ω.(xs : List A) → ω.(P xs) → P (Cons A x xs)) → + ω.(xs : List A) → P xs = + λ A P pn pc xs ⇒ + caseω xs return xs' ⇒ P xs' of { (len, elems) ⇒ + vec.elimω A (λ n xs ⇒ P (n, xs)) + pn (λ x n xs IH ⇒ pc x (n, xs) IH) + len elems + } + +def elim2 : 0.(A B : ★) → 0.(P : List A → List B → ★) → + ω.(P (Nil A) (Nil B)) → + ω.((y : B) → 0.(ys : List B) → + P (Nil A) ys → P (Nil A) (Cons B y ys)) → + ω.((x : A) → 0.(xs : List A) → + P xs (Nil B) → P (Cons A x xs) (Nil B)) → + ω.((x : A) → 0.(xs : List A) → (y : B) → 0.(ys : List B) → + P xs ys → P (Cons A x xs) (Cons B y ys)) → + (xs : List A) → (ys : List B) → P xs ys = + λ A B P pnn pnc pcn pcc xs ys ⇒ + case xs return xs' ⇒ P xs' ys of { (m, xs) ⇒ + case ys return ys' ⇒ P (m, xs) ys' of { (n, ys) ⇒ + vec.elim2-uneven A B (λ m n xs ys ⇒ P (m, xs) (n, ys)) + pnn + (λ y n ys IH ⇒ pnc y (n, ys) IH) + (λ x m xs IH ⇒ pcn x (m, xs) IH) + (λ x y m n xs ys IH ⇒ pcc x (m, xs) y (n, ys) IH) + m n xs ys + }} + +def elimω2 : 0.(A B : ★) → 0.(P : List A → List B → ★) → + ω.(P (Nil A) (Nil B)) → + ω.(ω.(y : B) → ω.(ys : List B) → + ω.(P (Nil A) ys) → P (Nil A) (Cons B y ys)) → + ω.(ω.(x : A) → ω.(xs : List A) → + ω.(P xs (Nil B)) → P (Cons A x xs) (Nil B)) → + ω.(ω.(x : A) → ω.(xs : List A) → ω.(y : B) → ω.(ys : List B) → + ω.(P xs ys) → P (Cons A x xs) (Cons B y ys)) → + ω.(xs : List A) → ω.(ys : List B) → P xs ys = + λ A B P pnn pnc pcn pcc xs ys ⇒ + caseω xs return xs' ⇒ P xs' ys of { (m, xs) ⇒ + caseω ys return ys' ⇒ P (m, xs) ys' of { (n, ys) ⇒ + vec.elimω2-uneven A B (λ m n xs ys ⇒ P (m, xs) (n, ys)) + pnn + (λ y n ys IH ⇒ pnc y (n, ys) IH) + (λ x m xs IH ⇒ pcn x (m, xs) IH) + (λ x y m n xs ys IH ⇒ pcc x (m, xs) y (n, ys) IH) + m n xs ys + }} + +def as-vec : 0.(A : ★) → 0.(P : List A → ★) → (xs : List A) → + (ω.(n : ℕ) → (xs : Vec n A) → P (n, xs)) → P xs = + λ A P xs f ⇒ + case xs return xs' ⇒ P xs' of { (n, xs) ⇒ + dup.elim ℕ n (λ n' ⇒ (xs : Vec n' A) → P (n', xs)) f (nat.dup! n) xs + } + +def match-dep : + 0.(A : ★) → 0.(P : List A → ★) → + ω.(P (Nil A)) → ω.((x : A) → (xs : List A) → P (Cons A x xs)) → + (xs : List A) → P xs = + λ A P pn pc xs ⇒ + case xs return xs' ⇒ P xs' of { + (len, elems) ⇒ + vec.match-dep A (λ n xs ⇒ P (n, xs)) pn (λ n x xs ⇒ pc x (n, xs)) + len elems + } + +def match-depω : + 0.(A : ★) → 0.(P : List A → ★) → + ω.(P (Nil A)) → + ω.(ω.(x : A) → ω.(xs : List A) → P (Cons A x xs)) → + ω.(xs : List A) → P xs = + λ A P pn pc xs ⇒ + vec.match-depω A (λ n xs ⇒ P (n, xs)) pn (λ n x xs ⇒ pc x (n, xs)) + (fst xs) (snd xs) +def match-dep# = match-depω + +def match : 0.(A B : ★) → ω.B → ω.(A → List A → B) → List A → B = + λ A B ⇒ match-dep A (λ _ ⇒ B) + +def matchω : 0.(A B : ★) → ω.B → ω.(ω.A → ω.(List A) → B) → ω.(List A) → B = + λ A B ⇒ match-depω A (λ _ ⇒ B) +def match# = matchω + + +def up : 0.(A : ★) → List A → List¹ A = + λ A xs ⇒ + case xs return List¹ A of { (len, elems) ⇒ + dup.elim'¹ ℕ len (λ _ ⇒ List¹ A) + (λ len eq ⇒ (len, vec.up A len (coe (𝑖 ⇒ Vec (eq @𝑖) A) @1 @0 elems))) + (nat.dup! len) + } + +def foldr : 0.(A B : ★) → B → ω.(A → B → B) → List A → B = + λ A B z f xs ⇒ elim A (λ _ ⇒ B) z (λ x _ y ⇒ f x y) xs + +def foldl : 0.(A B : ★) → B → ω.(B → A → B) → List A → B = + λ A B z f xs ⇒ + foldr A (B → B) (λ b ⇒ b) (λ a g b ⇒ g (f b a)) xs z + +def map : 0.(A B : ★) → ω.(A → B) → List A → List B = + λ A B f ⇒ foldr A (List B) (Nil B) (λ x ys ⇒ Cons B (f x) ys) + + +-- ugh +def foldrω : 0.(A B : ★) → ω.B → ω.(ω.A → ω.B → B) → ω.(List A) → B = + λ A B z f xs ⇒ elimω A (λ _ ⇒ B) z (λ x _ y ⇒ f x y) xs + +def foldlω : 0.(A B : ★) → ω.B → ω.(ω.B → ω.A → B) → ω.(List A) → B = + λ A B z f xs ⇒ + foldrω A (ω.B → B) (λ b ⇒ b) (λ a g b ⇒ g (f b a)) xs z + +def mapω : 0.(A B : ★) → ω.(ω.A → B) → ω.(List A) → List B = + λ A B f ⇒ foldrω A (List B) (Nil B) (λ x ys ⇒ Cons B (f x) ys) + + +def0 All : (A : ★) → (P : A → ★) → List A → ★ = + λ A P xs ⇒ foldr¹ A ★ True (λ x ps ⇒ P x × ps) (up A xs) + +def append : 0.(A : ★) → List A → List A → List A = + λ A xs ys ⇒ foldr A (List A) ys (Cons A) xs + +def reverse : 0.(A : ★) → List A → List A = + λ A ⇒ foldl A (List A) (Nil A) (λ xs x ⇒ Cons A x xs) + + +def find : 0.(A : ★) → ω.(ω.A → Bool) → ω.(List A) → Maybe A = + λ A p ⇒ + foldlω A (Maybe A) (Nothing A) (λ m x ⇒ maybe.or A m (maybe.check A p x)) + +def cons-first : 0.(A : ★) → ω.A → List (List A) → List (List A) = + λ A x ⇒ + match (List A) (List (List A)) + (single (List A) (single A x)) + (λ xs xss ⇒ Cons (List A) (Cons A x xs) xss) + +def split : 0.(A : ★) → ω.(ω.A → Bool) → ω.(List A) → List (List A) = + λ A p ⇒ + foldrω A (List (List A)) + (Nil (List A)) + (λ x xss ⇒ bool.if (List (List A)) (p x) + (Cons (List A) (Nil A) xss) + (cons-first A x xss)) + +def break : 0.(A : ★) → ω.(ω.A → Bool) → ω.(List A) → List A × List A = + λ A p xs ⇒ + let0 Lst = List A; Lst2 = (Lst × Lst) ∷ ★; State = Either Lst Lst2 in + letω LeftS = Left Lst Lst2; RightS = Right Lst Lst2 in + letω res = + foldlω A State + (LeftS (Nil A)) + (λ acc x ⇒ + either.foldω Lst Lst2 State + (λ xs ⇒ bool.if State (p x) + (RightS (xs, list.single A x)) + (LeftS (Cons A x xs))) + (λ xsys ⇒ + RightS (fst xsys, Cons A x (snd xsys))) acc) + xs ∷ State in + letω res = + either.fold Lst Lst2 Lst2 (λ xs ⇒ (Nil A, xs)) (λ xsys ⇒ xsys) res in + (reverse A (fst res), reverse A (snd res)) + +def uncons : 0.(A : ★) → List A → Maybe (A × List A) = + λ A ⇒ + match A (Maybe (A × List A)) + (Nothing (A × List A)) + (λ x xs ⇒ Just (A × List A) (x, xs)) + +def head : 0.(A : ★) → ω.(List A) → Maybe A = + λ A ⇒ matchω A (Maybe A) (Nothing A) (λ x _ ⇒ Just A x) + +def tail : 0.(A : ★) → ω.(List A) → Maybe (List A) = + λ A ⇒ matchω A (Maybe (List A)) (Nothing (List A)) (λ _ xs ⇒ Just (List A) xs) + +def tail-or-nil : 0.(A : ★) → ω.(List A) → List A = + λ A ⇒ matchω A (List A) (Nil A) (λ _ xs ⇒ xs) + +-- slip (xs, []) = (xs, []) +-- slip (xs, y :: ys) = (y :: xs, ys) +def slip : 0.(A : ★) → List A × List A → List A × List A = + λ A xsys ⇒ + case xsys return List A × List A of { (xs, ys) ⇒ + match A (List A → List A × List A) + (λ xs ⇒ (xs, Nil A)) + (λ y ys xs ⇒ (Cons A y xs, ys)) + ys xs + } + +def split-at' : 0.(A : ★) → ℕ → List A → List A × List A = + λ A n xs ⇒ + (case n return List A × List A → List A × List A of { + 0 ⇒ λ xsys ⇒ xsys; + succ _, f ⇒ λ xsys ⇒ f (slip A xsys) + }) (Nil A, xs) + +def split-at : 0.(A : ★) → ℕ → List A → List A × List A = + λ A n xs ⇒ + case split-at' A n xs return List A × List A of { + (xs', ys) ⇒ (reverse A xs', ys) + } + +def filter : 0.(A : ★) → ω.(ω.A → Bool) → ω.(List A) → List A = + λ A p ⇒ + foldrω A (List A) + (Nil A) + (λ x xs ⇒ bool.if (List A) (p x) (Cons A x xs) xs) + +def length : 0.(A : ★) → ω.(List A) → ℕ = + λ A xs ⇒ fst xs + + +namespace zip-with { + def0 VFailure = vec.zip-with.Failure + def0 VSuccess = vec.zip-with.Success + + def0 Failure : (A B : ★) → List A → List B → ★ = + λ A B xs ys ⇒ VFailure A B (fst xs) (fst ys) (snd xs) (snd ys) + + def0 Result : (A B C : ★) → List A → List B → ★ = + λ A B C xs ys ⇒ Either (Failure A B xs ys) (List C) + + def zip-with : 0.(A B C : ★) → ω.(A → B → C) → + (xs : List A) → (ys : List B) → + Result A B C xs ys = + λ A B C f xs ys ⇒ + let0 Ret = Result A B C in + as-vec A (λ xs' ⇒ Ret xs' ys) xs (λ m xs ⇒ + as-vec B (λ ys' ⇒ Ret (m, xs) ys') ys (λ n ys ⇒ + let0 Err = Failure A B (m, xs) (n, ys) in + either.fold Err (VSuccess C m n) (Ret (m, xs) (n, ys)) + (λ no ⇒ Left Err (List C) no) + (λ yes ⇒ case yes return Ret (m, xs) (n, ys) of { (vec, prf) ⇒ + Right Err (List C) (drop0 (m ≡ n : ℕ) (List C) prf (n, vec)) + }) + (vec.zip-with-hetω A B C f m n xs ys))) +} +def0 ZipWith = zip-with.Result +def zip-with = zip-with.zip-with + +def zip-withω : 0.(A B C : ★) → ω.(ω.A → ω.B → C) → + ω.(xs : List A) → ω.(ys : List B) → + Either [0. Not (fst xs ≡ fst ys : ℕ)] (List C) = + λ A B C f xs ys ⇒ + letω m = fst xs; xs = snd xs; + n = fst ys; ys = snd ys in + let0 Err : ★ = [0. Not (m ≡ n : ℕ)] in + dec.elim (m ≡ n : ℕ) (λ _ ⇒ Either Err (List C)) + (λ mn ⇒ + letω xs = coe (𝑖 ⇒ Vec (mn @𝑖) A) xs in + Right Err (List C) (n, vec.zip-withω A B C f n xs ys)) + (λ nmn ⇒ Left Err (List C) [nmn]) + (nat.eq? m n) +def zip-with# = zip-withω + + +def zip-with-uneven : + 0.(A B C : ★) → ω.(ω.A → ω.B → C) → ω.(List A) → ω.(List B) → List C = + λ A B C f xs ys ⇒ + caseω nat.min (fst xs) (fst ys) + return ω.(List A) → ω.(List B) → List C of { + 0 ⇒ λ _ _ ⇒ Nil C; + succ _, ω.fih ⇒ λ xs ys ⇒ + maybe.foldω (A × List A) (List C) (Nil C) + (λ xxs ⇒ maybe.foldω (B × List B) (List C) (Nil C) + (λ yys ⇒ Cons C (f (fst xxs) (fst yys)) (fih (snd xxs) (snd yys))) + (list.uncons B ys)) + (list.uncons A xs) + } xs ys + + +def sum : List ℕ → ℕ = foldl ℕ ℕ 0 nat.plus +def product : List ℕ → ℕ = foldl ℕ ℕ 1 nat.times + + +namespace mergesort { + def deal : 0.(A : ★) → List A → List A × List A = + λ A ⇒ + let0 One = List A; Pair : ★ = One × One in + foldl A Pair (Nil A, Nil A) + (pair.uncurry' One One (A → Pair) (λ ys zs x ⇒ (Cons A x zs, ys))) + +} + + +postulate0 SchemeList : ★ → ★ + +#[compile-scheme + "(lambda (list) (cons (length list) (fold-right cons 'nil list)))"] +postulate from-scheme : 0.(A : ★) → SchemeList A → List A + +#[compile-scheme + "(lambda (lst) + (do [(lst (cdr lst) (cdr lst)) + (acc '() (cons (car lst) acc))] + [(equal? lst 'nil) (reverse acc)]))"] +postulate to-scheme : 0.(A : ★) → List A → SchemeList A + +} + +def0 List = list.List diff --git a/stdlib/maybe.quox b/stdlib/maybe.quox new file mode 100644 index 0000000..83e96c4 --- /dev/null +++ b/stdlib/maybe.quox @@ -0,0 +1,146 @@ +load "misc.quox" +load "pair.quox" +load "either.quox" + +namespace maybe { + +def0 Tag : ★ = {nothing, just} + +def0 Payload : Tag → ★ → ★ = + λ tag A ⇒ case tag return ★ of { 'nothing ⇒ True; 'just ⇒ A } + +def0 Maybe : ★ → ★ = + λ A ⇒ (t : Tag) × Payload t A + +def tag : 0.(A : ★) → ω.(Maybe A) → Tag = + λ _ x ⇒ caseω x return Tag of { (tag, _) ⇒ tag } + +def Nothing : 0.(A : ★) → Maybe A = + λ _ ⇒ ('nothing, 'true) + +def Just : 0.(A : ★) → A → Maybe A = + λ _ x ⇒ ('just, x) + +def0 IsJustTag : Tag → ★ = + λ t ⇒ case t return ★ of { 'just ⇒ True; 'nothing ⇒ False } + +def0 IsJust : (A : ★) → Maybe A → ★ = + λ A x ⇒ IsJustTag (tag A x) + +def is-just? : 0.(A : ★) → ω.(x : Maybe A) → Dec (IsJust A x) = + λ A x ⇒ + caseω tag A x return t ⇒ Dec (IsJustTag t) of { + 'just ⇒ Yes True 'true; + 'nothing ⇒ No False (λ x ⇒ x) + } + +def0 nothing-unique : + (A : ★) → (x : True) → ('nothing, x) ≡ Nothing A : Maybe A = + λ A x ⇒ + case x return x' ⇒ ('nothing, x') ≡ Nothing A : Maybe A of { + 'true ⇒ δ _ ⇒ ('nothing, 'true) + } + +def elim' : + 0.(A : ★) → + 0.(P : (t : Tag) → Payload t A → ★) → + ω.(P 'nothing 'true) → + ω.((x : A) → P 'just x) → + (t : Tag) → (x : Payload t A) → P t x = + λ A P nothing just tag ⇒ + case tag return t ⇒ (x : Payload t A) → P t x of { + 'nothing ⇒ λ x ⇒ case x return x' ⇒ P 'nothing x' of { 'true ⇒ nothing }; + 'just ⇒ just + } + +def elim : + 0.(A : ★) → + 0.(P : Maybe A → ★) → + ω.(P (Nothing A)) → + ω.((x : A) → P (Just A x)) → + (x : Maybe A) → P x = + λ A P n j x ⇒ + case x return x' ⇒ P x' of { + (tag, payload) ⇒ elim' A (λ x t ⇒ P (x, t)) n j tag payload + } + +def elimω' : + 0.(A : ★) → + 0.(P : (t : Tag) → Payload t A → ★) → + ω.(P 'nothing 'true) → + ω.(ω.(x : A) → P 'just x) → + ω.(t : Tag) → ω.(x : Payload t A) → P t x = + λ A P nothing just tag ⇒ + case tag return t ⇒ ω.(x : Payload t A) → P t x of { + 'nothing ⇒ λ x ⇒ case x return x' ⇒ P 'nothing x' of { 'true ⇒ nothing }; + 'just ⇒ just + } + +def elimω : + 0.(A : ★) → + 0.(P : Maybe A → ★) → + ω.(P (Nothing A)) → + ω.(ω.(x : A) → P (Just A x)) → + ω.(x : Maybe A) → P x = + λ A P n j x ⇒ + caseω x return x' ⇒ P x' of { + (tag, payload) ⇒ elimω' A (λ x t ⇒ P (x, t)) n j tag payload + } + +{- +-- direct elim implementation +def elim : + 0.(A : ★) → + 0.(P : Maybe A → ★) → + ω.(P (Nothing A)) → + ω.((x : A) → P (Just A x)) → + (x : Maybe A) → P x = + λ A P n j x ⇒ + case x return x' ⇒ P x' of { (tag, payload) ⇒ + (case tag + return t ⇒ + 0.(eq : tag ≡ t : Tag) → P (t, coe (𝑖 ⇒ Payload (eq @𝑖) A) payload) + of { + 'nothing ⇒ + λ eq ⇒ + case coe (𝑖 ⇒ Payload (eq @𝑖) A) payload + return p ⇒ P ('nothing, p) + of { 'true ⇒ n }; + 'just ⇒ λ eq ⇒ j (coe (𝑖 ⇒ Payload (eq @𝑖) A) payload) + }) (δ 𝑖 ⇒ tag) + } +-} + +def fold : 0.(A B : ★) → ω.B → ω.(A → B) → Maybe A → B = + λ A B ⇒ elim A (λ _ ⇒ B) + +def foldω : 0.(A B : ★) → ω.B → ω.(ω.A → B) → ω.(Maybe A) → B = + λ A B ⇒ elimω A (λ _ ⇒ B) + +def join : 0.(A : ★) → (Maybe (Maybe A)) → Maybe A = + λ A ⇒ fold (Maybe A) (Maybe A) (Nothing A) (λ x ⇒ x) + +def pair : 0.(A B : ★) → ω.(Maybe A) → ω.(Maybe B) → Maybe (A × B) = + λ A B x y ⇒ + foldω A (Maybe (A × B)) (Nothing (A × B)) + (λ x' ⇒ fold B (Maybe (A × B)) (Nothing (A × B)) + (λ y' ⇒ Just (A × B) (x', y')) y) x + +def map : 0.(A B : ★) → ω.(A → B) → Maybe A → Maybe B = + λ A B f ⇒ fold A (Maybe B) (Nothing B) (λ x ⇒ Just B (f x)) + +def mapω : 0.(A B : ★) → ω.(ω.A → B) → ω.(Maybe A) → Maybe B = + λ A B f ⇒ foldω A (Maybe B) (Nothing B) (λ x ⇒ Just B (f x)) + + +def check : 0.(A : ★) → (ω.A → Bool) → ω.A → Maybe A = + λ A p x ⇒ bool.if (Maybe A) (p x) (Just A x) (Nothing A) + +def or : 0.(A : ★) → Maybe A → ω.(Maybe A) → Maybe A = + λ A l r ⇒ fold A (Maybe A) r (Just A) l + +} + +def0 Maybe = maybe.Maybe +def Just = maybe.Just +def Nothing = maybe.Nothing diff --git a/stdlib/misc.quox b/stdlib/misc.quox new file mode 100644 index 0000000..945c9af --- /dev/null +++ b/stdlib/misc.quox @@ -0,0 +1,261 @@ +namespace true { + def0 True : ★ = {true} + + def drop : 0.(A : ★) → True → A → A = + λ A t x ⇒ case t return A of { 'true ⇒ x } + + def0 eta : (s : True) → s ≡ 'true : True = + λ s ⇒ case s return s' ⇒ s' ≡ 'true : True of { 'true ⇒ δ 𝑖 ⇒ 'true } + + def0 irr : (s t : True) → s ≡ t : True = + λ s t ⇒ + coe (𝑖 ⇒ eta s @𝑖 ≡ t : True) @1 @0 + (coe (𝑖 ⇒ 'true ≡ eta t @𝑖 : True) @1 @0 (δ _ ⇒ 'true)) + + def revive : 0.True → True = λ _ ⇒ 'true +} +def0 True = true.True + +namespace false { + def0 False : ★ = {} + + def void : 0.(A : ★) → 0.False → A = + λ A v ⇒ case0 v return A of { } + + def0 irr : (u v : False) → u ≡ v : False = + λ u v ⇒ void (u ≡ v : False) u + + def revive : 0.False → False = void False +} +def0 False = false.False +def void = false.void + + +def0 Not : ★ → ★ = λ A ⇒ ω.A → False + +def0 Iff : ★ → ★ → ★ = λ A B ⇒ (A → B) × (B → A) + +def0 All : (A : ★) → (A → ★) → ★ = + λ A P ⇒ (x : A) → P x + +def cong : + 0.(A : ★) → 0.(P : A → ★) → 1.(p : All A P) → + 0.(x y : A) → 1.(xy : x ≡ y : A) → Eq (𝑖 ⇒ P (xy @𝑖)) (p x) (p y) = + λ A P p x y xy ⇒ δ 𝑖 ⇒ p (xy @𝑖) + +def cong' : + 0.(A B : ★) → 1.(f : A → B) → + 0.(x y : A) → 1.(xy : x ≡ y : A) → f x ≡ f y : B = + λ A B ⇒ cong A (λ _ ⇒ B) + +def coherence : + 0.(A B : ★) → 0.(AB : A ≡ B : ★) → 1.(x : A) → + Eq (𝑖 ⇒ AB @𝑖) x (coe (𝑖 ⇒ AB @𝑖) x) = + λ A B AB x ⇒ + δ 𝑗 ⇒ coe (𝑖 ⇒ AB @𝑖) @0 @𝑗 x + + +def0 EqF : (A : ★) → (P : A → ★) → (p : All A P) → (q : All A P) → A → ★ = + λ A P p q x ⇒ p x ≡ q x : P x + +def funext : + 0.(A : ★) → 0.(P : A → ★) → 0.(p q : All A P) → + 1.(All A (EqF A P p q)) → p ≡ q : All A P = + λ A P p q eq ⇒ δ 𝑖 ⇒ λ x ⇒ eq x @𝑖 + +def refl : 0.(A : ★) → 1.(x : A) → x ≡ x : A = λ A x ⇒ δ _ ⇒ x + +def sym : 0.(A : ★) → 0.(x y : A) → 1.(x ≡ y : A) → y ≡ x : A = + λ A x y eq ⇒ coe (𝑗 ⇒ eq @𝑗 ≡ x : A) (δ _ ⇒ eq @0) + -- btw this uses eq @0 instead of just x because of the quantities + +def sym-c : 0.(A : ★) → 0.(x y : A) → 1.(x ≡ y : A) → y ≡ x : A = + λ A x y eq ⇒ δ 𝑖 ⇒ + comp A (eq @0) @𝑖 { 0 𝑗 ⇒ eq @𝑗; 1 _ ⇒ eq @0 } + +{- +def sym-het : 0.(A B : ★) → 0.(AB : A ≡ B : ★) → + 0.(x : A) → 0.(y : B) → + 1.(Eq (𝑖 ⇒ AB @𝑖) x y) → + Eq (𝑖 ⇒ sym¹ ★ A B AB @𝑖) y x = + λ A B AB x y xy ⇒ + let0 BA = sym¹ ★ A B AB; + y' : A = coe (𝑖 ⇒ BA @𝑖) y; + yy' : Eq (𝑖 ⇒ BA @𝑖) y y' = + δ 𝑗 ⇒ coe (𝑖 ⇒ BA @𝑖) @0 @𝑗 y; + in + 0 +-} + +{- + δ 𝑖 ⇒ + comp (𝑗 ⇒ sym¹ ★ A B AB @𝑗) @0 @𝑖 y @𝑖 { + 0 𝑗 ⇒ xy @𝑗; + 1 𝑗 ⇒ xy @𝑗 + } +-} + +def trans10 : 0.(A : ★) → 0.(x y z : A) → + 1.(x ≡ y : A) → 0.(y ≡ z : A) → x ≡ z : A = + λ A x y z eq1 eq2 ⇒ coe (𝑗 ⇒ x ≡ eq2 @𝑗 : A) eq1 + +def trans01 : 0.(A : ★) → 0.(x y z : A) → + 0.(x ≡ y : A) → 1.(y ≡ z : A) → x ≡ z : A = + λ A x y z eq1 eq2 ⇒ coe (𝑗 ⇒ eq1 @𝑗 ≡ z : A) @1 @0 eq2 + +def trans : 0.(A : ★) → 0.(x y z : A) → + ω.(x ≡ y : A) → ω.(y ≡ z : A) → x ≡ z : A = + λ A x y z eq1 eq2 ⇒ trans01 A x y z eq1 eq2 + +{- +def trans-het : 0.(A B C : ★) → 0.(AB : A ≡ B : ★) → 0.(BC : B ≡ C : ★) → + 0.(x : A) → 0.(y : B) → 0.(z : C) → + ω.(Eq (𝑖 ⇒ AB @𝑖) x y) → + ω.(Eq (𝑖 ⇒ BC @𝑖) y z) → + Eq (𝑖 ⇒ trans¹ ★ A B C AB BC @𝑖) x z += + λ A B C AB BC x y z xy yz ⇒ + let 0.AC = trans¹ ★ A B C AB BC; + 0.y' : A = coe (𝑗 ⇒ AB @𝑗) @1 @0 y; + in + δ 𝑖 ⇒ + trans (AC @𝑖) (coe (𝑗 ⇒ AC @𝑗) @0 @𝑖 x) + (coe (𝑗 ⇒ AC @𝑗) @0 @𝑖 y') + (coe (𝑗 ⇒ AC @𝑗) @1 @𝑖 z) + 0 + 0 + @𝑖 + +def0 trans-trans-het : + (A : ★) → (x y z : A) → + (xy : x ≡ y : A) → (yz : y ≡ z : A) → + Eq (_ ⇒ x ≡ z : A) + (trans A x y z xy yz) + (trans-het A A A (δ _ ⇒ A) (δ _ ⇒ A) x y z xy yz) = + λ A x y z xy yz ⇒ δ _ ⇒ trans A x y z xy yz +-} + +def appω : 0.(A B : ★) → ω.(f : ω.A → B) → [ω.A] → [ω.B] = + λ A B f x ⇒ case x return [ω.B] of { [x'] ⇒ [f x'] } +def app# = appω + +def app2ω : 0.(A B C : ★) → ω.(f : ω.A → ω.B → C) → [ω.A] → [ω.B] → [ω.C] = + λ A B C f x y ⇒ + case x return [ω.C] of { [x'] ⇒ + case y return [ω.C] of { [y'] ⇒ [f x' y'] } + } +def app2# = app2ω + +def getω : 0.(A : ★) → [ω.A] → A = + λ A x ⇒ case x return A of { [x] ⇒ x } +def get# = getω + +def0 get0 : (A : ★) → [0.A] → A = + λ A x ⇒ case x return A of { [x] ⇒ x } + +def0 get0-box : (A : ★) → (b : [0.A]) → + [get0 A b] ≡ b : [0.A] = + λ A b ⇒ case b return b' ⇒ [get0 A b'] ≡ b' : [0.A] of { [x] ⇒ δ _ ⇒ [x] } + +def drop0 : 0.(A B : ★) → [0.A] → B → B = + λ A B x y ⇒ case x return B of { [_] ⇒ y } + +def0 drop0-eq : (A B : ★) → (x : [0.A]) → (y : B) → drop0 A B x y ≡ y : B = + λ A B x y ⇒ + case x return x' ⇒ drop0 A B x' y ≡ y : B of { [_] ⇒ δ 𝑖 ⇒ y } + +def0 HEq : (A B : ★) → A → B → ★¹ = + λ A B x y ⇒ (AB : A ≡ B : ★) × Eq (𝑖 ⇒ AB @𝑖) x y + +def0 boxω-inj : (A : ★) → (x y : A) → [x] ≡ [y] : [ω.A] → x ≡ y : A = + λ A x y xy ⇒ δ 𝑖 ⇒ getω A (xy @𝑖) +-- [todo] change lexical syntax to allow "box#-inj" + +def revive0 : 0.(A : ★) → 0.[0.A] → [0.A] = + λ A s ⇒ [get0 A s] + + +namespace sing { + +def0 Sing : (A : ★) → A → ★ = + λ A x ⇒ (val : A) × [0. val ≡ x : A] + +def sing : 0.(A : ★) → (x : A) → Sing A x = + λ A x ⇒ (x, [δ _ ⇒ x]) + +def val : 0.(A : ★) → 0.(x : A) → Sing A x → A = + λ A x sg ⇒ + case sg return A of { (x', eq) ⇒ drop0 (x' ≡ x : A) A eq x' } + +def0 val-fst : (A : ★) → (x : A) → (sg : Sing A x) → val A x sg ≡ fst sg : A = + λ A x sg ⇒ drop0-eq (fst sg ≡ x : A) A (snd sg) (fst sg) + +def0 proof : (A : ★) → (x : A) → (sg : Sing A x) → val A x sg ≡ x : A = + λ A x sg ⇒ + trans A (val A x sg) (fst sg) x + (val-fst A x sg) (get0 (fst sg ≡ x : A) (snd sg)) + +def app : 0.(A B : ★) → 0.(x : A) → + (f : A → B) → Sing A x → Sing B (f x) = + λ A B x f sg ⇒ + let 1.x' = val A x sg; + 0.xx = proof A x sg in + (f x', [δ 𝑖 ⇒ f (xx @𝑖)]) + +} + +def0 Sing = sing.Sing +def sing = sing.sing + + +namespace dup { + +def0 Dup : (A : ★) → A → ★ = + λ A x ⇒ Sing [ω.A] [x] + +def from-parts : + 0.(A : ★) → + (dup : A → [ω.A]) → + 0.(prf : (x : A) → dup x ≡ [x] : [ω.A]) → + (x : A) → Dup A x = + λ A dup prf x ⇒ (dup x, [prf x]) + +def to-drop : 0.(A : ★) → (A → [ω.A]) → 0.(B : ★) → A → B → B = + λ A dup B x y ⇒ case dup x return B of { [_] ⇒ y } + +def erased : 0.(A : ★) → (x : [0.A]) → Dup [0.A] x = + λ A x ⇒ case x return x' ⇒ Dup [0.A] x' of { [x] ⇒ sing [ω.[0.A]] [[x]] } + +def valω : 0.(A : ★) → 0.(x : A) → Dup A x → [ω.A] = + λ A x ⇒ sing.val [ω.A] [x] +def val# = valω + +def val : 0.(A : ★) → 0.(x : A) → Dup A x → A = + λ A x x! ⇒ getω A (valω A x x!) + +def0 proofω : (A : ★) → (x : A) → (x! : Dup A x) → valω A x x! ≡ [x] : [ω.A] = + λ A x x! ⇒ sing.proof [ω.A] [x] x! +def0 proof# : (A : ★) → (x : A) → (x! : Dup A x) → val# A x x! ≡ [x] : [ω.A] = + proofω + +def0 proof : (A : ★) → (x : A) → (x! : Dup A x) → val A x x! ≡ x : A = + λ A x x! ⇒ δ 𝑖 ⇒ getω A (proofω A x x! @𝑖) + +def elim' : 0.(A : ★) → 0.(x : A) → 0.(P : A → ★) → + (ω.(x' : A) → 0.(x' ≡ x : A) → P x) → Dup A x → P x = + λ A x P f x! ⇒ + let xω : [ω.A] = sing.val [ω.A] [x] x! in + case xω return xω' ⇒ 0.(xω' ≡ xω : [ω.A]) → P x of { [x'] ⇒ λ eq1 ⇒ + let0 eq2 = sing.proof [ω.A] [x] x!; + eq = boxω-inj A x' x (trans [ω.A] [x'] xω [x] eq1 eq2) in + f x' eq + } (δ _ ⇒ xω) + +def elim : 0.(A : ★) → 0.(x : A) → 0.(P : A → ★) → + (ω.(x' : A) → P x') → Dup A x → P x = + λ A x P f ⇒ elim' A x P (λ x' xx ⇒ coe (𝑖 ⇒ P (xx @𝑖)) (f x')) + + +} + +def0 Dup = dup.Dup diff --git a/stdlib/nat.quox b/stdlib/nat.quox new file mode 100644 index 0000000..d2e620f --- /dev/null +++ b/stdlib/nat.quox @@ -0,0 +1,297 @@ +load "misc.quox" +load "bool.quox" +load "either.quox" +load "sub.quox" + +namespace nat { + +def elim-0-1 : + 0.(P : ℕ → ★) → + ω.(P 0) → ω.(P 1) → + ω.(0.(n : ℕ) → P n → P (succ n)) → + (n : ℕ) → P n = + λ P p0 p1 ps n ⇒ + case n return n' ⇒ P n' of { + zero ⇒ p0; + succ n' ⇒ + case n' return n'' ⇒ P (succ n'') of { + zero ⇒ p1; + succ n'', IH ⇒ ps (succ n'') IH + } + } + +def elim-pair : + 0.(P : ℕ → ℕ → ★) → + ω.(P 0 0) → + ω.(0.(n : ℕ) → P 0 n → P 0 (succ n)) → + ω.(0.(m : ℕ) → P m 0 → P (succ m) 0) → + ω.(0.(m n : ℕ) → P m n → P (succ m) (succ n)) → + (m n : ℕ) → P m n = + λ P zz zs sz ss m ⇒ + case m return m' ⇒ (n : ℕ) → P m' n of { + 0 ⇒ λ n ⇒ case n return n' ⇒ P 0 n' of { + 0 ⇒ zz; + succ n', ihn ⇒ zs n' ihn + }; + succ m', ihm ⇒ λ n ⇒ case n return n' ⇒ P (succ m') n' of { + 0 ⇒ sz m' (ihm 0); + succ n' ⇒ ss m' n' (ihm n') + } + } + +def elim-pairω : + 0.(P : ℕ → ℕ → ★) → + ω.(P 0 0) → + ω.(ω.(n : ℕ) → ω.(P 0 n) → P 0 (succ n)) → + ω.(ω.(m : ℕ) → ω.(P m 0) → P (succ m) 0) → + ω.(ω.(m n : ℕ) → ω.(P m n) → P (succ m) (succ n)) → + ω.(m n : ℕ) → P m n = + λ P zz zs sz ss m ⇒ + caseω m return m' ⇒ ω.(n : ℕ) → P m' n of { + 0 ⇒ λ n ⇒ caseω n return n' ⇒ P 0 n' of { + 0 ⇒ zz; + succ n', ω.ihn ⇒ zs n' ihn + }; + succ m', ω.ihm ⇒ λ n ⇒ caseω n return n' ⇒ P (succ m') n' of { + 0 ⇒ sz m' (ihm 0); + succ n' ⇒ ss m' n' (ihm n') + } + } + + +def succ-boxω : [ω.ℕ] → [ω.ℕ] = + λ n ⇒ case n return [ω.ℕ] of { [n] ⇒ [succ n] } + +#[compile-scheme "(lambda (n) n)"] +def dup : ℕ → [ω.ℕ] = + λ n ⇒ case n return [ω.ℕ] of { + 0 ⇒ [0]; + succ _, n! ⇒ succ-boxω n! + } + +def0 dup-ok : (n : ℕ) → dup n ≡ [n] : [ω.ℕ] = + λ n ⇒ + case n return n' ⇒ dup n' ≡ [n'] : [ω.ℕ] of { + 0 ⇒ δ 𝑖 ⇒ [0]; + succ _, ih ⇒ δ 𝑖 ⇒ succ-boxω (ih @𝑖) + } + +def dup! : (n : ℕ) → Dup ℕ n = + dup.from-parts ℕ dup dup-ok + + +def drop : 0.(A : ★) → ℕ → A → A = + dup.to-drop ℕ dup + + +def natopω' : 0.(A : ★) → ω.(ω.ℕ → ω.ℕ → A) → ℕ → ℕ → A = + λ A f m n ⇒ + getω A (app2ω ℕ ℕ A f (dup m) (dup n)) + +def natopω = natopω' ℕ + +#[compile-scheme "(lambda% (m n) (+ m n))"] +def plus : ℕ → ℕ → ℕ = + λ m n ⇒ + case m return ℕ of { + zero ⇒ n; + succ _, p ⇒ succ p + } + +#[compile-scheme "(lambda% (m n) (* m n))"] +def timesω : ω.ℕ → ω.ℕ → ℕ = + λ m n ⇒ + case m return ℕ of { + zero ⇒ zero; + succ _, t ⇒ plus n t + } + +def times = natopω timesω + +def pred : ℕ → ℕ = λ n ⇒ case n return ℕ of { zero ⇒ zero; succ n ⇒ n } + +def pred-succ : ω.(n : ℕ) → pred (succ n) ≡ n : ℕ = + λ n ⇒ δ 𝑖 ⇒ n + +def succ-inj : 0.(m n : ℕ) → succ m ≡ succ n : ℕ → m ≡ n : ℕ = + λ m n eq ⇒ δ 𝑖 ⇒ pred (eq @𝑖) + +#[compile-scheme "(lambda% (m n) (max 0 (- m n)))"] +def minus : ℕ → ℕ → ℕ = + λ m n ⇒ + (case n return ℕ → ℕ of { + zero ⇒ λ m ⇒ m; + succ _, f ⇒ λ m ⇒ f (pred m) + }) m + + +def minω : ω.ℕ → ω.ℕ → ℕ = + elim-pairω (λ _ _ ⇒ ℕ) 0 (λ _ _ ⇒ 0) (λ _ _ ⇒ 0) (λ _ _ x ⇒ succ x) + +def min = natopω minω + + +def0 IsSucc : ℕ → ★ = + λ n ⇒ case n return ★ of { zero ⇒ False; succ _ ⇒ True } + +def is-succ? : ω.(n : ℕ) → Dec (IsSucc n) = + λ n ⇒ + caseω n return n' ⇒ Dec (IsSucc n') of { + zero ⇒ No (IsSucc zero) (λ v ⇒ v); + succ n ⇒ Yes (IsSucc (succ n)) 'true + } + +def zero-not-succ : 0.(m : ℕ) → Not (zero ≡ succ m : ℕ) = + λ m eq ⇒ coe (𝑖 ⇒ IsSucc (eq @𝑖)) @1 @0 'true + +def succ-not-zero : 0.(m : ℕ) → Not (succ m ≡ zero : ℕ) = + λ m eq ⇒ coe (𝑖 ⇒ IsSucc (eq @𝑖)) 'true + +def0 not-succ-self : (m : ℕ) → Not (m ≡ succ m : ℕ) = + λ m ⇒ + case m return m' ⇒ Not (m' ≡ succ m' : ℕ) of { + zero ⇒ zero-not-succ 0; + succ n, ω.ih ⇒ λ eq ⇒ ih (succ-inj n (succ n) eq) + } + + +def0 IsSuccOf : ℕ → ℕ → ★ = + λ n p ⇒ n ≡ succ p : ℕ + +def0 PredOf : ℕ → ★ = + λ n ⇒ Sub ℕ (IsSuccOf n) + +def0 no-pred0 : Not (PredOf 0) = + λ p ⇒ + case p return False of { (p, lt) ⇒ + zero-not-succ p (get0 (0 ≡ succ p : ℕ) lt) + } + +def pred? : (n : ℕ) → DecT (PredOf n) = + λ n ⇒ + case n return n' ⇒ DecT (PredOf n') of { + zero ⇒ NoT (PredOf zero) no-pred0; + succ n ⇒ YesT (PredOf (succ n)) (n, [δ _ ⇒ succ n]) + } + +namespace pred-of { + +def revive : (n : ℕ) → 0.(PredOf n) → PredOf n = + λ n hs ⇒ + let0 p = fst hs in + case n return n' ⇒ 0.(n' ≡ succ p : ℕ) → PredOf n' of { + zero ⇒ λ eq ⇒ void (PredOf zero) (zero-not-succ p eq); + succ p' ⇒ λ _ ⇒ (p', [δ _ ⇒ succ p']) + } (get0 (n ≡ succ p : ℕ) (snd hs)) + +def val : 0.(n : ℕ) → PredOf n → ℕ = + λ n ⇒ sub.val ℕ (IsSuccOf n) + +def0 proof : (n : ℕ) → (p : PredOf n) → n ≡ succ (fst p) : ℕ = + λ n ⇒ sub.proof ℕ (IsSuccOf n) + +} + + +def divmodω : ω.ℕ → ω.ℕ → ℕ × ℕ = + -- https://coq.inria.fr/doc/V8.18.0/stdlib/Coq.Init.Nat.html#divmod + letω divmod' : ℕ → ω.ℕ → ℕ → ℕ → ℕ × ℕ = + λ x ⇒ + case x return ω.ℕ → ℕ → ℕ → ℕ × ℕ of { + 0 ⇒ λ y q u ⇒ (q, u); + succ _, f' ⇒ λ y q u ⇒ + case u return ℕ × ℕ of { + 0 ⇒ f' y (succ q) y; + succ u' ⇒ f' y q u' + } + } in + λ x y ⇒ + caseω y return ℕ × ℕ of { + 0 ⇒ (0, 0); + succ y' ⇒ + case divmod' x y' 0 y' return ℕ × ℕ of { (d, m) ⇒ (d, minus y' m) } + } + +def divmod = natopω' (ℕ × ℕ) divmodω + +def divω : ω.ℕ → ω.ℕ → ℕ = λ x y ⇒ fst (divmodω x y) +def div = natopω divω + +def modω : ω.ℕ → ω.ℕ → ℕ = λ x y ⇒ snd (divmodω x y) +def mod = natopω modω + + +#[compile-scheme "(lambda% (m n) (if (= m n) Yes No))"] +def eq? : DecEq ℕ = + λ m n ⇒ + elim-pair (λ m n ⇒ Dec (m ≡ n : ℕ)) + (Yes (0 ≡ 0 : ℕ) (δ 𝑖 ⇒ 0)) + (λ n p ⇒ + dec.drop (0 ≡ n : ℕ) (Dec (0 ≡ succ n : ℕ)) p + (No (0 ≡ succ n : ℕ) (λ zs ⇒ zero-not-succ n zs))) + (λ m p ⇒ + dec.drop (m ≡ 0 : ℕ) (Dec (succ m ≡ 0 : ℕ)) p + (No (succ m ≡ 0 : ℕ) (λ sz ⇒ succ-not-zero m sz))) + (λ m n ⇒ + dec.elim (m ≡ n : ℕ) (λ _ ⇒ Dec (succ m ≡ succ n : ℕ)) + (λ yy ⇒ Yes (succ m ≡ succ n : ℕ) (δ 𝑖 ⇒ succ (yy @𝑖))) + (λ nn ⇒ No (succ m ≡ succ n : ℕ) (λ yy ⇒ nn (succ-inj m n yy)))) + m n + + +def0 Ordering : ★ = {lt, eq, gt} + +namespace ordering { + def from : 0.(A : ★) → ω.A → ω.A → ω.A → Ordering → A = + λ A lt eq gt o ⇒ + case o return A of { 'lt ⇒ lt; 'eq ⇒ eq; 'gt ⇒ gt } + + def drop : 0.(A : ★) → Ordering → A → A = + λ A o x ⇒ case o return A of { 'lt ⇒ x; 'eq ⇒ x; 'gt ⇒ x } + + def eq : Ordering → Ordering → Bool = + λ x y ⇒ + case x return Bool of { + 'lt ⇒ case y return Bool of { 'lt ⇒ 'true; 'eq ⇒ 'false; 'gt ⇒ 'false }; + 'eq ⇒ case y return Bool of { 'lt ⇒ 'false; 'eq ⇒ 'true; 'gt ⇒ 'false }; + 'gt ⇒ case y return Bool of { 'lt ⇒ 'false; 'eq ⇒ 'false; 'gt ⇒ 'true }; + } +} + +def compare : ℕ → ℕ → Ordering = + elim-pair (λ _ _ ⇒ Ordering) + 'eq + (λ _ o ⇒ ordering.drop Ordering o 'lt) + (λ _ o ⇒ ordering.drop Ordering o 'gt) + (λ _ _ x ⇒ x) + +def lt : ω.ℕ → ω.ℕ → Bool = λ m n ⇒ ordering.eq (compare m n) 'lt +def eq : ω.ℕ → ω.ℕ → Bool = λ m n ⇒ ordering.eq (compare m n) 'eq +def gt : ω.ℕ → ω.ℕ → Bool = λ m n ⇒ ordering.eq (compare m n) 'gt +def ne : ω.ℕ → ω.ℕ → Bool = λ m n ⇒ bool.not (eq m n) +def le : ω.ℕ → ω.ℕ → Bool = λ m n ⇒ bool.not (gt m n) +def ge : ω.ℕ → ω.ℕ → Bool = λ m n ⇒ bool.not (lt m n) + + +def0 plus-zero : (m : ℕ) → m ≡ plus m 0 : ℕ = + λ m ⇒ + case m return m' ⇒ m' ≡ plus m' 0 : ℕ of { + zero ⇒ δ _ ⇒ 0; + succ m', ih ⇒ δ 𝑖 ⇒ succ (ih @𝑖) + } + +def0 plus-succ : (m n : ℕ) → succ (plus m n) ≡ plus m (succ n) : ℕ = + λ m n ⇒ + case m return m' ⇒ succ (plus m' n) ≡ plus m' (succ n) : ℕ of { + zero ⇒ δ _ ⇒ succ n; + succ _, ih ⇒ δ 𝑖 ⇒ succ (ih @𝑖) + } + +def0 times-zero : (m : ℕ) → 0 ≡ timesω m 0 : ℕ = + λ m ⇒ + case m return m' ⇒ 0 ≡ timesω m' 0 : ℕ of { + zero ⇒ δ _ ⇒ zero; + succ m', ih ⇒ ih + } + +} diff --git a/stdlib/pair.quox b/stdlib/pair.quox new file mode 100644 index 0000000..9f93009 --- /dev/null +++ b/stdlib/pair.quox @@ -0,0 +1,67 @@ +namespace pair { + +def0 Σ : (A : ★) → (A → ★) → ★ = λ A B ⇒ (x : A) × B x + +def uncurry : + 0.(A : ★) → 0.(B : A → ★) → 0.(C : (x : A) → (B x) → ★) → + (f : (x : A) → (y : B x) → C x y) → + (p : Σ A B) → C (fst p) (snd p) = + λ A B C f p ⇒ + case p return p' ⇒ C (fst p') (snd p') of { (x, y) ⇒ f x y } + +def uncurry' : + 0.(A B C : ★) → (A → B → C) → (A × B) → C = + λ A B C ⇒ uncurry A (λ _ ⇒ B) (λ _ _ ⇒ C) + +def curry : + 0.(A : ★) → 0.(B : A → ★) → 0.(C : (Σ A B) → ★) → + (f : (p : Σ A B) → C p) → (x : A) → (y : B x) → C (x, y) = + λ A B C f x y ⇒ f (x, y) + +def curry' : + 0.(A B C : ★) → (A × B → C) → A → B → C = + λ A B C ⇒ curry A (λ _ ⇒ B) (λ _ ⇒ C) + +def0 fst-snd : + (A : ★) → (B : A → ★) → + (p : Σ A B) → p ≡ (fst p, snd p) : Σ A B = + λ A B p ⇒ δ 𝑖 ⇒ p -- η + +def0 fst-eq : + (A : ★) → (B : A → ★) → + (p q : Σ A B) → p ≡ q : Σ A B → fst p ≡ fst q : A = + λ A B p q eq ⇒ δ 𝑖 ⇒ fst (eq @𝑖) + +def0 snd-eq : + (A : ★) → (B : A → ★) → + (p q : Σ A B) → (eq : p ≡ q : Σ A B) → + Eq (𝑖 ⇒ B (fst-eq A B p q eq @𝑖)) (snd p) (snd q) = + λ A B p q eq ⇒ δ 𝑖 ⇒ snd (eq @𝑖) + +def0 pair-eq : + (A : ★) → (B : A → ★) → + (x0 x1 : A) → (y0 : B x0) → (y1 : B x1) → + (xx : x0 ≡ x1 : A) → (yy : Eq (𝑖 ⇒ B (xx @𝑖)) y0 y1) → + (x0, y0) ≡ (x1, y1) : ((x : A) × B x) = + λ A B x0 x1 y0 y1 xx yy ⇒ δ 𝑖 ⇒ (xx @𝑖, yy @𝑖) + +def map : + 0.(A A' : ★) → + 0.(B : A → ★) → 0.(B' : A' → ★) → + (f : A → A') → (g : 0.(x : A) → (B x) → B' (f x)) → + Σ A B → Σ A' B' = + λ A A' B B' f g p ⇒ + case p return Σ A' B' of { (x, y) ⇒ (f x, g x y) } + +def map' : 0.(A A' B B' : ★) → (A → A') → (B → B') → (A × B) → A' × B' = + λ A A' B B' f g ⇒ map A A' (λ _ ⇒ B) (λ _ ⇒ B') f (λ _ ⇒ g) + +def map-fst : 0.(A A' B : ★) → (A → A') → A × B → A' × B = + λ A A' B f ⇒ map' A A' B B f (λ x ⇒ x) + +def map-snd : 0.(A B B' : ★) → (B → B') → A × B → A × B' = + λ A B B' f ⇒ map' A A B B' (λ x ⇒ x) f + +} + +def0 Σ = pair.Σ diff --git a/stdlib/qty.quox b/stdlib/qty.quox new file mode 100644 index 0000000..673b4d4 --- /dev/null +++ b/stdlib/qty.quox @@ -0,0 +1,156 @@ +load "misc.quox" + +def0 Qty : ★ = {"zero", one, any} + +def0 NzQty : ★ = {one, any} + +def nz : NzQty → Qty = + λ π ⇒ case π return Qty of { 'one ⇒ 'one; 'any ⇒ 'any } + +def dup! : (π : Qty) → Dup Qty π = + λ π ⇒ case π return π' ⇒ Dup Qty π' of { + 'zero ⇒ (['zero], [δ _ ⇒ ['zero]]); + 'one ⇒ (['one], [δ _ ⇒ ['one]]); + 'any ⇒ (['any], [δ _ ⇒ ['any]]); + } + +def dup : (π : Qty) → [ω.Qty] = + λ π ⇒ dup.valω Qty π (dup! π) + +def drop : 0.(A : ★) → Qty → A → A = + λ A π x ⇒ case π return A of { + 'zero ⇒ x; + 'one ⇒ x; + 'any ⇒ x; + } + +def if-zero : 0.(A : ★) → Qty → ω.A → ω.A → A = + λ A π z nz ⇒ + case π return A of { 'zero ⇒ z; 'one ⇒ nz; 'any ⇒ nz } + +def plus : Qty → ω.Qty → Qty = + λ π ρ ⇒ + case π return Qty of { + 'zero ⇒ ρ; + 'one ⇒ if-zero Qty ρ 'one 'any; + 'any ⇒ 'any; + } + +def times : Qty → ω.Qty → Qty = + λ π ρ ⇒ + case π return Qty of { + 'zero ⇒ 'zero; + 'one ⇒ ρ; + 'any ⇒ if-zero Qty ρ 'zero 'any; + } + +def0 FUN : Qty → (A : ★) → (A → ★) → ★ = + λ π A B ⇒ + case π return ★ of { + 'zero ⇒ 0.(x : A) → B x; + 'one ⇒ 1.(x : A) → B x; + 'any ⇒ ω.(x : A) → B x; + } + +def0 FUN-NZ : NzQty → (A : ★) → (A → ★) → ★ = + λ π A B ⇒ + case π return ★ of { + 'one ⇒ 1.(x : A) → B x; + 'any ⇒ ω.(x : A) → B x; + } + +def0 Fun : Qty → ★ → ★ → ★ = + λ π A B ⇒ FUN π A (λ _ ⇒ B) + +def0 FunNz : NzQty → ★ → ★ → ★ = + λ π A B ⇒ FUN-NZ π A (λ _ ⇒ B) + +def0 Box : Qty → ★ → ★ = + λ π A ⇒ + case π return ★ of { + 'zero ⇒ [0.A]; + 'one ⇒ [1.A]; + 'any ⇒ [ω.A]; + } + +def0 BoxNz : NzQty → ★ → ★ = + λ π A ⇒ + case π return ★ of { + 'one ⇒ [1.A]; + 'any ⇒ [ω.A]; + } + +def0 unbox : (π : Qty) → (A : ★) → Box π A → A = + λ π A ⇒ + case π return π' ⇒ Box π' A → A of { + 'zero ⇒ λ x ⇒ case x return A of { [x] ⇒ x }; + 'one ⇒ λ x ⇒ case x return A of { [x] ⇒ x }; + 'any ⇒ λ x ⇒ case x return A of { [x] ⇒ x }; + } + +def0 unbox0 = unbox 'zero +def0 unbox1 = unbox 'one +def0 unboxω = unbox 'any + +def0 unbox-nz : (π : NzQty) → (A : ★) → BoxNz π A → A = + λ π A ⇒ + case π return π' ⇒ BoxNz π' A → A of { + 'one ⇒ λ x ⇒ case x return A of { [x] ⇒ x }; + 'any ⇒ λ x ⇒ case x return A of { [x] ⇒ x }; + } + +def0 unbox-nz1 = unbox-nz 'one +def0 unbox-nzω = unbox-nz 'any + +def apply : (π : Qty) → 0.(A : ★) → 0.(B : A → ★) → + FUN π A B → (x : Box π A) → B (unbox π A x) = + λ π A B ⇒ + case π + return π' ⇒ FUN π' A B → (x : Box π' A) → B (unbox π' A x) + of { + 'zero ⇒ λ f x ⇒ case x return x' ⇒ B (unbox0 A x') of { [x] ⇒ f x }; + 'one ⇒ λ f x ⇒ case x return x' ⇒ B (unbox1 A x') of { [x] ⇒ f x }; + 'any ⇒ λ f x ⇒ case x return x' ⇒ B (unboxω A x') of { [x] ⇒ f x }; + } + +def apply' : (π : Qty) → 0.(A B : ★) → Fun π A B → (x : Box π A) → B = + λ π A B ⇒ apply π A (λ _ ⇒ B) + +def apply-nz : (π : NzQty) → 0.(A : ★) → 0.(B : A → ★) → + FUN-NZ π A B → (x : BoxNz π A) → B (unbox-nz π A x) = + λ π A B ⇒ + case π + return π' ⇒ FUN-NZ π' A B → (x : BoxNz π' A) → B (unbox-nz π' A x) + of { + 'one ⇒ λ f x ⇒ case x return x' ⇒ B (unbox-nz1 A x') of { [x] ⇒ f x }; + 'any ⇒ λ f x ⇒ case x return x' ⇒ B (unbox-nzω A x') of { [x] ⇒ f x }; + } + +def apply-nz' : (π : NzQty) → 0.(A B : ★) → FunNz π A B → (x : BoxNz π A) → B = + λ π A B ⇒ apply-nz π A (λ _ ⇒ B) + +def lam : (π : Qty) → 0.(A : ★) → 0.(B : A → ★) → + ((x : Box π A) → B (unbox π A x)) → FUN π A B = + λ π A B ⇒ + case π + return π' ⇒ ((x : Box π' A) → B (unbox π' A x)) → FUN π' A B of { + 'zero ⇒ λ f x ⇒ f [x]; + 'one ⇒ λ f x ⇒ f [x]; + 'any ⇒ λ f x ⇒ f [x]; + } + +def lam' : (π : Qty) → 0.(A B : ★) → (Box π A → B) → Fun π A B = + λ π A B ⇒ lam π A (λ _ ⇒ B) + +def lam-nz : (π : NzQty) → 0.(A : ★) → 0.(B : A → ★) → + ((x : BoxNz π A) → B (unbox-nz π A x)) → FUN-NZ π A B = + λ π A B ⇒ + case π + return π' ⇒ ((x : BoxNz π' A) → B (unbox-nz π' A x)) → FUN-NZ π' A B of { + 'one ⇒ λ f x ⇒ f [x]; + 'any ⇒ λ f x ⇒ f [x]; + } + +def lam-nz' : (π : NzQty) → 0.(A B : ★) → (BoxNz π A → B) → FunNz π A B = + λ π A B ⇒ lam-nz π A (λ _ ⇒ B) + diff --git a/stdlib/string.quox b/stdlib/string.quox new file mode 100644 index 0000000..f59c799 --- /dev/null +++ b/stdlib/string.quox @@ -0,0 +1,144 @@ +load "bool.quox" +load "list.quox" +load "maybe.quox" +load "either.quox" + +namespace char { + +postulate0 Char : ★ + +#[compile-scheme "(lambda (c) c)"] +postulate dup : Char → [ω.Char] + +#[compile-scheme "char->integer"] +postulate to-ℕ : Char → ℕ + +#[compile-scheme "integer->char"] +postulate from-ℕ : ℕ → Char + +def space = from-ℕ 0x20 +def tab = from-ℕ 0x09 +def newline = from-ℕ 0x0a + +def test-via-ℕ : (ω.ℕ → ω.ℕ → Bool) → (ω.Char → ω.Char → Bool) = + λ p c d ⇒ p (to-ℕ c) (to-ℕ d) +def lt = test-via-ℕ nat.lt +def eq = test-via-ℕ nat.eq +def gt = test-via-ℕ nat.gt +def le = test-via-ℕ nat.le +def ne = test-via-ℕ nat.ne +def ge = test-via-ℕ nat.ge + +postulate0 eq-iff-nat : (c d : Char) → Iff (c ≡ d : Char) (to-ℕ c ≡ to-ℕ d : ℕ) + +def eq? : DecEq Char = + λ c d ⇒ + let0 Ty = (c ≡ d : Char) ∷ ★ in + dec.elim (to-ℕ c ≡ to-ℕ d : ℕ) (λ _ ⇒ Dec Ty) + (λ y ⇒ Yes Ty ((snd (eq-iff-nat c d)) y)) + (λ n ⇒ No Ty (λ y ⇒ n ((fst (eq-iff-nat c d)) y))) + (nat.eq? (to-ℕ c) (to-ℕ d)) + +def ws? : ω.Char → Bool = + λ c ⇒ bool.or (bool.or (eq c space) (eq c tab)) (eq c newline) + +def digit? : ω.Char → Bool = + λ c ⇒ bool.and (ge c (from-ℕ 0x30)) (le c (from-ℕ 0x39)) + +def digit-val : Char → Maybe ℕ = + λ c ⇒ case dup c return Maybe ℕ of { [c] ⇒ + bool.if (Maybe ℕ) (digit? c) + (Just ℕ (nat.minus (to-ℕ c) 0x30)) + (Nothing ℕ) + } + +} + +def0 Char = char.Char + +namespace string { + +#[compile-scheme "string->list"] +postulate to-scheme-list : String → list.SchemeList Char + +def to-list : String → List Char = + λ str ⇒ list.from-scheme Char (to-scheme-list str) + +#[compile-scheme "list->string"] +postulate from-scheme-list : list.SchemeList Char → String + +def from-list : List Char → String = + λ cs ⇒ from-scheme-list (list.to-scheme Char cs) + +def foldl : 0.(A : ★) → A → ω.(A → Char → A) → String → A = + λ A z f str ⇒ list.foldl Char A z f (to-list str) + +def foldlω : 0.(A : ★) → ω.A → ω.(ω.A → ω.Char → A) → ω.String → A = + λ A z f str ⇒ list.foldlω Char A z f (to-list str) + +def split : ω.(ω.Char → Bool) → ω.String → List String = + λ p str ⇒ + list.map (List Char) String from-list + (list.split Char p (to-list str)) + +def break : ω.(ω.Char → Bool) → ω.String → String × String = + λ p str ⇒ + letω pair = list.break Char p (to-list str) in + (from-list (fst pair), from-list (snd pair)) + +def reverse : String → String = + λ str ⇒ from-list (list.reverse Char (to-list str)) + +#[compile-scheme "(lambda% (y n a b) (if (string=? a b) y n))"] +postulate eq' : 0.(A : ★) → A → A → ω.String → ω.String → A +def eq : ω.String → ω.String → Bool = eq' Bool 'true 'false + +def null : ω.String → Bool = eq "" +def not-null : ω.String → Bool = λ s ⇒ bool.not (null s) + +#[compile-scheme "(lambda (str) str)"] +postulate dup : String → [ω.String] + +postulate0 dup-ok : (str : String) → dup str ≡ [str] : [ω.String] + +def dup! : (str : String) → Dup String str = + dup-from-parts String dup dup-ok + + +def to-ℕ : String → Maybe ℕ = + letω add-digit : Maybe ℕ → ℕ → Maybe ℕ = + maybe.fold ℕ (ℕ → Maybe ℕ) (λ d ⇒ Just ℕ d) + (λ n d ⇒ Just ℕ (nat.plus (nat.times 10 n) d)) in + letω drop : Maybe ℕ → Maybe ℕ = + maybe.fold ℕ (Maybe ℕ) (Nothing ℕ) + (λ n ⇒ nat.drop (Maybe ℕ) n (Nothing ℕ)) in + letω add-digit-c : Maybe ℕ → Char → Maybe ℕ = + λ acc c ⇒ + maybe.fold ℕ (Maybe ℕ → Maybe ℕ) drop (λ n acc ⇒ add-digit acc n) + (char.digit-val c) acc in + λ str ⇒ + case dup str return Maybe ℕ of { [str] ⇒ + bool.if (Maybe ℕ) (not-null str) + (foldl (Maybe ℕ) (Just ℕ 0) add-digit-c str) + (Nothing ℕ) + } + +def to-ℕ-or-0 : String → ℕ = + λ str ⇒ maybe.fold ℕ ℕ 0 (λ x ⇒ x) (to-ℕ str) + + +#[compile-scheme + "(lambda% (yes no str) + (let [(len (string-length str))] + (if (= len 0) + no + (let [(first (string-ref str 0)) + (rest (substring str 1 len))] + (% yes first rest)))))"] +postulate uncons' : 0.(A : ★) → ω.A → ω.(Char → String → A) → String → A + +def uncons : String → Maybe (Char × String) = + let0 Pair : ★ = Char × String in + uncons' (Maybe Pair) (Nothing Pair) (λ c s ⇒ Just Pair (c, s)) + +} diff --git a/stdlib/sub.quox b/stdlib/sub.quox new file mode 100644 index 0000000..61128a4 --- /dev/null +++ b/stdlib/sub.quox @@ -0,0 +1,159 @@ +load "misc.quox" +load "either.quox" +load "maybe.quox" + +namespace sub { + +def0 Irr : (A : ★) → ★ = + λ A ⇒ (x y : A) → x ≡ y : A + +def0 Irr1 : (A : ★) → (A → ★) → ★ = + λ A P ⇒ (x : A) → Irr (P x) + +def0 Irr2 : (A B : ★) → (A → B → ★) → ★ = + λ A B P ⇒ (x : A) → (y : B) → Irr (P x y) + +def0 Sub : (A : ★) → (P : A → ★) → ★ = + λ A P ⇒ (x : A) × [0. P x] + + +def sub : 0.(A : ★) → 0.(P : A → ★) → (x : A) → 0.(P x) → Sub A P = + λ A P x p ⇒ (x, [p]) + +def sub? : 0.(A : ★) → 0.(P : A → ★) → (ω.(x : A) → Dec (P x)) → + ω.A → Maybe (Sub A P) = + λ A P p? x ⇒ + dec.elim (P x) (λ _ ⇒ Maybe (Sub A P)) + (λ y ⇒ Just (Sub A P) (x, [y])) + (λ n ⇒ Nothing (Sub A P)) + (p? x) + + +def val : 0.(A : ★) → 0.(P : A → ★) → Sub A P → A = + λ A P s ⇒ case s return A of { (x, p) ⇒ drop0 (P x) A p x } + +def0 proof : 0.(A : ★) → 0.(P : A → ★) → (s : Sub A P) → P (fst s) = + λ A P s ⇒ get0 (P (fst s)) (snd s) + +{- + +def0 proof' : 0.(A : ★) → 0.(P : A → ★) → (s : Sub A P) → P (fst s) = + λ A P s ⇒ get0 (P (fst s)) (snd s) + +def0 val-fst : (A : ★) → (P : A → ★) → + (s : Sub A P) → val A P s ≡ fst s : A = + λ A P s ⇒ + case s return s' ⇒ val A P s' ≡ fst s' : A of { + (x, p) ⇒ drop0-eq (P x) A p x + } + +def0 proof : 0.(A : ★) → 0.(P : A → ★) → (s : Sub A P) → P (val A P s) = + λ A P s ⇒ coe (𝑖 ⇒ P (val-fst A P s @𝑖)) @1 @0 (proof' A P s) + +postulate0 proof-snd' : (A : ★) → (P : A → ★) → (s : Sub A P) → + Eq (𝑖 ⇒ P (val-fst A P s @𝑖)) (proof A P s) (proof' A P s) + +postulate0 proof-snd : (A : ★) → (P : A → ★) → (s : Sub A P) → + Eq (𝑖 ⇒ [0.P (val-fst A P s @𝑖)]) [proof A P s] (snd s) + +#![log (all, 10) (equal, 100)] +def0 val-proof-eq : (A : ★) → (P : A → ★) → (s : Sub A P) → + sub A P (val A P s) (proof A P s) ≡ s : Sub A P = + λ A P s ⇒ + case s return s' ⇒ sub A P (val A P s') (proof A P s') ≡ s' : Sub A P + of { (xxxxx, p) ⇒ + case p + return p' ⇒ + sub A P (val A P (xxxxx, p')) (proof A P (xxxxx, p')) ≡ (xxxxx, p') : Sub A P + of { [p0] ⇒ + δ 𝑖 ⇒ (val-fst A P (xxxxx, [p0]) @𝑖, proof-snd A P (xxxxx, [p0]) @𝑖) + } + } +#![log pop] + +def elim' : 0.(A : ★) → 0.(P : A → ★) → + 0.(R : (x : A) → P x → ★) → + (1.(x : A) → 0.(p : P x) → R x p) → + (s : Sub A P) → R (val A P s) (proof A P s) = + λ A P R p s ⇒ p (val A P s) (proof A P s) + +{- +def elim : 0.(A : ★) → 0.(P : A → ★) → + 0.(R : Sub A P → ★) → + (1.(x : A) → 0.(p : P x) → R (x, [p])) → + (s : Sub A P) → R s = + λ A P R p s ⇒ p (val A P s) (proof A P s) +-} + +-} + + + +def0 SubDup : (A : ★) → (P : A → ★) → Sub A P → ★ = + λ A P s ⇒ Dup A (fst s) + -- (x! : [ω.A]) × [0. x! ≡ [fst s] : [ω.A]] + +def subdup-to-dup : + 0.(A : ★) → 0.(P : A → ★) → + 0.(s : Sub A P) → SubDup A P s → Dup (Sub A P) s = + λ A P s sd ⇒ + case sd return Dup (Sub A P) s of { (sω, ss0) ⇒ + case ss0 return Dup (Sub A P) s of { [ss0] ⇒ + case sω + return sω' ⇒ 0.(sω' ≡ [fst s] : [ω.A]) → Dup (Sub A P) s + of { [s!] ⇒ λ ss' ⇒ + let ω.p : [0.P (fst s)] = revive0 (P (fst s)) (snd s); + 0.ss : s! ≡ fst s : A = boxω-inj A s! (fst s) ss' in + ([(s!, coe (𝑖 ⇒ [0.P (ss @𝑖)]) @1 @0 p)], + [δ 𝑗 ⇒ [(ss @𝑗, coe (𝑖 ⇒ [0.P (ss @𝑖)]) @1 @𝑗 p)]]) + } ss0 + }} + +def subdup : 0.(A : ★) → 0.(P : A → ★) → + ((x : A) → Dup A x) → + (s : Sub A P) → SubDup A P s = + λ A P dup s ⇒ + case s return s' ⇒ SubDup A P s' of { (x, p) ⇒ + drop0 (P x) (Dup A x) p (dup x) + } + +def dup! : 0.(A : ★) → 0.(P : A → ★) → ((x : A) → Dup A x) → + (s : Sub A P) → Dup (Sub A P) s = + λ A P dupA s ⇒ subdup-to-dup A P s (subdup A P dupA s) + + +def0 irr1-het : (A : ★) → (P : A → ★) → Irr1 A P → + (x y : A) → (p : P x) → (q : P y) → + (xy : x ≡ y : A) → Eq (𝑖 ⇒ P (xy @𝑖)) p q = + λ A P pirr x y p q xy ⇒ δ 𝑖 ⇒ + pirr (xy @𝑖) (coe (𝑗 ⇒ P (xy @𝑗)) @0 @𝑖 p) (coe (𝑗 ⇒ P (xy @𝑗)) @1 @𝑖 q) @𝑖 + +def0 irr2-het : (A B : ★) → (P : A → B → ★) → Irr2 A B P → + (x₀ x₁ : A) → (y₀ y₁ : B) → (p : P x₀ y₀) → (q : P x₁ y₁) → + (xx : x₀ ≡ x₁ : A) → (yy : y₀ ≡ y₁ : B) → + Eq (𝑖 ⇒ P (xx @𝑖) (yy @𝑖)) p q = + λ A B P pirr x₀ x₁ y₀ y₁ p q xx yy ⇒ δ 𝑖 ⇒ + pirr (xx @𝑖) (yy @𝑖) + (coe (𝑗 ⇒ P (xx @𝑗) (yy @𝑗)) @0 @𝑖 p) + (coe (𝑗 ⇒ P (xx @𝑗) (yy @𝑗)) @1 @𝑖 q) @𝑖 + + +def0 sub-eq : (A : ★) → (P : A → ★) → Irr1 A P → + (x y : Sub A P) → fst x ≡ fst y : A → x ≡ y : Sub A P = + λ A P pirr x y xy0 ⇒ δ 𝑖 ⇒ + let proof = proof A P in + (xy0 @𝑖, [irr1-het A P pirr (fst x) (fst y) (proof x) (proof y) xy0 @𝑖]) + + +def eq? : 0.(A : ★) → 0.(P : A → ★) → 0.(Irr1 A P) → + DecEq A → DecEq (Sub A P) = + λ A P pirr aeq? s t ⇒ + let0 EQ : ★ = s ≡ t : Sub A P in + dec.elim (fst s ≡ fst t : A) (λ _ ⇒ Dec EQ) + (λ y ⇒ Yes EQ (sub-eq A P pirr s t y)) + (λ n ⇒ No EQ (λ eq ⇒ n (δ 𝑖 ⇒ fst (eq @𝑖)))) + (aeq? (fst s) (fst t)) + +} + +def0 Sub = sub.Sub diff --git a/syntax.ebnf b/syntax.ebnf index 3325b28..1296129 100644 --- a/syntax.ebnf +++ b/syntax.ebnf @@ -24,34 +24,43 @@ dim arg = "@", dim. pat var = NAME | "_". -term = lambda | case | pi | sigma | ann. +term = lambda | pi | sigma | ann | let. lambda = ("λ" | "δ"), {pat var}+, "⇒", term. -case = case intro, term, "return", case return, "of", case body. -case intro = "case0" | "case1" | "caseω" | "case", qty, ".". +case = case intro, term, "return", case return, "of", case body. +(* default qty is 1 *) +case intro = "case0" | "case1" | "caseω" | "case", [qty, "."]. case return = [pat var, "⇒"], term. case body = "{", {pattern, "⇒", term / ";"}, [";"], "}". pattern = "zero" | "0" - | "succ", pat var, [",", qty, ".", pat var] + | "succ", pat var, [",", [qty, "."], pat var] + (* default qty for IH is 1 *) | TAG | "[", pat var, "]" | "(", pat var, ",", pat var, ")". -pi = qty, ".", (binder | term arg), "→", term. +(* default qty is 1 *) +pi = [qty, "."], (binder | term arg), "→", term. binder = "(", {NAME}+, ":", term, ")". sigma = (binder | ann), "×", (sigma | ann). ann = infix eq, ["∷", term]. +bare let binder = pat var, "=", term. +qty let binder = [qty, "."], bare let binder. + +let = ("let0" | "let1" | "letω"), {bare let binder / ";"}+, "in", term + | "let", {qty let binder / ";"}+, "in", term. + infix eq = app term, ["≡", term, ":", app term]. (* dependent is below *) -app term = coe | comp | split universe | dep eq | succ | normal app. +app term = coe | comp | split universe | dep eq | special app | normal app. split universe = "★", NAT. dep eq = "Eq", type line, term arg, term arg. -succ = "succ", term arg. +special app = ("fst" | "snd" | "succ"), {term arg}+. normal app = term arg, {term arg | dim arg}. (* direction defaults to @0 @1 *) @@ -73,4 +82,5 @@ term arg = UNIVERSE | "★", SUPER | "zero" | NAT | QNAME, displacement - | "(", {term / ","}+, [","], ")". + | "(", {term / ","}+, [","], ")" + | case. diff --git a/tests/AstExtra.idr b/tests/AstExtra.idr index 2528d9a..9dfb70a 100644 --- a/tests/AstExtra.idr +++ b/tests/AstExtra.idr @@ -4,7 +4,7 @@ import Quox.Syntax import Quox.Parser.Syntax import Quox.Typing.Context -prefix 9 ^ +export prefix 9 ^ public export (^) : (Loc -> a) -> a (^) a = a noLoc @@ -24,10 +24,24 @@ anys : {n : Nat} -> QContext n anys {n = 0} = [<] anys {n = S n} = anys :< Any +public export +locals : Context (Term d) n -> Context (LocalVar d) n +locals = map $ \t => MkLocal t Nothing + public export ctx, ctx01 : {n : Nat} -> Context (\n => (BindName, Term 0 n)) n -> TyContext 0 n ctx tel = let (ns, ts) = unzip tel in - MkTyContext new [<] ts ns anys + MkTyContext new [<] (locals ts) ns anys ctx01 tel = let (ns, ts) = unzip tel in - MkTyContext ZeroIsOne [<] ts ns anys + MkTyContext ZeroIsOne [<] (locals ts) ns anys + +export +mkDef : GQty -> Term 0 0 -> Term 0 0 -> Definition +mkDef q ty tm = Definition.mkDef q ty tm Nothing False noLoc +%hide Definition.mkDef + +export +mkPostulate : GQty -> Term 0 0 -> Definition +mkPostulate q ty = Definition.mkPostulate q ty Nothing False noLoc +%hide Definition.mkPostulate diff --git a/tests/Tests.idr b/tests/Tests.idr index 7d87a97..5159893 100644 --- a/tests/Tests.idr +++ b/tests/Tests.idr @@ -2,6 +2,7 @@ module Tests import TAP import Tests.DimEq +import Tests.FreeVars import Tests.Reduce import Tests.Equal import Tests.Typechecker @@ -15,6 +16,7 @@ import System allTests : List Test allTests = [ DimEq.tests, + FreeVars.tests, Reduce.tests, Equal.tests, Typechecker.tests, diff --git a/tests/Tests/DimEq.idr b/tests/Tests/DimEq.idr index 7f0a847..c48729e 100644 --- a/tests/Tests/DimEq.idr +++ b/tests/Tests/DimEq.idr @@ -30,13 +30,13 @@ testPrettyD ds eqs str {label} = private testWf : BContext d -> DimEq d -> Test testWf ds eqs = - test (prettySquash (prettyDimEq_ ds) Unicode eqs ++ "⊢ ✓") $ + test (prettySquash (prettyDimEq_ ds) Unicode eqs ++ " ⊢ ✓") $ unless (wf eqs) $ Left () private testNwf : BContext d -> DimEq d -> Test testNwf ds eqs = - test (prettySquash (prettyDimEq_ ds) Unicode eqs ++ "⊢ ✗") $ + test (prettySquash (prettyDimEq_ ds) Unicode eqs ++ " ⊢ ✗") $ when (wf eqs) $ Left () @@ -97,7 +97,7 @@ tests = "dimension constraints" :- [ testPrettyD iijj ZeroIsOne "𝑖, 𝑗, 0 = 1", testPrettyD [<] new "" {label = "[empty output from empty context]"}, testPrettyD ii new "𝑖", - testPrettyD iijj (fromGround [< Zero, One]) + testPrettyD iijj (fromGround iijj [< Zero, One]) "𝑖, 𝑗, 𝑖 = 0, 𝑗 = 1", testPrettyD iijj (C [< Just (^K Zero), Nothing]) "𝑖, 𝑗, 𝑖 = 0", diff --git a/tests/Tests/Equal.idr b/tests/Tests/Equal.idr index 7756528..efd1b33 100644 --- a/tests/Tests/Equal.idr +++ b/tests/Tests/Equal.idr @@ -2,6 +2,7 @@ module Tests.Equal import Quox.Equal import Quox.Typechecker +import Control.Monad.ST import public TypingImpls import TAP import Quox.EffExtra @@ -10,35 +11,37 @@ import AstExtra defGlobals : Definitions defGlobals = fromList - [("A", ^mkPostulate gzero (^TYPE 0)), - ("B", ^mkPostulate gzero (^TYPE 0)), - ("a", ^mkPostulate gany (^FT "A" 0)), - ("a'", ^mkPostulate gany (^FT "A" 0)), - ("b", ^mkPostulate gany (^FT "B" 0)), - ("f", ^mkPostulate gany (^Arr One (^FT "A" 0) (^FT "A" 0))), - ("id", ^mkDef gany (^Arr One (^FT "A" 0) (^FT "A" 0)) (^LamY "x" (^BVT 0))), - ("eq-AB", ^mkPostulate gzero (^Eq0 (^TYPE 0) (^FT "A" 0) (^FT "B" 0))), - ("two", ^mkDef gany (^Nat) (^Succ (^Succ (^Zero))))] + [("A", mkPostulate GZero (^TYPE 0)), + ("B", mkPostulate GZero (^TYPE 0)), + ("a", mkPostulate GAny (^FT "A" 0)), + ("a'", mkPostulate GAny (^FT "A" 0)), + ("b", mkPostulate GAny (^FT "B" 0)), + ("f", mkPostulate GAny (^Arr One (^FT "A" 0) (^FT "A" 0))), + ("id", mkDef GAny (^Arr One (^FT "A" 0) (^FT "A" 0)) (^LamY "x" (^BVT 0))), + ("eq-AB", mkPostulate GZero (^Eq0 (^TYPE 0) (^FT "A" 0) (^FT "B" 0))), + ("two", mkDef GAny (^NAT) (^Succ (^Succ (^Zero))))] -parameters (label : String) (act : Equal ()) +parameters (label : String) (act : Eff Equal ()) {default defGlobals globals : Definitions} testEq : Test testEq = test label $ runEqual globals act testNeq : Test - testNeq = testThrows label (const True) $ runTC globals act $> "()" + testNeq = testThrows label (const True) $ runTC globals act $> "ok" parameters (ctx : TyContext d n) - subT, equalT : Term d n -> Term d n -> Term d n -> TC () - subT ty s t = lift $ Term.sub noLoc ctx ty s t - equalT ty s t = lift $ Term.equal noLoc ctx ty s t - equalTy : Term d n -> Term d n -> TC () + subT, equalT : {default SOne sg : SQty} -> + Term d n -> Term d n -> Term d n -> Eff TC () + subT ty s t {sg} = lift $ Term.sub noLoc ctx sg ty s t + equalT ty s t {sg} = lift $ Term.equal noLoc ctx sg ty s t + equalTy : Term d n -> Term d n -> Eff TC () equalTy s t = lift $ Term.equalType noLoc ctx s t - subE, equalE : Elim d n -> Elim d n -> TC () - subE e f = lift $ Elim.sub noLoc ctx e f - equalE e f = lift $ Elim.equal noLoc ctx e f + subE, equalE : {default SOne sg : SQty} -> + Elim d n -> Elim d n -> Eff TC () + subE e f {sg} = lift $ Elim.sub noLoc ctx sg e f + equalE e f {sg} = lift $ Elim.equal noLoc ctx sg e f export @@ -46,6 +49,7 @@ tests : Test tests = "equality & subtyping" :- [ note #""s{t,…}" for term substs; "s‹p,…›" for dim substs"#, note #""0=1 ⊢ 𝒥" means that 𝒥 holds in an inconsistent dim context"#, + note "binds before ∥ are globals, after it are BVs", "universes" :- [ testEq "★₀ = ★₀" $ @@ -151,7 +155,7 @@ tests = "equality & subtyping" :- [ let tm = ^Eq0 (^TYPE 1) (^TYPE 0) (^TYPE 0) in equalT empty (^TYPE 2) tm tm, testEq "A ≔ ★₁ ⊢ (★₀ ≡ ★₀ : ★₁) = (★₀ ≡ ★₀ : A)" - {globals = fromList [("A", ^mkDef gzero (^TYPE 2) (^TYPE 1))]} $ + {globals = fromList [("A", mkDef GZero (^TYPE 2) (^TYPE 1))]} $ equalT empty (^TYPE 2) (^Eq0 (^TYPE 1) (^TYPE 0) (^TYPE 0)) (^Eq0 (^FT "A" 0) (^TYPE 0) (^TYPE 0)), @@ -163,7 +167,6 @@ tests = "equality & subtyping" :- [ refl a x = ^Ann (^DLam (SN x)) (^Eq0 a x x) in [ - note "binds before ∥ are globals, after it are BVs", note #"refl A x is an abbreviation for "(δ i ⇒ x) ∷ (x ≡ x : A)""#, testEq "refl A a = refl A a" $ equalE empty @@ -172,7 +175,7 @@ tests = "equality & subtyping" :- [ testEq "p : (a ≡ a' : A), q : (a ≡ a' : A) ∥ ⊢ p = q (free)" {globals = - let def = ^mkPostulate gzero + let def = mkPostulate GZero (^Eq0 (^FT "A" 0) (^FT "a" 0) (^FT "a'" 0)) in defGlobals `mergeLeft` fromList [("p", def), ("q", def)]} $ equalE empty (^F "p" 0) (^F "q" 0), @@ -191,32 +194,32 @@ tests = "equality & subtyping" :- [ testEq "E ≔ a ≡ a' : A, EE ≔ E ∥ x : EE, y : EE ⊢ x = y" {globals = defGlobals `mergeLeft` fromList - [("E", ^mkDef gzero (^TYPE 0) + [("E", mkDef GZero (^TYPE 0) (^Eq0 (^FT "A" 0) (^FT "a" 0) (^FT "a'" 0))), - ("EE", ^mkDef gzero (^TYPE 0) (^FT "E" 0))]} $ + ("EE", mkDef GZero (^TYPE 0) (^FT "E" 0))]} $ equalE (extendTyN [< (Any, "x", ^FT "EE" 0), (Any, "y", ^FT "EE" 0)] empty) (^BV 0) (^BV 1), testEq "E ≔ a ≡ a' : A, EE ≔ E ∥ x : EE, y : E ⊢ x = y" {globals = defGlobals `mergeLeft` fromList - [("E", ^mkDef gzero (^TYPE 0) + [("E", mkDef GZero (^TYPE 0) (^Eq0 (^FT "A" 0) (^FT "a" 0) (^FT "a'" 0))), - ("EE", ^mkDef gzero (^TYPE 0) (^FT "E" 0))]} $ + ("EE", mkDef GZero (^TYPE 0) (^FT "E" 0))]} $ equalE (extendTyN [< (Any, "x", ^FT "EE" 0), (Any, "y", ^FT "E" 0)] empty) (^BV 0) (^BV 1), testEq "E ≔ a ≡ a' : A ∥ x : E, y : E ⊢ x = y" {globals = defGlobals `mergeLeft` fromList - [("E", ^mkDef gzero (^TYPE 0) + [("E", mkDef GZero (^TYPE 0) (^Eq0 (^FT "A" 0) (^FT "a" 0) (^FT "a'" 0)))]} $ equalE (extendTyN [< (Any, "x", ^FT "E" 0), (Any, "y", ^FT "E" 0)] empty) (^BV 0) (^BV 1), testEq "E ≔ a ≡ a' : A ∥ x : (E×E), y : (E×E) ⊢ x = y" {globals = defGlobals `mergeLeft` fromList - [("E", ^mkDef gzero (^TYPE 0) + [("E", mkDef GZero (^TYPE 0) (^Eq0 (^FT "A" 0) (^FT "a" 0) (^FT "a'" 0)))]} $ let ty : forall n. Term 0 n := ^Sig (^FT "E" 0) (SN $ ^FT "E" 0) in equalE (extendTyN [< (Any, "x", ty), (Any, "y", ty)] empty) @@ -224,9 +227,9 @@ tests = "equality & subtyping" :- [ testEq "E ≔ a ≡ a' : A, W ≔ E × E ∥ x : W, y : E×E ⊢ x = y" {globals = defGlobals `mergeLeft` fromList - [("E", ^mkDef gzero (^TYPE 0) + [("E", mkDef GZero (^TYPE 0) (^Eq0 (^FT "A" 0) (^FT "a" 0) (^FT "a'" 0))), - ("W", ^mkDef gzero (^TYPE 0) (^And (^FT "E" 0) (^FT "E" 0)))]} $ + ("W", mkDef GZero (^TYPE 0) (^And (^FT "E" 0) (^FT "E" 0)))]} $ equalE (extendTyN [< (Any, "x", ^FT "W" 0), (Any, "y", ^And (^FT "E" 0) (^FT "E" 0))] empty) @@ -276,11 +279,11 @@ tests = "equality & subtyping" :- [ "free var" :- let au_bu = fromList - [("A", ^mkDef gany (^TYPE 1) (^TYPE 0)), - ("B", ^mkDef gany (^TYPE 1) (^TYPE 0))] + [("A", mkDef GAny (^TYPE 1) (^TYPE 0)), + ("B", mkDef GAny (^TYPE 1) (^TYPE 0))] au_ba = fromList - [("A", ^mkDef gany (^TYPE 1) (^TYPE 0)), - ("B", ^mkDef gany (^TYPE 1) (^FT "A" 0))] + [("A", mkDef GAny (^TYPE 1) (^TYPE 0)), + ("B", mkDef GAny (^TYPE 1) (^FT "A" 0))] in [ testEq "A = A" $ equalE empty (^F "A" 0) (^F "A" 0), @@ -301,13 +304,13 @@ tests = "equality & subtyping" :- [ testNeq "A ≮: B" $ subE empty (^F "A" 0) (^F "B" 0), testEq "A : ★₃ ≔ ★₀, B : ★₃ ≔ ★₂ ⊢ A <: B" - {globals = fromList [("A", ^mkDef gany (^TYPE 3) (^TYPE 0)), - ("B", ^mkDef gany (^TYPE 3) (^TYPE 2))]} $ + {globals = fromList [("A", mkDef GAny (^TYPE 3) (^TYPE 0)), + ("B", mkDef GAny (^TYPE 3) (^TYPE 2))]} $ subE empty (^F "A" 0) (^F "B" 0), note "(A and B in different universes)", testEq "A : ★₁ ≔ ★₀, B : ★₃ ≔ ★₂ ⊢ A <: B" - {globals = fromList [("A", ^mkDef gany (^TYPE 1) (^TYPE 0)), - ("B", ^mkDef gany (^TYPE 3) (^TYPE 2))]} $ + {globals = fromList [("A", mkDef GAny (^TYPE 1) (^TYPE 0)), + ("B", mkDef GAny (^TYPE 3) (^TYPE 2))]} $ subE empty (^F "A" 0) (^F "B" 0), testEq "0=1 ⊢ A <: B" $ subE empty01 (^F "A" 0) (^F "B" 0) @@ -444,30 +447,30 @@ tests = "equality & subtyping" :- [ ], "natural type" :- [ - testEq "ℕ = ℕ" $ equalTy empty (^Nat) (^Nat), - testEq "ℕ = ℕ : ★₀" $ equalT empty (^TYPE 0) (^Nat) (^Nat), - testEq "ℕ = ℕ : ★₆₉" $ equalT empty (^TYPE 69) (^Nat) (^Nat), - testNeq "ℕ ≠ {}" $ equalTy empty (^Nat) (^enum []), - testEq "0=1 ⊢ ℕ = {}" $ equalTy empty01 (^Nat) (^enum []) + testEq "ℕ = ℕ" $ equalTy empty (^NAT) (^NAT), + testEq "ℕ = ℕ : ★₀" $ equalT empty (^TYPE 0) (^NAT) (^NAT), + testEq "ℕ = ℕ : ★₆₉" $ equalT empty (^TYPE 69) (^NAT) (^NAT), + testNeq "ℕ ≠ {}" $ equalTy empty (^NAT) (^enum []), + testEq "0=1 ⊢ ℕ = {}" $ equalTy empty01 (^NAT) (^enum []) ], "natural numbers" :- [ - testEq "0 = 0" $ equalT empty (^Nat) (^Zero) (^Zero), + testEq "0 = 0" $ equalT empty (^NAT) (^Zero) (^Zero), testEq "succ two = succ two" $ - equalT empty (^Nat) (^Succ (^FT "two" 0)) (^Succ (^FT "two" 0)), + equalT empty (^NAT) (^Succ (^FT "two" 0)) (^Succ (^FT "two" 0)), testNeq "succ two ≠ two" $ - equalT empty (^Nat) (^Succ (^FT "two" 0)) (^FT "two" 0), + equalT empty (^NAT) (^Succ (^FT "two" 0)) (^FT "two" 0), testNeq "0 ≠ 1" $ - equalT empty (^Nat) (^Zero) (^Succ (^Zero)), + equalT empty (^NAT) (^Zero) (^Succ (^Zero)), testEq "0=1 ⊢ 0 = 1" $ - equalT empty01 (^Nat) (^Zero) (^Succ (^Zero)) + equalT empty01 (^NAT) (^Zero) (^Succ (^Zero)) ], "natural elim" :- [ testEq "caseω 0 return {a,b} of {zero ⇒ 'a; succ _ ⇒ 'b} = 'a" $ equalT empty (^enum ["a", "b"]) - (E $ ^CaseNat Any Zero (^Ann (^Zero) (^Nat)) + (E $ ^CaseNat Any Zero (^Ann (^Zero) (^NAT)) (SN $ ^enum ["a", "b"]) (^Tag "a") (SN $ ^Tag "b")) @@ -475,19 +478,19 @@ tests = "equality & subtyping" :- [ testEq "caseω 1 return {a,b} of {zero ⇒ 'a; succ _ ⇒ 'b} = 'b" $ equalT empty (^enum ["a", "b"]) - (E $ ^CaseNat Any Zero (^Ann (^Succ (^Zero)) (^Nat)) + (E $ ^CaseNat Any Zero (^Ann (^Succ (^Zero)) (^NAT)) (SN $ ^enum ["a", "b"]) (^Tag "a") (SN $ ^Tag "b")) (^Tag "b"), testEq "caseω 4 return ℕ of {0 ⇒ 0; succ n ⇒ n} = 3" $ equalT empty - (^Nat) - (E $ ^CaseNat Any Zero (^Ann (^makeNat 4) (^Nat)) - (SN $ ^Nat) + (^NAT) + (E $ ^CaseNat Any Zero (^Ann (^Nat 4) (^NAT)) + (SN $ ^NAT) (^Zero) (SY [< "n", ^BN Unused] $ ^BVT 1)) - (^makeNat 3) + (^Nat 3) ], todo "pair types", @@ -510,7 +513,7 @@ tests = "equality & subtyping" :- [ (^Pair (^Tag "b") (^Tag "a")), testEq "0=1 ⊢ ('a, 'b) = ('b, 'a) : ℕ" $ equalT empty01 - (^Nat) + (^NAT) (^Pair (^Tag "a") (^Tag "b")) (^Pair (^Tag "b") (^Tag "a")) ], @@ -521,9 +524,51 @@ tests = "equality & subtyping" :- [ todo "enum", todo "enum elim", - todo "box types", - todo "boxes", - todo "box elim", + "box types" :- [ + testEq "[1.A] = [1.A] : ★" $ + equalT empty + (^TYPE 0) + (^BOX One (^FT "A" 0)) + (^BOX One (^FT "A" 0)), + testNeq "[1.A] ≠ [ω.A] : ★" $ + equalT empty + (^TYPE 0) + (^BOX One (^FT "A" 0)) + (^BOX Any (^FT "A" 0)), + testNeq "[1.A] ≠ [1.B] : ★" $ + equalT empty + (^TYPE 0) + (^BOX One (^FT "A" 0)) + (^BOX One (^FT "B" 0)), + testNeq "[1.A] ≠ A : ★" $ + equalT empty + (^TYPE 0) + (^BOX One (^FT "A" 0)) + (^FT "A" 0), + testEq "0=1 ⊢ [1.A] = [1.B] : ★" $ + equalT empty01 + (^TYPE 0) + (^BOX One (^FT "A" 0)) + (^BOX One (^FT "B" 0)) + ], + + "boxes" :- [ + testEq "[a] = [a] : [ω.A]" $ + equalT empty + (^BOX Any (^FT "A" 0)) + (^Box (^FT "a" 0)) + (^Box (^FT "a" 0)), + testNeq "[a] ≠ [a'] : [ω.A]" $ + equalT empty + (^BOX Any (^FT "A" 0)) + (^Box (^FT "a" 0)) + (^Box (^FT "a'" 0)), + testEq "ω.x : [ω.A] ⊢ x = [case1 b return A of {[y] ⇒ y}] : [ω.A]" $ + equalT (ctx [< ("x", ^BOX Any (^FT "A" 0))]) + (^BOX Any (^FT "A" 0)) + (^BVT 0) + (^Box (E $ ^CaseBox One (^BV 0) (SN $ ^FT "A" 0) (SY [< "y"] (^BVT 0)))) + ], "elim closure" :- [ note "bold numbers for de bruijn indices", diff --git a/tests/Tests/FreeVars.idr b/tests/Tests/FreeVars.idr new file mode 100644 index 0000000..a51ab9d --- /dev/null +++ b/tests/Tests/FreeVars.idr @@ -0,0 +1,105 @@ +module Tests.FreeVars + +import Quox.Pretty +import Quox.Syntax +import Quox.FreeVars +import AstExtra +import TAP +import Derive.Prelude + +%language ElabReflection + + +private +data FailureType = Dim | Term +%runElab derive "FailureType" [Show] + +private +record Failure where + constructor Fail + type : FailureType + expected, got : FreeVars n + +private +ToInfo Failure where + toInfo f = [("type", show f.type), + ("expected", show f.expected), + ("got", show f.got)] + +private +testFreeVars : {d, n : Nat} -> (HasFreeVars (f d), HasFreeDVars f) => + (f d n -> String) -> f d n -> FreeVars' d -> FreeVars' n -> Test +testFreeVars lbl tm dims terms = + test (lbl tm) $ do + let dims = FV dims; terms = FV terms + dims' = fdv tm; terms' = fv tm + unless (dims == dims') $ Left $ Fail Dim dims dims' + unless (terms == terms') $ Left $ Fail Term terms terms' + Right () + +private +Doc80 : Type +Doc80 = Doc $ Opts 80 + +private +prettyWith : (a -> Eff Pretty Doc80) -> a -> String +prettyWith f = trim . render _ . runPretty . f + +parameters {d, n : Nat} (ds : BContext d) (ts : BContext n) + private + withContext : Doc80 -> Eff Pretty Doc80 + withContext doc = + if null ds && null ts then pure $ hsep ["⊢", doc] + else pure $ sep [hsep [!(ctx1 ds), "|", !(ctx1 ts), "⊢"], doc] + where + ctx1 : forall k. BContext k -> Eff Pretty Doc80 + ctx1 [<] = pure "·" + ctx1 ctx = fillSeparateTight !commaD . toList' <$> + traverse' (pure . prettyBind') ctx + + private + testFreeVarsT : Term d n -> FreeVars' d -> FreeVars' n -> Test + testFreeVarsT = testFreeVars $ prettyWith $ withContext <=< prettyTerm ds ts + + private + testFreeVarsE : Elim d n -> FreeVars' d -> FreeVars' n -> Test + testFreeVarsE = testFreeVars $ prettyWith $ withContext <=< prettyElim ds ts + +export +tests : Test +tests = "free variables" :- [ + testFreeVarsT [<] [<] (^TYPE 0) [<] [<], + testFreeVarsT [<"i", "j"] [<] (^TYPE 0) [ Grammar c a) - (fromP : a -> Either FromParser.Error b) + (fromP : a -> Either FPError b) (inp : String) - parameters {default (ltrim inp) label : String} - parsesWith : (b -> Bool) -> Test - parsesWith p = test label $ do - pres <- mapFst ParseError $ lexParseWith (grm "‹test›") inp - res <- mapFst FromParser $ fromP pres - unless (p res) $ Left $ WrongResult $ show res + parsesWith : String -> (b -> Bool) -> Test + parsesWith label p = test label $ do + pres <- mapFst ParseError $ lexParseWith (grm "‹test›") inp + res <- mapFst FromParser $ fromP pres + unless (p res) $ Left $ WrongResult $ show res - parses : Test - parses = parsesWith $ const True + %macro + parseMatch : {default (ltrim inp) label : String} -> TTImp -> Elab Test + parseMatch {label} pat = + parsesWith label <$> check `(\case ~(pat) => True; _ => False) - %macro - parseMatch : TTImp -> Elab Test - parseMatch pat = - parsesWith <$> check `(\case ~(pat) => True; _ => False) - - parsesAs : Eq b => b -> Test - parsesAs exp = parsesWith (== exp) - - parameters {default "\{ltrim inp} # fails" label : String} - parseFails : Test - parseFails = test label $ do - pres <- mapFst ParseError $ lexParseWith (grm "‹test›") inp - either (const $ Right ()) (Left . ExpectedFail . show) $ fromP pres + parseFails : {default "\{ltrim inp} # fails" label : String} -> Test + parseFails {label} = test label $ do + pres <- mapFst ParseError $ lexParseWith (grm "‹test›") inp + either (const $ Right ()) (Left . ExpectedFail . show) $ fromP pres -runFromParser : {default empty defs : Definitions} -> - Eff FromParserPure a -> Either FromParser.Error a -runFromParser = map fst . fst . fromParserPure 0 defs +runFromParser : Definitions -> Eff FromParserPure a -> Either FPError a +runFromParser defs = map val . fromParserPure [<] 0 defs initStack export tests : Test tests = "PTerm → Term" :- [ "dimensions" :- - let fromPDim = runFromParser . fromPDimWith [< "𝑖", "𝑗"] + let fromPDim = runFromParser empty . fromPDimWith [< "𝑖", "𝑗"] in [ note "dim ctx: [𝑖, 𝑗]", parseMatch dim fromPDim "𝑖" `(B (VS VZ) _), @@ -85,9 +79,9 @@ tests = "PTerm → Term" :- [ ], "terms" :- - let defs = fromList [("f", mkDef gany (Nat noLoc) (Zero noLoc) noLoc)] + let defs = fromList [("f", mkDef GAny (^NAT) (^Zero))] -- doesn't have to be well typed yet, just well scoped - fromPTerm = runFromParser {defs} . + fromPTerm = runFromParser defs . fromPTermWith [< "𝑖", "𝑗"] [< "A", "x", "y", "z"] in [ note "dim ctx: [𝑖, 𝑗]; term ctx: [A, x, y, z]", @@ -97,7 +91,7 @@ tests = "PTerm → Term" :- [ parseMatch term fromPTerm "λ w ⇒ w" `(Lam (S _ $ Y $ E $ B VZ _) _), parseMatch term fromPTerm "λ w ⇒ x" - `(Lam (S _ $ N $ E $ B (VS $ VS VZ) _) _), + `(Lam (S _ $ Y $ E $ B (VS $ VS $ VS VZ) _) _), parseMatch term fromPTerm "λ x ⇒ x" `(Lam (S _ $ Y $ E $ B VZ _) _), parseMatch term fromPTerm "λ a b ⇒ f a b" diff --git a/tests/Tests/Lexer.idr b/tests/Tests/Lexer.idr index 7823d5d..40fd9a8 100644 --- a/tests/Tests/Lexer.idr +++ b/tests/Tests/Lexer.idr @@ -47,7 +47,12 @@ tests = "lexer" :- [ lexes " " [], lexes "-- line comment" [], lexes "name -- line comment" [Name "name"], - lexes "-- line comment\nnameBetween -- and another" [Name "nameBetween"], + lexes + """ + -- line comment + nameBetween -- and another + """ + [Name "nameBetween"], lexes "{- block comment -}" [], lexes "{- {- nested -} block comment -}" [] ], @@ -66,17 +71,18 @@ tests = "lexer" :- [ lexes "δελτα" [Name "δελτα"], lexes "★★" [Name "★★"], lexes "Types" [Name "Types"], - lexes "a.b.c.d.e" [Name $ MakePName [< "a","b","c","d"] "e"], + lexes "a.b.c.d.e" [Name $ MkPName [< "a","b","c","d"] "e"], lexes "normalïse" [Name "normalïse"], -- ↑ replace i + combining ¨ with precomposed ï lexes "map#" [Name "map#"], + lexes "map#[" [Name "map#", Reserved "["], -- don't actually do this + lexes "map #[" [Name "map", Reserved "#["], lexes "write!" [Name "write!"], lexes "uhh??!?!?!?" [Name "uhh??!?!?!?"], - todo "check for reserved words in a qname", - skip $ - lexes "abc.fun.def" - [Name "abc", Reserved ".", Reserved "λ", Reserved ".", Name "def"], + lexFail "abc.fun.ghi", + lexFail "abc.λ.ghi", + lexFail "abc.ω.ghi", lexes "+" [Name "+"], lexes "*" [Name "*"], @@ -84,16 +90,16 @@ tests = "lexer" :- [ lexes "***" [Name "***"], lexes "+**" [Name "+**"], lexes "+#" [Name "+#"], - lexes "+.+.+" [Name $ MakePName [< "+", "+"] "+"], - lexes "a.+" [Name $ MakePName [< "a"] "+"], - lexes "+.a" [Name $ MakePName [< "+"] "a"], + lexes "+.+.+" [Name $ MkPName [< "+", "+"] "+"], + lexes "a.+" [Name $ MkPName [< "a"] "+"], + lexes "+.a" [Name $ MkPName [< "+"] "a"], lexes "+a" [Name "+", Name "a"], lexes "x." [Name "x", Reserved "."], lexes "&." [Name "&", Reserved "."], lexes ".x" [Reserved ".", Name "x"], - lexes "a.b.c." [Name $ MakePName [< "a", "b"] "c", Reserved "."], + lexes "a.b.c." [Name $ MkPName [< "a", "b"] "c", Reserved "."], lexes "case" [Reserved "case"], lexes "caseω" [Reserved "caseω"], @@ -102,6 +108,13 @@ tests = "lexer" :- [ lexes "case0" [Reserved "case0"], lexes "case##" [Name "case##"], + lexes "let" [Reserved "let"], + lexes "letω" [Reserved "letω"], + lexes "let#" [Reserved "letω"], + lexes "let1" [Reserved "let1"], + lexes "let0" [Reserved "let0"], + lexes "let##" [Name "let##"], + lexes "_" [Reserved "_"], lexes "_a" [Name "_a"], lexes "a_" [Name "a_"], @@ -142,15 +155,31 @@ tests = "lexer" :- [ ], "strings" :- [ - lexes #" "" "# [Str ""], - lexes #" "abc" "# [Str "abc"], - lexes #" "\"" "# [Str "\""], - lexes #" "\\" "# [Str "\\"], - lexes #" "\\\"" "# [Str "\\\""], - todo "other escapes" + lexes #" "" "# [Str ""], + lexes #" "abc" "# [Str "abc"], + lexes #" "\"" "# [Str "\""], + lexes #" "\\" "# [Str "\\"], + lexes #" "\\\"" "# [Str "\\\""], + lexes #" "\t" "# [Str "\t"], + lexes #" "\n" "# [Str "\n"], + lexes #" "🐉" "# [Str "🐉"], + lexes #" "\x1f409;" "# [Str "🐉"], + lexFail #" "\q" "#, + lexFail #" "\" "# ], - todo "naturals", + "naturals" :- [ + lexes "0" [Nat 0], + lexes "123" [Nat 123], + lexes "69_420" [Nat 69420], + lexes "0x123" [Nat 0x123], + lexes "0xbeef" [Nat 0xbeef], + lexes "0xBEEF" [Nat 0xBEEF], + lexes "0XBEEF" [Nat 0xBEEF], + lexes "0xbaba_baba" [Nat 0xbabababa], + lexFail "123abc", + lexFail "0x123abcghi" + ], "universes" :- [ lexes "Type0" [TYPE 0], diff --git a/tests/Tests/Parser.idr b/tests/Tests/Parser.idr index fcda2fc..7bbca5d 100644 --- a/tests/Tests/Parser.idr +++ b/tests/Tests/Parser.idr @@ -35,7 +35,7 @@ ToInfo Failure where parameters {auto _ : (Show a, Eq a)} {c : Bool} (grm : FileName -> Grammar c a) parsesWith : String -> (a -> Bool) -> Test parsesWith inp p = test (ltrim inp) $ do - res <- mapFst ParseError $ lexParseWith (grm "‹test›") inp + res <- mapFst ParseError $ lexParseWith (grm "") inp unless (p res) $ Left $ WrongResult $ show res parsesAs : String -> a -> Test @@ -63,9 +63,9 @@ tests = "parser" :- [ "names" :- [ parsesAs (const qname) "x" - (MakePName [<] "x"), - parsesAs (const qname) "Data.String.length" - (MakePName [< "Data", "String"] "length"), + (MkPName [<] "x"), + parsesAs (const qname) "Data.List.length" + (MkPName [< "Data", "List"] "length"), parseFails (const qname) "_" ], @@ -124,7 +124,7 @@ tests = "parser" :- [ parseMatch term "f" `(V "f" {}), parseMatch term "f.x.y" - `(V (MakePName [< "f", "x"] "y") {}), + `(V (MkPName [< "f", "x"] "y") {}), parseMatch term "f x" `(App (V "f" {}) (V "x" {}) _), parseMatch term "f x y" @@ -138,7 +138,15 @@ tests = "parser" :- [ parseMatch term "f @p" `(DApp (V "f" {}) (V "p" {}) _), parseMatch term "f x @p y" - `(App (DApp (App (V "f" {}) (V "x" {}) _) (V "p" {}) _) (V "y" {}) _) + `(App (DApp (App (V "f" {}) (V "x" {}) _) (V "p" {}) _) (V "y" {}) _), + parseMatch term "fst e" + `(Fst (V "e" {}) _), + parseMatch term "snd e" + `(Snd (V "e" {}) _), + parseMatch term "(fst e) x" + `(App (Fst (V "e" {}) _) (V "x" {}) _), + parseMatch term "fst e x" + `(App (Fst (V "e" {}) _) (V "x" {}) _) ], "annotations" :- [ @@ -166,9 +174,15 @@ tests = "parser" :- [ `(Pi (PQ One _) (PV "x" _) (V "A" {}) (Pi (PQ One _) (PV "y" _) (V "A" {}) (App (V "B" {}) (V "x" {}) _) _) _), - parseFails term "(x : A) → B x", + parseMatch term "(x : A) → B x" + `(Pi (PQ One _) (PV "x" _) (V "A" {}) (App (V "B" {}) (V "x" {}) _) _), parseMatch term "1.A → B" `(Pi (PQ One _) (Unused _) (V "A" {}) (V "B" {}) _), + parseMatch term "A → B" + `(Pi (PQ One _) (Unused _) (V "A" {}) (V "B" {}) _), + parseMatch term "A → B → C" + `(Pi (PQ One _) (Unused _) (V "A" {}) + (Pi (PQ One _) (Unused _) (V "B" {}) (V "C" {}) _) _), parseMatch term "1.(List A) → List B" `(Pi (PQ One _) (Unused _) (App (V "List" {}) (V "A" {}) _) @@ -190,7 +204,21 @@ tests = "parser" :- [ parseMatch term "A × B × C" $ `(Sig (Unused _) (V "A" {}) (Sig (Unused _) (V "B" {}) (V "C" {}) _) _), parseMatch term "(A × B) × C" $ - `(Sig (Unused _) (Sig (Unused _) (V "A" {}) (V "B" {}) _) (V "C" {}) _) + `(Sig (Unused _) (Sig (Unused _) (V "A" {}) (V "B" {}) _) (V "C" {}) _), + parseMatch term "A × B → C" $ + `(Pi (PQ One _) (Unused _) + (Sig (Unused _) (V "A" {}) (V "B" {}) _) + (V "C" {}) _), + parseMatch term "A → B × C" $ + `(Pi (PQ One _) (Unused _) + (V "A" {}) + (Sig (Unused _) (V "B" {}) (V "C" {}) _) _), + parseMatch term "A → B × C → D" $ + `(Pi (PQ One _) (Unused _) + (V "A" {}) + (Pi (PQ One _) (Unused _) + (Sig (Unused _) (V "B" {}) (V "C" {}) _) + (V "D" {}) _) _) ], "lambdas" :- [ @@ -262,29 +290,24 @@ tests = "parser" :- [ ], "naturals" :- [ - parseMatch term "ℕ" `(Nat _), - parseMatch term "Nat" `(Nat _), - parseMatch term "zero" `(Zero _), + parseMatch term "ℕ" `(NAT _), + parseMatch term "Nat" `(NAT _), + parseMatch term "zero" `(Nat 0 _), parseMatch term "succ n" `(Succ (V "n" {}) _), - parseMatch term "3" - `(Succ (Succ (Succ (Zero _) _) _) _), - parseMatch term "succ (succ 1)" - `(Succ (Succ (Succ (Zero _) _) _) _), + parseMatch term "3" `(Nat 3 _), + parseMatch term "succ (succ 1)" `(Succ (Succ (Nat 1 _) _) _), parseFails term "succ succ 5", parseFails term "succ" ], "box" :- [ parseMatch term "[1.ℕ]" - `(BOX (PQ One _) (Nat _) _), + `(BOX (PQ One _) (NAT _) _), parseMatch term "[ω. ℕ × ℕ]" - `(BOX (PQ Any _) (Sig (Unused _) (Nat _) (Nat _) _) _), - parseMatch term "[a]" - `(Box (V "a" {}) _), - parseMatch term "[0]" - `(Box (Zero _) _), - parseMatch term "[1]" - `(Box (Succ (Zero _) _) _) + `(BOX (PQ Any _) (Sig (Unused _) (NAT _) (NAT _) _) _), + parseMatch term "[a]" `(Box (V "a" {}) _), + parseMatch term "[0]" `(Box (Nat 0 _) _), + parseMatch term "[1]" `(Box (Nat 1 _) _) ], "coe" :- [ @@ -330,7 +353,25 @@ tests = "parser" :- [ (CasePair (PV "l" _, PV "r" _) (App (V "r" {}) (V "l" {}) _) _) _), parseMatch term - "case 1 . f s return x ⇒ A x of { (l, r) ⇒ r l }" + "case 1. f s return x ⇒ A x of { (l, r) ⇒ r l }" + `(Case (PQ One _) (App (V "f" {}) (V "s" {}) _) + (PV "x" _, App (V "A" {}) (V "x" {}) _) + (CasePair (PV "l" _, PV "r" _) + (App (V "r" {}) (V "l" {}) _) _) _), + parseMatch term + "caseω f s return x ⇒ A x of { (l, r) ⇒ r l }" + `(Case (PQ Any _) (App (V "f" {}) (V "s" {}) _) + (PV "x" _, App (V "A" {}) (V "x" {}) _) + (CasePair (PV "l" _, PV "r" _) + (App (V "r" {}) (V "l" {}) _) _) _), + parseMatch term + "case0 f s return x ⇒ A x of { (l, r) ⇒ r l }" + `(Case (PQ Zero _) (App (V "f" {}) (V "s" {}) _) + (PV "x" _, App (V "A" {}) (V "x" {}) _) + (CasePair (PV "l" _, PV "r" _) + (App (V "r" {}) (V "l" {}) _) _) _), + parseMatch term + "case f s return x ⇒ A x of { (l, r) ⇒ r l }" `(Case (PQ One _) (App (V "f" {}) (V "s" {}) _) (PV "x" _, App (V "A" {}) (V "x" {}) _) (CasePair (PV "l" _, PV "r" _) @@ -350,63 +391,191 @@ tests = "parser" :- [ `(Case (PQ Any _) (V "n" {}) (Unused _, V "A" {}) (CaseNat (V "a" {}) (PV "n'" _, PQ Zero _, Unused _, V "b" {}) _) _), parseMatch term "caseω n return ℕ of { succ _, 1.ih ⇒ ih; zero ⇒ 0; }" - `(Case (PQ Any _) (V "n" {}) (Unused _, Nat _) - (CaseNat (Zero _) (Unused _, PQ One _, PV "ih" _, V "ih" {}) _) _), + `(Case (PQ Any _) (V "n" {}) (Unused _, NAT _) + (CaseNat (Nat 0 _) (Unused _, PQ One _, PV "ih" _, V "ih" {}) _) _), + parseMatch term "caseω n return ℕ of { succ _, ω.ih ⇒ ih; zero ⇒ 0; }" + `(Case (PQ Any _) (V "n" {}) (Unused _, NAT _) + (CaseNat (Nat 0 _) (Unused _, PQ Any _, PV "ih" _, V "ih" {}) _) _), + parseMatch term "caseω n return ℕ of { succ _, ih ⇒ ih; zero ⇒ 0; }" + `(Case (PQ Any _) (V "n" {}) (Unused _, NAT _) + (CaseNat (Nat 0 _) (Unused _, PQ One _, PV "ih" _, V "ih" {}) _) _), parseFails term "caseω n return A of { zero ⇒ a }", - parseFails term "caseω n return ℕ of { succ ⇒ 5 }" + parseFails term "caseω n return ℕ of { succ ⇒ 5 }", + parseMatch term + "case1 f s return x ⇒ A x of { (l, r) ⇒ r l } x" + `(App + (Case (PQ One _) (App (V "f" {}) (V "s" {}) _) + (PV "x" _, App (V "A" {}) (V "x" {}) _) + (CasePair (PV "l" _, PV "r" _) + (App (V "r" {}) (V "l" {}) _) _) _) + (V "x" {}) _) ], - "definitions" :- [ + "let" :- [ + parseMatch term "let x = y in z" + `(Let (PQ One _, PV "x" {}, V "y" {}) (V "z" {}) _), + parseMatch term "let x = y; in z" + `(Let (PQ One _, PV "x" {}, V "y" {}) (V "z" {}) _), + parseMatch term "let0 x = y in z" + `(Let (PQ Zero _, PV "x" {}, V "y" {}) (V "z" {}) _), + parseMatch term "let1 x = y in z" + `(Let (PQ One _, PV "x" {}, V "y" {}) (V "z" {}) _), + parseMatch term "letω x = y in z" + `(Let (PQ Any _, PV "x" {}, V "y" {}) (V "z" {}) _), + parseMatch term "letω x : X = y in z" + `(Let (PQ Any _, PV "x" {}, Ann (V "y" {}) (V "X" {}) _) (V "z" {}) _), + parseMatch term "let ω.x = y in z" + `(Let (PQ Any _, PV "x" {}, V "y" {}) (V "z" {}) _), + parseMatch term "let x = y1 y2 in z1 z2" + `(Let (PQ One _, PV "x" {}, + (App (V "y1" {}) (V "y2" {}) _)) + (App (V "z1" {}) (V "z2" {}) _) _), + parseMatch term "let x = a in let y = b in z" + `(Let (PQ One _, PV "x" {}, V "a" {}) + (Let (PQ One _, PV "y" {}, V "b" {}) (V "z" {}) _) _), + parseMatch term "let x = a; y = b in z" + `(Let (PQ One _, PV "x" {}, V "a" {}) + (Let (PQ One _, PV "y" {}, V "b" {}) (V "z" {}) _) _), + parseMatch term "letω x = a; y = b in z" + `(Let (PQ Any _, PV "x" {}, V "a" {}) + (Let (PQ Any _, PV "y" {}, V "b" {}) (V "z" {}) _) _), + parseMatch term "letω x = a; y = b; in z" + `(Let (PQ Any _, PV "x" {}, V "a" {}) + (Let (PQ Any _, PV "y" {}, V "b" {}) (V "z" {}) _) _), + parseMatch term "let ω.x = a; 1.y = b in z" + `(Let (PQ Any _, PV "x" {}, V "a" {}) + (Let (PQ One _, PV "y" {}, V "b" {}) (V "z" {}) _) _), + parseMatch term "let x = y in z ∷ Z" + `(Let (PQ One _, PV "x" {}, V "y" {}) + (Ann (V "z" {}) (V "Z" {}) _) _), + parseMatch term "let x = y in z₁ ≡ z₂ : Z" + `(Let (PQ One _, PV "x" {}, V "y" {}) + (Eq (Unused _, V "Z" {}) (V "z₁" {}) (V "z₂" {}) _) _), + parseFails term "let1 1.x = y in z", + parseFails term "let x = y", + parseFails term "let x in z" + ], + + "definitions" :- + let definition = flip definition [] in [ parseMatch definition "defω x : {a} × {b} = ('a, 'b);" `(MkPDef (PQ Any _) "x" - (Just (Sig (Unused _) (Enum ["a"] _) (Enum ["b"] _) _)) - (Pair (Tag "a" _) (Tag "b" _) _) _), + (PConcrete + (Just (Sig (Unused _) (Enum ["a"] _) (Enum ["b"] _) _)) + (Pair (Tag "a" _) (Tag "b" _) _)) _ _ _ _), parseMatch definition "def# x : {a} ** {b} = ('a, 'b)" `(MkPDef (PQ Any _) "x" - (Just (Sig (Unused _) (Enum ["a"] _) (Enum ["b"] _) _)) - (Pair (Tag "a" _) (Tag "b" _) _) _), + (PConcrete + (Just (Sig (Unused _) (Enum ["a"] _) (Enum ["b"] _) _)) + (Pair (Tag "a" _) (Tag "b" _) _)) _ _ _ _), parseMatch definition "def ω.x : {a} × {b} = ('a, 'b)" `(MkPDef (PQ Any _) "x" - (Just (Sig (Unused _) (Enum ["a"] _) (Enum ["b"] _) _)) - (Pair (Tag "a" _) (Tag "b" _) _) _), + (PConcrete + (Just (Sig (Unused _) (Enum ["a"] _) (Enum ["b"] _) _)) + (Pair (Tag "a" _) (Tag "b" _) _)) _ _ _ _), parseMatch definition "def x : {a} × {b} = ('a, 'b)" `(MkPDef (PQ Any _) "x" - (Just (Sig (Unused _) (Enum ["a"] _) (Enum ["b"] _) _)) - (Pair (Tag "a" _) (Tag "b" _) _) _), + (PConcrete + (Just (Sig (Unused _) (Enum ["a"] _) (Enum ["b"] _) _)) + (Pair (Tag "a" _) (Tag "b" _) _)) _ _ _ _), parseMatch definition "def0 A : ★⁰ = {a, b, c}" - `(MkPDef (PQ Zero _) "A" (Just $ TYPE 0 _) - (Enum ["a", "b", "c"] _) _) + `(MkPDef (PQ Zero _) "A" + (PConcrete (Just $ TYPE 0 _) (Enum ["a", "b", "c"] _)) _ _ _ _), + parseMatch definition "postulate yeah : ℕ" + `(MkPDef (PQ Any _) "yeah" (PPostulate (NAT _)) _ _ _ _), + parseMatch definition "postulateω yeah : ℕ" + `(MkPDef (PQ Any _) "yeah" (PPostulate (NAT _)) _ _ _ _), + parseMatch definition "postulate0 FileHandle : ★" + `(MkPDef (PQ Zero _) "FileHandle" (PPostulate (TYPE 0 _)) _ _ _ _), + parseFails definition "postulate not-a-postulate : ℕ = 69", + parseFails definition "postulate not-a-postulate = 69", + parseFails definition "def not-a-def : ℕ" ], "top level" :- [ parseMatch input "def0 A : ★⁰ = {}; def0 B : ★¹ = A;" - `([PD $ PDef $ MkPDef (PQ Zero _) "A" (Just $ TYPE 0 _) (Enum [] _) _, - PD $ PDef $ MkPDef (PQ Zero _) "B" (Just $ TYPE 1 _) (V "A" {}) _]), + `([PD $ PDef $ MkPDef (PQ Zero _) "A" + (PConcrete (Just $ TYPE 0 _) (Enum [] _)) PSucceed False Nothing _, + PD $ PDef $ MkPDef (PQ Zero _) "B" + (PConcrete (Just $ TYPE 1 _) (V "A" {})) PSucceed False Nothing _]), parseMatch input "def0 A : ★⁰ = {} def0 B : ★¹ = A" $ - `([PD $ PDef $ MkPDef (PQ Zero _) "A" (Just $ TYPE 0 _) (Enum [] _) _, - PD $ PDef $ MkPDef (PQ Zero _) "B" (Just $ TYPE 1 _) (V "A" {}) _]), + `([PD $ PDef $ MkPDef (PQ Zero _) "A" + (PConcrete (Just $ TYPE 0 _) (Enum [] _)) PSucceed False Nothing _, + PD $ PDef $ MkPDef (PQ Zero _) "B" + (PConcrete (Just $ TYPE 1 _) (V "A" {})) PSucceed False Nothing _]), note "empty input", parsesAs input "" [], parseFails input ";;;;;;;;;;;;;;;;;;;;;;;;;;", parseMatch input "namespace a {}" - `([PD $ PNs $ MkPNamespace [< "a"] [] _]), + `([PD $ PNs $ MkPNamespace [< "a"] [] PSucceed _]), parseMatch input "namespace a.b.c {}" - `([PD $ PNs $ MkPNamespace [< "a", "b", "c"] [] _]), + `([PD $ PNs $ MkPNamespace [< "a", "b", "c"] [] PSucceed _]), parseMatch input "namespace a {namespace b {}}" - `([PD $ PNs $ MkPNamespace [< "a"] [PNs $ MkPNamespace [< "b"] [] _] _]), + `([PD (PNs $ MkPNamespace [< "a"] + [PNs $ MkPNamespace [< "b"] [] PSucceed _] PSucceed _)]), parseMatch input "namespace a {def x = 't ∷ {t}}" - `([PD $ PNs $ MkPNamespace [< "a"] - [PDef $ MkPDef (PQ Any _) "x" Nothing - (Ann (Tag "t" _) (Enum ["t"] _) _) _] _]), - parseMatch input "namespace a {def x = 't ∷ {t}} def y = a.x" - `([PD $ PNs $ MkPNamespace [< "a"] - [PDef $ MkPDef (PQ Any _) "x" Nothing - (Ann (Tag "t" _) (Enum ["t"] _) _) _] _, - PD $ PDef $ MkPDef (PQ Any _) "y" Nothing - (V (MakePName [< "a"] "x") {}) _]), + `([PD (PNs $ MkPNamespace [< "a"] + [PDef $ MkPDef (PQ Any _) "x" + (PConcrete Nothing (Ann (Tag "t" _) (Enum ["t"] _) _)) + PSucceed False Nothing _] + PSucceed _)]), + parseMatch input "namespace a {def x : {t} = 't} def y = a.x" + `([PD (PNs $ MkPNamespace [< "a"] + [PDef $ MkPDef (PQ Any _) "x" + (PConcrete (Just (Enum ["t"] _)) (Tag "t" _)) + PSucceed False Nothing _] + PSucceed _), + PD (PDef $ MkPDef (PQ Any _) "y" + (PConcrete Nothing (V (MkPName [< "a"] "x") Nothing _)) + PSucceed False Nothing _)]), parseMatch input #" load "a.quox"; def b = a.b "# `([PLoad "a.quox" _, - PD $ PDef $ MkPDef (PQ Any _) "b" Nothing - (V (MakePName [< "a"] "b") {}) _]) + PD (PDef $ MkPDef (PQ Any _) "b" + (PConcrete Nothing (V (MkPName [< "a"] "b") Nothing _)) + PSucceed False Nothing _)]), + parseMatch input #" #[main] postulate hi : String "# + `([PD (PDef $ MkPDef (PQ Any _) "hi" + (PPostulate (STRING _)) + PSucceed True Nothing _)]), + parseMatch input #" #[compile-scheme "hi"] postulate hi : String "# + `([PD (PDef $ MkPDef (PQ Any _) "hi" + (PPostulate (STRING _)) + PSucceed False (Just "hi") _)]), + parseMatch input #" #[main] #[compile-scheme "hi"] postulate hi : String "# + `([PD (PDef $ MkPDef (PQ Any _) "hi" + (PPostulate (STRING _)) + PSucceed True (Just "hi") _)]), + parseMatch input #" #[fail] def hi = "hi!!!! uwu" "# + `([PD (PDef $ MkPDef (PQ Any _) "hi" + (PConcrete Nothing (Str "hi!!!! uwu" _)) + PFailAny False Nothing _)]), + parseMatch input #" #[fail "type"] def hi = "hi!!!! uwu" "# + `([PD (PDef $ MkPDef (PQ Any _) "hi" + (PConcrete Nothing (Str "hi!!!! uwu" _)) + (PFailMatch "type") False Nothing _)]), + parseMatch input #" #[fail] namespace ns { } "# + `([PD (PNs $ MkPNamespace [< "ns"] [] PFailAny _)]), + parseFails input #" #[fail 69] namespace ns { } "#, + parseFails input "#[main]", + parseFails input "#[main] namespace a { } ", + parseFails input #" #[not-an-attr] postulate hi : String "#, + parseFails input #" #[log pop] postulate hi : String "#, + parseMatch input #" #![log pop] "# + `([PD (PPrag (PLogPop _))]), + parseMatch input #" #![log (all, 5)] "# + `([PD (PPrag (PLogPush [SetAll (Element 5 _)] _))]), + parseMatch input #" #![log (default, 69)] "# + `([PD (PPrag (PLogPush [SetDefault (Element 69 _)] _))]), + parseMatch input #" #![log (whnf, 100)] "# + `([PD (PPrag (PLogPush [SetCat (Element "whnf" _) (Element 100 _)] _))]), + parseMatch input #" #![log (all, 5) (default, 69) (whnf, 100)] "# + `([PD (PPrag (PLogPush + [SetAll (Element 5 _), SetDefault (Element 69 _), + SetCat (Element "whnf" _) (Element 100 _)] _))]), + parseFails input #" #![log] "#, + parseFails input #" #![log (non-category, 5)] "#, + parseFails input #" #![log (whnf, 50000000)] "#, + parseFails input #" #![log [0.★⁵]] "#, + parseFails input #" #![main] "# ] ] diff --git a/tests/Tests/PrettyTerm.idr b/tests/Tests/PrettyTerm.idr index 71e183f..30c84cd 100644 --- a/tests/Tests/PrettyTerm.idr +++ b/tests/Tests/PrettyTerm.idr @@ -24,7 +24,7 @@ parameters (ds : BContext d) (ns : BContext n) testPrettyE1 e str {label} = testPrettyT1 (E e) str {label} -prefix 9 ^ +export prefix 9 ^ (^) : (Loc -> a) -> a (^) a = a noLoc @@ -37,8 +37,8 @@ tests = "pretty printing terms" :- [ "free vars" :- [ testPrettyE1 [<] [<] (^F "x" 0) "x", testPrettyE [<] [<] (^F "x" 1) "x¹" "x^1", - testPrettyE1 [<] [<] (^F (MakeName [< "A", "B", "C"] "x") 0) "A.B.C.x", - testPrettyE [<] [<] (^F (MakeName [< "A", "B", "C"] "x") 2) + testPrettyE1 [<] [<] (^F (MkName [< "A", "B", "C"] "x") 0) "A.B.C.x", + testPrettyE [<] [<] (^F (MkName [< "A", "B", "C"] "x") 2) "A.B.C.x²" "A.B.C.x^2" ], @@ -105,8 +105,8 @@ tests = "pretty printing terms" :- [ ], "type universes" :- [ - testPrettyT [<] [<] (^TYPE 0) "★⁰" "Type 0", - testPrettyT [<] [<] (^TYPE 100) "★¹⁰⁰" "Type 100" + testPrettyT [<] [<] (^TYPE 0) "★" "Type", + testPrettyT [<] [<] (^TYPE 100) "★¹⁰⁰" "Type^100" ], "function types" :- [ @@ -120,8 +120,8 @@ tests = "pretty printing terms" :- [ "1.(x : A) -> B x", testPrettyT [<] [<] (^PiY Zero "A" (^TYPE 0) (^Arr Any (^BVT 0) (^BVT 0))) - "0.(A : ★⁰) → ω.A → A" - "0.(A : Type 0) -> #.A -> A", + "0.(A : ★) → ω.A → A" + "0.(A : Type) -> #.A -> A", testPrettyT [<] [<] (^Arr Any (^Arr Any (^FT "A" 0) (^FT "A" 0)) (^FT "A" 0)) "ω.(ω.A → A) → A" @@ -133,8 +133,8 @@ tests = "pretty printing terms" :- [ testPrettyT [<] [<] (^PiY Zero "P" (^Arr Zero (^FT "A" 0) (^TYPE 0)) (E $ ^App (^BV 0) (^FT "a" 0))) - "0.(P : 0.A → ★⁰) → P a" - "0.(P : 0.A -> Type 0) -> P a" + "0.(P : 0.A → ★) → P a" + "0.(P : 0.A -> Type) -> P a" ], "pair types" :- [ @@ -193,8 +193,8 @@ tests = "pretty printing terms" :- [ "case" :- [ testPrettyE [<] [<] (^CasePair One (^F "a" 0) (SN $ ^TYPE 1) (SN $ ^TYPE 0)) - "case1 a return ★¹ of { (_, _) ⇒ ★⁰ }" - "case1 a return Type 1 of { (_, _) => Type 0 }", + "case1 a return ★¹ of { (_, _) ⇒ ★ }" + "case1 a return Type^1 of { (_, _) => Type }", testPrettyT [<] [<] (^LamY "u" (E $ ^CaseEnum One (^F "u" 0) @@ -209,12 +209,13 @@ tests = "pretty printing terms" :- [ "type-case" :- [ testPrettyE [<] [<] - {label = "type-case ℕ ∷ ★⁰ return ★⁰ of { ⋯ }"} - (^TypeCase (^Ann (^Nat) (^TYPE 0)) (^TYPE 0) empty (^Nat)) - "type-case ℕ ∷ ★⁰ return ★⁰ of { _ ⇒ ℕ }" - "type-case Nat :: Type 0 return Type 0 of { _ => Nat }" + {label = "type-case ℕ ∷ ★ return ★ of { ⋯ }"} + (^TypeCase (^Ann (^NAT) (^TYPE 0)) (^TYPE 0) empty (^NAT)) + "type-case ℕ ∷ ★ return ★ of { _ ⇒ ℕ }" + "type-case Nat :: Type return Type of { _ => Nat }" ], + skipWith "(todo: print user-written redundant annotations)" $ "annotations" :- [ testPrettyE [<] [<] (^Ann (^FT "a" 0) (^FT "A" 0)) @@ -235,6 +236,6 @@ tests = "pretty printing terms" :- [ testPrettyE [<] [<] (^Ann (^Arr One (^FT "A" 0) (^FT "A" 0)) (^TYPE 7)) "(1.A → A) ∷ ★⁷" - "(1.A -> A) :: Type 7" + "(1.A -> A) :: Type^7" ] ] diff --git a/tests/Tests/Reduce.idr b/tests/Tests/Reduce.idr index 53404e4..0635199 100644 --- a/tests/Tests/Reduce.idr +++ b/tests/Tests/Reduce.idr @@ -2,6 +2,7 @@ module Tests.Reduce import Quox.Syntax as Lib import Quox.Equal +import Control.Monad.ST.Extra import TypingImpls import AstExtra import TAP @@ -11,13 +12,21 @@ import Control.Eff %hide Pretty.App +runWhnf : Eff Whnf a -> Either Error a +runWhnf act = runSTErr $ do + runEff act $ with Union.(::) + [handleExcept (\e => stLeft e), + handleStateSTRef !(newSTRef' 0), + handleLogDiscardST !(newSTRef' 0)] + parameters {0 isRedex : RedexTest tm} {auto _ : CanWhnf tm isRedex} {d, n : Nat} {auto _ : (Eq (tm d n), Show (tm d n))} {default empty defs : Definitions} + {default SOne sg : SQty} private testWhnf : String -> WhnfContext d n -> tm d n -> tm d n -> Test testWhnf label ctx from to = test "\{label} (whnf)" $ do - result <- mapFst toInfo $ runWhnf $ whnf0 defs ctx from + result <- mapFst toInfo $ runWhnf $ whnf0 defs ctx sg from unless (result == to) $ Left [("exp", show to), ("got", show result)] private @@ -25,8 +34,8 @@ parameters {0 isRedex : RedexTest tm} {auto _ : CanWhnf tm isRedex} {d, n : Nat} testNoStep label ctx e = testWhnf label ctx e e private -ctx : Context (\n => (BindName, Term 0 n)) n -> WhnfContext 0 n -ctx xs = let (ns, ts) = unzip xs in MkWhnfContext [<] ns ts +ctx : {n : Nat} -> Context (\n => (BindName, Term 0 n)) n -> WhnfContext 0 n +ctx xs = let (ns, ts) = unzip xs in MkWhnfContext [<] ns (locals ts) export @@ -45,7 +54,7 @@ tests = "whnf" :- [ ], "neutrals" :- [ - testNoStep "x" (ctx [< ("A", ^Nat)]) $ ^BV 0, + testNoStep "x" (ctx [< ("A", ^NAT)]) $ ^BV 0, testNoStep "a" empty $ ^F "a" 0, testNoStep "f a" empty $ ^App (^F "f" 0) (^FT "a" 0), testNoStep "★₀ ∷ ★₁" empty $ ^Ann (^TYPE 0) (^TYPE 1) @@ -66,21 +75,21 @@ tests = "whnf" :- [ "definitions" :- [ testWhnf "a (transparent)" empty - {defs = fromList [("a", ^mkDef gzero (^TYPE 1) (^TYPE 0))]} + {defs = fromList [("a", ^mkDef GZero (^TYPE 1) (^TYPE 0) Nothing False)]} (^F "a" 0) (^Ann (^TYPE 0) (^TYPE 1)), testNoStep "a (opaque)" empty - {defs = fromList [("a", ^mkPostulate gzero (^TYPE 1))]} + {defs = fromList [("a", ^mkPostulate GZero (^TYPE 1) Nothing False)]} (^F "a" 0) ], "elim closure" :- [ - testWhnf "x{}" (ctx [< ("x", ^Nat)]) + testWhnf "x{}" (ctx [< ("x", ^NAT)]) (CloE (Sub (^BV 0) id)) (^BV 0), testWhnf "x{a/x}" empty (CloE (Sub (^BV 0) (^F "a" 0 ::: id))) (^F "a" 0), - testWhnf "x{a/y}" (ctx [< ("x", ^Nat)]) + testWhnf "x{a/y}" (ctx [< ("x", ^NAT)]) (CloE (Sub (^BV 0) (^BV 0 ::: ^F "a" 0 ::: id))) (^BV 0), testWhnf "x{(y{a/y})/x}" empty @@ -89,7 +98,7 @@ tests = "whnf" :- [ testWhnf "(x y){f/x,a/y}" empty (CloE (Sub (^App (^BV 0) (^BVT 1)) (^F "f" 0 ::: ^F "a" 0 ::: id))) (^App (^F "f" 0) (^FT "a" 0)), - testWhnf "(y ∷ x){A/x}" (ctx [< ("x", ^Nat)]) + testWhnf "(y ∷ x){A/x}" (ctx [< ("x", ^NAT)]) (CloE (Sub (^Ann (^BVT 1) (^BVT 0)) (^F "A" 0 ::: id))) (^BV 0), testWhnf "(y ∷ x){A/x,a/y}" empty @@ -122,10 +131,10 @@ tests = "whnf" :- [ ^App (^F "f" 0) (E $ ^App (^Ann (^LamY "x" (^BVT 0)) (^Arr One (^FT "A" 0) (^FT "A" 0))) (^FT "a" 0)), - testNoStep "λx. (y x){x/x,a/y}" (ctx [< ("y", ^Nat)]) $ + testNoStep "λx. (y x){x/x,a/y}" (ctx [< ("y", ^NAT)]) $ ^LamY "x" (CloT $ Sub (E $ ^App (^BV 1) (^BVT 0)) (^BV 0 ::: ^F "a" 0 ::: id)), - testNoStep "f (y x){x/x,a/y}" (ctx [< ("y", ^Nat)]) $ + testNoStep "f (y x){x/x,a/y}" (ctx [< ("y", ^NAT)]) $ ^App (^F "f" 0) (CloT (Sub (E $ ^App (^BV 1) (^BVT 0)) (^BV 0 ::: ^F "a" 0 ::: id))) diff --git a/tests/Tests/Typechecker.idr b/tests/Tests/Typechecker.idr index 248d415..42af71e 100644 --- a/tests/Tests/Typechecker.idr +++ b/tests/Tests/Typechecker.idr @@ -2,6 +2,7 @@ module Tests.Typechecker import Quox.Syntax import Quox.Typechecker as Lib +import Control.Monad.ST import public TypingImpls import TAP import Quox.EffExtra @@ -30,10 +31,10 @@ ToInfo Error' where ("wanted", show good), ("wanted", show bad)] -0 M : Type -> Type -M = Eff [Except Error', DefsReader] +0 Test : List (Type -> Type) +Test = [Except Error', DefsReader] -inj : TC a -> M a +inj : Eff TC a -> Eff Test a inj act = rethrow $ mapFst TCError $ runTC !(askAt DEFS) act @@ -78,7 +79,7 @@ sndDef = (SY [< "x", "y"] $ ^BVT 0)))) nat : Term d n -nat = ^Nat +nat = ^NAT apps : Elim d n -> List (Term d n) -> Elim d n apps = foldl (\f, s => ^App f s) @@ -86,56 +87,56 @@ apps = foldl (\f, s => ^App f s) defGlobals : Definitions defGlobals = fromList - [("A", ^mkPostulate gzero (^TYPE 0)), - ("B", ^mkPostulate gzero (^TYPE 0)), - ("C", ^mkPostulate gzero (^TYPE 1)), - ("D", ^mkPostulate gzero (^TYPE 1)), - ("P", ^mkPostulate gzero (^Arr Any (^FT "A" 0) (^TYPE 0))), - ("a", ^mkPostulate gany (^FT "A" 0)), - ("a'", ^mkPostulate gany (^FT "A" 0)), - ("b", ^mkPostulate gany (^FT "B" 0)), - ("c", ^mkPostulate gany (^FT "C" 0)), - ("d", ^mkPostulate gany (^FT "D" 0)), - ("f", ^mkPostulate gany (^Arr One (^FT "A" 0) (^FT "A" 0))), - ("fω", ^mkPostulate gany (^Arr Any (^FT "A" 0) (^FT "A" 0))), - ("g", ^mkPostulate gany (^Arr One (^FT "A" 0) (^FT "B" 0))), - ("f2", ^mkPostulate gany + [("A", mkPostulate GZero (^TYPE 0)), + ("B", mkPostulate GZero (^TYPE 0)), + ("C", mkPostulate GZero (^TYPE 1)), + ("D", mkPostulate GZero (^TYPE 1)), + ("P", mkPostulate GZero (^Arr Any (^FT "A" 0) (^TYPE 0))), + ("a", mkPostulate GAny (^FT "A" 0)), + ("a'", mkPostulate GAny (^FT "A" 0)), + ("b", mkPostulate GAny (^FT "B" 0)), + ("c", mkPostulate GAny (^FT "C" 0)), + ("d", mkPostulate GAny (^FT "D" 0)), + ("f", mkPostulate GAny (^Arr One (^FT "A" 0) (^FT "A" 0))), + ("fω", mkPostulate GAny (^Arr Any (^FT "A" 0) (^FT "A" 0))), + ("g", mkPostulate GAny (^Arr One (^FT "A" 0) (^FT "B" 0))), + ("f2", mkPostulate GAny (^Arr One (^FT "A" 0) (^Arr One (^FT "A" 0) (^FT "B" 0)))), - ("p", ^mkPostulate gany + ("p", mkPostulate GAny (^PiY One "x" (^FT "A" 0) (E $ ^App (^F "P" 0) (^BVT 0)))), - ("q", ^mkPostulate gany + ("q", mkPostulate GAny (^PiY One "x" (^FT "A" 0) (E $ ^App (^F "P" 0) (^BVT 0)))), - ("refl", ^mkDef gany reflTy reflDef), - ("fst", ^mkDef gany fstTy fstDef), - ("snd", ^mkDef gany sndTy sndDef)] + ("refl", mkDef GAny reflTy reflDef), + ("fst", mkDef GAny fstTy fstDef), + ("snd", mkDef GAny sndTy sndDef)] -parameters (label : String) (act : Lazy (M ())) +parameters (label : String) (act : Lazy (Eff Test ())) {default defGlobals globals : Definitions} testTC : Test testTC = test label {e = Error', a = ()} $ - extract $ runExcept $ runReaderAt DEFS globals act + runEff act [handleExcept (\e => Left e), handleReaderConst globals] testTCFail : Test testTCFail = testThrows label (const True) $ - (extract $ runExcept $ runReaderAt DEFS globals act) $> "()" + runEff act [handleExcept (\e => Left e), handleReaderConst globals] $> "ok" -inferredTypeEq : TyContext d n -> (exp, got : Term d n) -> M () +inferredTypeEq : TyContext d n -> (exp, got : Term d n) -> Eff Test () inferredTypeEq ctx exp got = wrapErr (const $ WrongInfer ctx.dnames ctx.tnames exp got) $ inj $ lift $ equalType noLoc ctx exp got -qoutEq : (exp, got : QOutput n) -> M () +qoutEq : (exp, got : QOutput n) -> Eff Test () qoutEq qout res = unless (qout == res) $ throw $ WrongQOut qout res -inferAs : TyContext d n -> (sg : SQty) -> Elim d n -> Term d n -> M () +inferAs : TyContext d n -> (sg : SQty) -> Elim d n -> Term d n -> Eff Test () inferAs ctx@(MkTyContext {dctx, _}) sg e ty = do case !(inj $ infer ctx sg e) of Just res => inferredTypeEq ctx ty res.type Nothing => pure () inferAsQ : TyContext d n -> (sg : SQty) -> - Elim d n -> Term d n -> QOutput n -> M () + Elim d n -> Term d n -> QOutput n -> Eff Test () inferAsQ ctx@(MkTyContext {dctx, _}) sg e ty qout = do case !(inj $ infer ctx sg e) of Just res => do @@ -143,20 +144,20 @@ inferAsQ ctx@(MkTyContext {dctx, _}) sg e ty qout = do qoutEq qout res.qout Nothing => pure () -infer_ : TyContext d n -> (sg : SQty) -> Elim d n -> M () +infer_ : TyContext d n -> (sg : SQty) -> Elim d n -> Eff Test () infer_ ctx sg e = ignore $ inj $ infer ctx sg e checkQ : TyContext d n -> SQty -> - Term d n -> Term d n -> QOutput n -> M () + Term d n -> Term d n -> QOutput n -> Eff Test () checkQ ctx@(MkTyContext {dctx, _}) sg s ty qout = do case !(inj $ check ctx sg s ty) of Just res => qoutEq qout res Nothing => pure () -check_ : TyContext d n -> SQty -> Term d n -> Term d n -> M () +check_ : TyContext d n -> SQty -> Term d n -> Term d n -> Eff Test () check_ ctx sg s ty = ignore $ inj $ check ctx sg s ty -checkType_ : TyContext d n -> Term d n -> Maybe Universe -> M () +checkType_ : TyContext d n -> Term d n -> Maybe Universe -> Eff Test () checkType_ ctx s u = inj $ checkType ctx s u @@ -167,7 +168,7 @@ tests = "typechecker" :- [ testTC "0 · ★₀ ⇐ ★₁ # by checkType" $ checkType_ empty (^TYPE 0) (Just 1), testTC "0 · ★₀ ⇐ ★₁ # by check" $ - check_ empty szero (^TYPE 0) (^TYPE 1), + check_ empty SZero (^TYPE 0) (^TYPE 1), testTC "0 · ★₀ ⇐ ★₂" $ checkType_ empty (^TYPE 0) (Just 2), testTC "0 · ★₀ ⇐ ★_" $ @@ -179,241 +180,241 @@ tests = "typechecker" :- [ testTC "0=1 ⊢ 0 · ★₁ ⇐ ★₀" $ checkType_ empty01 (^TYPE 1) (Just 0), testTCFail "1 · ★₀ ⇍ ★₁ # by check" $ - check_ empty sone (^TYPE 0) (^TYPE 1) + check_ empty SOne (^TYPE 0) (^TYPE 1) ], "function types" :- [ note "A, B : ★₀; C, D : ★₁; P : 0.A → ★₀", testTC "0 · 1.A → B ⇐ ★₀" $ - check_ empty szero (^Arr One (^FT "A" 0) (^FT "B" 0)) (^TYPE 0), + check_ empty SZero (^Arr One (^FT "A" 0) (^FT "B" 0)) (^TYPE 0), note "subtyping", testTC "0 · 1.A → B ⇐ ★₁" $ - check_ empty szero (^Arr One (^FT "A" 0) (^FT "B" 0)) (^TYPE 1), + check_ empty SZero (^Arr One (^FT "A" 0) (^FT "B" 0)) (^TYPE 1), testTC "0 · 1.C → D ⇐ ★₁" $ - check_ empty szero (^Arr One (^FT "C" 0) (^FT "D" 0)) (^TYPE 1), + check_ empty SZero (^Arr One (^FT "C" 0) (^FT "D" 0)) (^TYPE 1), testTCFail "0 · 1.C → D ⇍ ★₀" $ - check_ empty szero (^Arr One (^FT "C" 0) (^FT "D" 0)) (^TYPE 0), + check_ empty SZero (^Arr One (^FT "C" 0) (^FT "D" 0)) (^TYPE 0), testTC "0 · 1.(x : A) → P x ⇐ ★₀" $ - check_ empty szero + check_ empty SZero (^PiY One "x" (^FT "A" 0) (E $ ^App (^F "P" 0) (^BVT 0))) (^TYPE 0), testTCFail "0 · 1.A → P ⇍ ★₀" $ - check_ empty szero (^Arr One (^FT "A" 0) (^FT "P" 0)) (^TYPE 0), + check_ empty SZero (^Arr One (^FT "A" 0) (^FT "P" 0)) (^TYPE 0), testTC "0=1 ⊢ 0 · 1.A → P ⇐ ★₀" $ - check_ empty01 szero (^Arr One (^FT "A" 0) (^FT "P" 0)) (^TYPE 0) + check_ empty01 SZero (^Arr One (^FT "A" 0) (^FT "P" 0)) (^TYPE 0) ], "pair types" :- [ testTC "0 · A × A ⇐ ★₀" $ - check_ empty szero (^And (^FT "A" 0) (^FT "A" 0)) (^TYPE 0), + check_ empty SZero (^And (^FT "A" 0) (^FT "A" 0)) (^TYPE 0), testTCFail "0 · A × P ⇍ ★₀" $ - check_ empty szero (^And (^FT "A" 0) (^FT "P" 0)) (^TYPE 0), + check_ empty SZero (^And (^FT "A" 0) (^FT "P" 0)) (^TYPE 0), testTC "0 · (x : A) × P x ⇐ ★₀" $ - check_ empty szero + check_ empty SZero (^SigY "x" (^FT "A" 0) (E $ ^App (^F "P" 0) (^BVT 0))) (^TYPE 0), testTC "0 · (x : A) × P x ⇐ ★₁" $ - check_ empty szero + check_ empty SZero (^SigY "x" (^FT "A" 0) (E $ ^App (^F "P" 0) (^BVT 0))) (^TYPE 1), testTC "0 · (A : ★₀) × A ⇐ ★₁" $ - check_ empty szero + check_ empty SZero (^SigY "A" (^TYPE 0) (^BVT 0)) (^TYPE 1), testTCFail "0 · (A : ★₀) × A ⇍ ★₀" $ - check_ empty szero + check_ empty SZero (^SigY "A" (^TYPE 0) (^BVT 0)) (^TYPE 0), testTCFail "1 · A × A ⇍ ★₀" $ - check_ empty sone + check_ empty SOne (^And (^FT "A" 0) (^FT "A" 0)) (^TYPE 0) ], "enum types" :- [ - testTC "0 · {} ⇐ ★₀" $ check_ empty szero (^enum []) (^TYPE 0), - testTC "0 · {} ⇐ ★₃" $ check_ empty szero (^enum []) (^TYPE 3), + testTC "0 · {} ⇐ ★₀" $ check_ empty SZero (^enum []) (^TYPE 0), + testTC "0 · {} ⇐ ★₃" $ check_ empty SZero (^enum []) (^TYPE 3), testTC "0 · {a,b,c} ⇐ ★₀" $ - check_ empty szero (^enum ["a", "b", "c"]) (^TYPE 0), + check_ empty SZero (^enum ["a", "b", "c"]) (^TYPE 0), testTC "0 · {a,b,c} ⇐ ★₃" $ - check_ empty szero (^enum ["a", "b", "c"]) (^TYPE 3), - testTCFail "1 · {} ⇍ ★₀" $ check_ empty sone (^enum []) (^TYPE 0), - testTC "0=1 ⊢ 1 · {} ⇐ ★₀" $ check_ empty01 sone (^enum []) (^TYPE 0) + check_ empty SZero (^enum ["a", "b", "c"]) (^TYPE 3), + testTCFail "1 · {} ⇍ ★₀" $ check_ empty SOne (^enum []) (^TYPE 0), + testTC "0=1 ⊢ 1 · {} ⇐ ★₀" $ check_ empty01 SOne (^enum []) (^TYPE 0) ], "free vars" :- [ note "A : ★₀", testTC "0 · A ⇒ ★₀" $ - inferAs empty szero (^F "A" 0) (^TYPE 0), + inferAs empty SZero (^F "A" 0) (^TYPE 0), testTC "0 · [A] ⇐ ★₀" $ - check_ empty szero (^FT "A" 0) (^TYPE 0), + check_ empty SZero (^FT "A" 0) (^TYPE 0), note "subtyping", testTC "0 · [A] ⇐ ★₁" $ - check_ empty szero (^FT "A" 0) (^TYPE 1), + check_ empty SZero (^FT "A" 0) (^TYPE 1), note "(fail) runtime-relevant type", testTCFail "1 · A ⇏ ★₀" $ - infer_ empty sone (^F "A" 0), + infer_ empty SOne (^F "A" 0), testTC "1 . f ⇒ 1.A → A" $ - inferAs empty sone (^F "f" 0) (^Arr One (^FT "A" 0) (^FT "A" 0)), + inferAs empty SOne (^F "f" 0) (^Arr One (^FT "A" 0) (^FT "A" 0)), testTC "1 . f ⇐ 1.A → A" $ - check_ empty sone (^FT "f" 0) (^Arr One (^FT "A" 0) (^FT "A" 0)), + check_ empty SOne (^FT "f" 0) (^Arr One (^FT "A" 0) (^FT "A" 0)), testTCFail "1 . f ⇍ 0.A → A" $ - check_ empty sone (^FT "f" 0) (^Arr Zero (^FT "A" 0) (^FT "A" 0)), + check_ empty SOne (^FT "f" 0) (^Arr Zero (^FT "A" 0) (^FT "A" 0)), testTCFail "1 . f ⇍ ω.A → A" $ - check_ empty sone (^FT "f" 0) (^Arr Any (^FT "A" 0) (^FT "A" 0)), + check_ empty SOne (^FT "f" 0) (^Arr Any (^FT "A" 0) (^FT "A" 0)), testTC "1 . (λ x ⇒ f x) ⇐ 1.A → A" $ - check_ empty sone + check_ empty SOne (^LamY "x" (E $ ^App (^F "f" 0) (^BVT 0))) (^Arr One (^FT "A" 0) (^FT "A" 0)), testTC "1 . (λ x ⇒ f x) ⇐ ω.A → A" $ - check_ empty sone + check_ empty SOne (^LamY "x" (E $ ^App (^F "f" 0) (^BVT 0))) (^Arr Any (^FT "A" 0) (^FT "A" 0)), testTCFail "1 . (λ x ⇒ f x) ⇍ 0.A → A" $ - check_ empty sone + check_ empty SOne (^LamY "x" (E $ ^App (^F "f" 0) (^BVT 0))) (^Arr Zero (^FT "A" 0) (^FT "A" 0)), testTC "1 . fω ⇒ ω.A → A" $ - inferAs empty sone (^F "fω" 0) (^Arr Any (^FT "A" 0) (^FT "A" 0)), + inferAs empty SOne (^F "fω" 0) (^Arr Any (^FT "A" 0) (^FT "A" 0)), testTC "1 . (λ x ⇒ fω x) ⇐ ω.A → A" $ - check_ empty sone + check_ empty SOne (^LamY "x" (E $ ^App (^F "fω" 0) (^BVT 0))) (^Arr Any (^FT "A" 0) (^FT "A" 0)), testTCFail "1 . (λ x ⇒ fω x) ⇍ 0.A → A" $ - check_ empty sone + check_ empty SOne (^LamY "x" (E $ ^App (^F "fω" 0) (^BVT 0))) (^Arr Zero (^FT "A" 0) (^FT "A" 0)), testTCFail "1 . (λ x ⇒ fω x) ⇍ 1.A → A" $ - check_ empty sone + check_ empty SOne (^LamY "x" (E $ ^App (^F "fω" 0) (^BVT 0))) (^Arr One (^FT "A" 0) (^FT "A" 0)), note "refl : (0·A : ★₀) → (1·x : A) → (x ≡ x : A) ≔ (λ A x ⇒ δ _ ⇒ x)", - testTC "1 · refl ⇒ ⋯" $ inferAs empty sone (^F "refl" 0) reflTy, - testTC "1 · [refl] ⇐ ⋯" $ check_ empty sone (^FT "refl" 0) reflTy + testTC "1 · refl ⇒ ⋯" $ inferAs empty SOne (^F "refl" 0) reflTy, + testTC "1 · [refl] ⇐ ⋯" $ check_ empty SOne (^FT "refl" 0) reflTy ], "bound vars" :- [ testTC "x : A ⊢ 1 · x ⇒ A ⊳ 1·x" $ - inferAsQ (ctx [< ("x", ^FT "A" 0)]) sone + inferAsQ (ctx [< ("x", ^FT "A" 0)]) SOne (^BV 0) (^FT "A" 0) [< One], testTC "x : A ⊢ 1 · x ⇐ A ⊳ 1·x" $ - checkQ (ctx [< ("x", ^FT "A" 0)]) sone (^BVT 0) (^FT "A" 0) [< One], + checkQ (ctx [< ("x", ^FT "A" 0)]) SOne (^BVT 0) (^FT "A" 0) [< One], note "f2 : 1.A → 1.A → B", testTC "x : A ⊢ 1 · f2 x x ⇒ B ⊳ ω·x" $ - inferAsQ (ctx [< ("x", ^FT "A" 0)]) sone + inferAsQ (ctx [< ("x", ^FT "A" 0)]) SOne (^App (^App (^F "f2" 0) (^BVT 0)) (^BVT 0)) (^FT "B" 0) [< Any] ], "lambda" :- [ note "linear & unrestricted identity", testTC "1 · (λ x ⇒ x) ⇐ A → A" $ - check_ empty sone + check_ empty SOne (^LamY "x" (^BVT 0)) (^Arr One (^FT "A" 0) (^FT "A" 0)), testTC "1 · (λ x ⇒ x) ⇐ ω.A → A" $ - check_ empty sone + check_ empty SOne (^LamY "x" (^BVT 0)) (^Arr Any (^FT "A" 0) (^FT "A" 0)), note "(fail) zero binding used relevantly", testTCFail "1 · (λ x ⇒ x) ⇍ 0.A → A" $ - check_ empty sone + check_ empty SOne (^LamY "x" (^BVT 0)) (^Arr Zero (^FT "A" 0) (^FT "A" 0)), note "(but ok in overall erased context)", testTC "0 · (λ x ⇒ x) ⇐ A ⇾ A" $ - check_ empty szero + check_ empty SZero (^LamY "x" (^BVT 0)) (^Arr Zero (^FT "A" 0) (^FT "A" 0)), testTC "1 · (λ A x ⇒ refl A x) ⇐ ⋯ # (type of refl)" $ - check_ empty sone + check_ empty SOne (^LamY "A" (^LamY "x" (E $ ^App (^App (^F "refl" 0) (^BVT 1)) (^BVT 0)))) reflTy, testTC "1 · (λ A x ⇒ δ i ⇒ x) ⇐ ⋯ # (def. and type of refl)" $ - check_ empty sone reflDef reflTy + check_ empty SOne reflDef reflTy ], "pairs" :- [ testTC "1 · (a, a) ⇐ A × A" $ - check_ empty sone + check_ empty SOne (^Pair (^FT "a" 0) (^FT "a" 0)) (^And (^FT "A" 0) (^FT "A" 0)), testTC "x : A ⊢ 1 · (x, x) ⇐ A × A ⊳ ω·x" $ - checkQ (ctx [< ("x", ^FT "A" 0)]) sone + checkQ (ctx [< ("x", ^FT "A" 0)]) SOne (^Pair (^BVT 0) (^BVT 0)) (^And (^FT "A" 0) (^FT "A" 0)) [< Any], testTC "1 · (a, δ i ⇒ a) ⇐ (x : A) × (x ≡ a)" $ - check_ empty sone + check_ empty SOne (^Pair (^FT "a" 0) (^DLamN (^FT "a" 0))) (^SigY "x" (^FT "A" 0) (^Eq0 (^FT "A" 0) (^BVT 0) (^FT "a" 0))) ], "unpairing" :- [ testTC "x : A × A ⊢ 1 · (case1 x return B of (l,r) ⇒ f2 l r) ⇒ B ⊳ 1·x" $ - inferAsQ (ctx [< ("x", ^And (^FT "A" 0) (^FT "A" 0))]) sone + inferAsQ (ctx [< ("x", ^And (^FT "A" 0) (^FT "A" 0))]) SOne (^CasePair One (^BV 0) (SN $ ^FT "B" 0) (SY [< "l", "r"] $ E $ ^App (^App (^F "f2" 0) (^BVT 1)) (^BVT 0))) (^FT "B" 0) [< One], testTC "x : A × A ⊢ 1 · (caseω x return B of (l,r) ⇒ f2 l r) ⇒ B ⊳ ω·x" $ - inferAsQ (ctx [< ("x", ^And (^FT "A" 0) (^FT "A" 0))]) sone + inferAsQ (ctx [< ("x", ^And (^FT "A" 0) (^FT "A" 0))]) SOne (^CasePair Any (^BV 0) (SN $ ^FT "B" 0) (SY [< "l", "r"] $ E $ ^App (^App (^F "f2" 0) (^BVT 1)) (^BVT 0))) (^FT "B" 0) [< Any], testTC "x : A × A ⊢ 0 · (caseω x return B of (l,r) ⇒ f2 l r) ⇒ B ⊳ 0·x" $ - inferAsQ (ctx [< ("x", ^And (^FT "A" 0) (^FT "A" 0))]) szero + inferAsQ (ctx [< ("x", ^And (^FT "A" 0) (^FT "A" 0))]) SZero (^CasePair Any (^BV 0) (SN $ ^FT "B" 0) (SY [< "l", "r"] $ E $ ^App (^App (^F "f2" 0) (^BVT 1)) (^BVT 0))) (^FT "B" 0) [< Zero], testTCFail "x : A × A ⊢ 1 · (case0 x return B of (l,r) ⇒ f2 l r) ⇏" $ - infer_ (ctx [< ("x", ^And (^FT "A" 0) (^FT "A" 0))]) sone + infer_ (ctx [< ("x", ^And (^FT "A" 0) (^FT "A" 0))]) SOne (^CasePair Zero (^BV 0) (SN $ ^FT "B" 0) (SY [< "l", "r"] $ E $ ^App (^App (^F "f2" 0) (^BVT 1)) (^BVT 0))), testTC "x : A × B ⊢ 1 · (caseω x return A of (l,r) ⇒ l) ⇒ A ⊳ ω·x" $ - inferAsQ (ctx [< ("x", ^And (^FT "A" 0) (^FT "B" 0))]) sone + inferAsQ (ctx [< ("x", ^And (^FT "A" 0) (^FT "B" 0))]) SOne (^CasePair Any (^BV 0) (SN $ ^FT "A" 0) (SY [< "l", "r"] $ ^BVT 1)) (^FT "A" 0) [< Any], testTC "x : A × B ⊢ 0 · (case1 x return A of (l,r) ⇒ l) ⇒ A ⊳ 0·x" $ - inferAsQ (ctx [< ("x", ^And (^FT "A" 0) (^FT "B" 0))]) szero + inferAsQ (ctx [< ("x", ^And (^FT "A" 0) (^FT "B" 0))]) SZero (^CasePair One (^BV 0) (SN $ ^FT "A" 0) (SY [< "l", "r"] $ ^BVT 1)) (^FT "A" 0) [< Zero], testTCFail "x : A × B ⊢ 1 · (case1 x return A of (l,r) ⇒ l) ⇏" $ - infer_ (ctx [< ("x", ^And (^FT "A" 0) (^FT "B" 0))]) sone + infer_ (ctx [< ("x", ^And (^FT "A" 0) (^FT "B" 0))]) SOne (^CasePair One (^BV 0) (SN $ ^FT "A" 0) (SY [< "l", "r"] $ ^BVT 1)), note "fst : 0.(A : ★₀) → 0.(B : ω.A → ★₀) → ω.((x : A) × B x) → A", note " ≔ (λ A B p ⇒ caseω p return A of (x, y) ⇒ x)", testTC "0 · ‹type of fst› ⇐ ★₁" $ - check_ empty szero fstTy (^TYPE 1), + check_ empty SZero fstTy (^TYPE 1), testTC "1 · ‹def of fst› ⇐ ‹type of fst›" $ - check_ empty sone fstDef fstTy, + check_ empty SOne fstDef fstTy, note "snd : 0.(A : ★₀) → 0.(B : A ↠ ★₀) → ω.(p : (x : A) × B x) → B (fst A B p)", note " ≔ (λ A B p ⇒ caseω p return p ⇒ B (fst A B p) of (x, y) ⇒ y)", testTC "0 · ‹type of snd› ⇐ ★₁" $ - check_ empty szero sndTy (^TYPE 1), + check_ empty SZero sndTy (^TYPE 1), testTC "1 · ‹def of snd› ⇐ ‹type of snd›" $ - check_ empty sone sndDef sndTy, + check_ empty SOne sndDef sndTy, testTC "0 · snd A P ⇒ ω.(p : (x : A) × P x) → P (fst A P p)" $ - inferAs empty szero + inferAs empty SZero (^App (^App (^F "snd" 0) (^FT "A" 0)) (^FT "P" 0)) (^PiY Any "p" (^SigY "x" (^FT "A" 0) (E $ ^App (^F "P" 0) (^BVT 0))) (E $ ^App (^F "P" 0) (E $ apps (^F "fst" 0) [^FT "A" 0, ^FT "P" 0, ^BVT 0]))), testTC "1 · fst A (λ _ ⇒ B) (a, b) ⇒ A" $ - inferAs empty sone + inferAs empty SOne (apps (^F "fst" 0) [^FT "A" 0, ^LamN (^FT "B" 0), ^Pair (^FT "a" 0) (^FT "b" 0)]) (^FT "A" 0), testTC "1 · fst¹ A (λ _ ⇒ B) (a, b) ⇒ A" $ - inferAs empty sone + inferAs empty SOne (apps (^F "fst" 1) [^FT "A" 0, ^LamN (^FT "B" 0), ^Pair (^FT "a" 0) (^FT "b" 0)]) (^FT "A" 0), testTCFail "1 · fst ★⁰ (λ _ ⇒ ★⁰) (A, B) ⇏" $ - infer_ empty sone + infer_ empty SOne (apps (^F "fst" 0) [^TYPE 0, ^LamN (^TYPE 0), ^Pair (^FT "A" 0) (^FT "B" 0)]), testTC "0 · fst¹ ★⁰ (λ _ ⇒ ★⁰) (A, B) ⇒ ★⁰" $ - inferAs empty szero + inferAs empty SZero (apps (^F "fst" 1) [^TYPE 0, ^LamN (^TYPE 0), ^Pair (^FT "A" 0) (^FT "B" 0)]) (^TYPE 0) @@ -421,23 +422,23 @@ tests = "typechecker" :- [ "enums" :- [ testTC "1 · 'a ⇐ {a}" $ - check_ empty sone (^Tag "a") (^enum ["a"]), + check_ empty SOne (^Tag "a") (^enum ["a"]), testTC "1 · 'a ⇐ {a, b, c}" $ - check_ empty sone (^Tag "a") (^enum ["a", "b", "c"]), + check_ empty SOne (^Tag "a") (^enum ["a", "b", "c"]), testTCFail "1 · 'a ⇍ {b, c}" $ - check_ empty sone (^Tag "a") (^enum ["b", "c"]), + check_ empty SOne (^Tag "a") (^enum ["b", "c"]), testTC "0=1 ⊢ 1 · 'a ⇐ {b, c}" $ - check_ empty01 sone (^Tag "a") (^enum ["b", "c"]) + check_ empty01 SOne (^Tag "a") (^enum ["b", "c"]) ], "enum matching" :- [ testTC "ω.x : {tt} ⊢ 1 · case1 x return {tt} of { 'tt ⇒ 'tt } ⇒ {tt}" $ - inferAs (ctx [< ("x", ^enum ["tt"])]) sone + inferAs (ctx [< ("x", ^enum ["tt"])]) SOne (^CaseEnum One (^BV 0) (SN (^enum ["tt"])) (singleton "tt" (^Tag "tt"))) (^enum ["tt"]), testTCFail "ω.x : {tt} ⊢ 1 · case1 x return {tt} of { 'ff ⇒ 'tt } ⇏" $ - infer_ (ctx [< ("x", ^enum ["tt"])]) sone + infer_ (ctx [< ("x", ^enum ["tt"])]) SOne (^CaseEnum One (^BV 0) (SN (^enum ["tt"])) (singleton "ff" (^Tag "tt"))) ], @@ -446,44 +447,44 @@ tests = "typechecker" :- [ testTC "0 · ℕ ≡ ℕ : ★₀ ⇐ Type" $ checkType_ empty (^Eq0 (^TYPE 0) nat nat) Nothing, testTC "0 · ℕ ≡ ℕ : ★₀ ⇐ ★₁" $ - check_ empty szero (^Eq0 (^TYPE 0) nat nat) (^TYPE 1), + check_ empty SZero (^Eq0 (^TYPE 0) nat nat) (^TYPE 1), testTCFail "1 · ℕ ≡ ℕ : ★₀ ⇍ ★₁" $ - check_ empty sone (^Eq0 (^TYPE 0) nat nat) (^TYPE 1), + check_ empty SOne (^Eq0 (^TYPE 0) nat nat) (^TYPE 1), testTC "0 · ℕ ≡ ℕ : ★₀ ⇐ ★₂" $ - check_ empty szero (^Eq0 (^TYPE 0) nat nat) (^TYPE 2), + check_ empty SZero (^Eq0 (^TYPE 0) nat nat) (^TYPE 2), testTC "0 · ℕ ≡ ℕ : ★₁ ⇐ ★₂" $ - check_ empty szero (^Eq0 (^TYPE 1) nat nat) (^TYPE 2), + check_ empty SZero (^Eq0 (^TYPE 1) nat nat) (^TYPE 2), testTCFail "0 · ℕ ≡ ℕ : ★₁ ⇍ ★₁" $ - check_ empty szero (^Eq0 (^TYPE 1) nat nat) (^TYPE 1), + check_ empty SZero (^Eq0 (^TYPE 1) nat nat) (^TYPE 1), testTCFail "0 ≡ 'beep : {beep} ⇍ Type" $ checkType_ empty (^Eq0 (^enum ["beep"]) (^Zero) (^Tag "beep")) Nothing, testTC "ab : A ≡ B : ★₀, x : A, y : B ⊢ 0 · Eq [i ⇒ ab i] x y ⇐ ★₀" $ check_ (ctx [< ("ab", ^Eq0 (^TYPE 0) (^FT "A" 0) (^FT "B" 0)), - ("x", ^FT "A" 0), ("y", ^FT "B" 0)]) szero + ("x", ^FT "A" 0), ("y", ^FT "B" 0)]) SZero (^EqY "i" (E $ ^DApp (^BV 2) (^BV 0)) (^BVT 1) (^BVT 0)) (^TYPE 0), testTCFail "ab : A ≡ B : ★₀, x : A, y : B ⊢ Eq [i ⇒ ab i] y x ⇍ Type" $ check_ (ctx [< ("ab", ^Eq0 (^TYPE 0) (^FT "A" 0) (^FT "B" 0)), - ("x", ^FT "A" 0), ("y", ^FT "B" 0)]) szero + ("x", ^FT "A" 0), ("y", ^FT "B" 0)]) SZero (^EqY "i" (E $ ^DApp (^BV 2) (^BV 0)) (^BVT 0) (^BVT 1)) (^TYPE 0) ], "equalities" :- [ testTC "1 · (δ i ⇒ a) ⇐ a ≡ a" $ - check_ empty sone (^DLamN (^FT "a" 0)) + check_ empty SOne (^DLamN (^FT "a" 0)) (^Eq0 (^FT "A" 0) (^FT "a" 0) (^FT "a" 0)), testTC "0 · (λ p q ⇒ δ i ⇒ p) ⇐ (ω·p q : a ≡ a') → p ≡ q # uip" $ - check_ empty szero + check_ empty SZero (^LamY "p" (^LamY "q" (^DLamN (^BVT 1)))) (^PiY Any "p" (^Eq0 (^FT "A" 0) (^FT "a" 0) (^FT "a" 0)) (^PiY Any "q" (^Eq0 (^FT "A" 0) (^FT "a" 0) (^FT "a" 0)) (^Eq0 (^Eq0 (^FT "A" 0) (^FT "a" 0) (^FT "a" 0)) (^BVT 1) (^BVT 0)))), testTC "0 · (λ p q ⇒ δ i ⇒ q) ⇐ (ω·p q : a ≡ a') → p ≡ q # uip(2)" $ - check_ empty szero + check_ empty SZero (^LamY "p" (^LamY "q" (^DLamN (^BVT 0)))) (^PiY Any "p" (^Eq0 (^FT "A" 0) (^FT "a" 0) (^FT "a" 0)) (^PiY Any "q" (^Eq0 (^FT "A" 0) (^FT "a" 0) (^FT "a" 0)) @@ -492,15 +493,15 @@ tests = "typechecker" :- [ ], "natural numbers" :- [ - testTC "0 · ℕ ⇐ ★₀" $ check_ empty szero nat (^TYPE 0), - testTC "0 · ℕ ⇐ ★₇" $ check_ empty szero nat (^TYPE 7), - testTCFail "1 · ℕ ⇍ ★₀" $ check_ empty sone nat (^TYPE 0), - testTC "1 · zero ⇐ ℕ" $ check_ empty sone (^Zero) nat, - testTCFail "1 · zero ⇍ ℕ×ℕ" $ check_ empty sone (^Zero) (^And nat nat), + testTC "0 · ℕ ⇐ ★₀" $ check_ empty SZero nat (^TYPE 0), + testTC "0 · ℕ ⇐ ★₇" $ check_ empty SZero nat (^TYPE 7), + testTCFail "1 · ℕ ⇍ ★₀" $ check_ empty SOne nat (^TYPE 0), + testTC "1 · zero ⇐ ℕ" $ check_ empty SOne (^Zero) nat, + testTCFail "1 · zero ⇍ ℕ×ℕ" $ check_ empty SOne (^Zero) (^And nat nat), testTC "ω·n : ℕ ⊢ 1 · succ n ⇐ ℕ" $ - check_ (ctx [< ("n", nat)]) sone (^Succ (^BVT 0)) nat, + check_ (ctx [< ("n", nat)]) SOne (^Succ (^BVT 0)) nat, testTC "1 · λ n ⇒ succ n ⇐ 1.ℕ → ℕ" $ - check_ empty sone + check_ empty SOne (^LamY "n" (^Succ (^BVT 0))) (^Arr One nat nat) ], @@ -509,7 +510,7 @@ tests = "typechecker" :- [ note "1 · λ n ⇒ case1 n return ℕ of { zero ⇒ 0; succ n ⇒ n }", note " ⇐ 1.ℕ → ℕ", testTC "pred" $ - check_ empty sone + check_ empty SOne (^LamY "n" (E $ ^CaseNat One Zero (^BV 0) (SN nat) (^Zero) (SY [< "n", ^BN Unused] $ ^BVT 1))) @@ -517,7 +518,7 @@ tests = "typechecker" :- [ note "1 · λ m n ⇒ case1 m return ℕ of { zero ⇒ n; succ _, 1.p ⇒ succ p }", note " ⇐ 1.ℕ → 1.ℕ → 1.ℕ", testTC "plus" $ - check_ empty sone + check_ empty SOne (^LamY "m" (^LamY "n" (E $ ^CaseNat One One (^BV 1) (SN nat) (^BVT 0) @@ -527,11 +528,11 @@ tests = "typechecker" :- [ "box types" :- [ testTC "0 · [0.ℕ] ⇐ ★₀" $ - check_ empty szero (^BOX Zero nat) (^TYPE 0), + check_ empty SZero (^BOX Zero nat) (^TYPE 0), testTC "0 · [0.★₀] ⇐ ★₁" $ - check_ empty szero (^BOX Zero (^TYPE 0)) (^TYPE 1), + check_ empty SZero (^BOX Zero (^TYPE 0)) (^TYPE 1), testTCFail "0 · [0.★₀] ⇍ ★₀" $ - check_ empty szero (^BOX Zero (^TYPE 0)) (^TYPE 0) + check_ empty SZero (^BOX Zero (^TYPE 0)) (^TYPE 0) ], todo "box values", @@ -539,7 +540,7 @@ tests = "typechecker" :- [ "type-case" :- [ testTC "0 · type-case ℕ ∷ ★₀ return ★₀ of { _ ⇒ ℕ } ⇒ ★₀" $ - inferAs empty szero + inferAs empty SZero (^TypeCase (^Ann nat (^TYPE 0)) (^TYPE 0) empty nat) (^TYPE 0) ], @@ -554,7 +555,7 @@ tests = "typechecker" :- [ note "1 · λ x y xy ⇒ δ i ⇒ p (xy i)", note " ⇐ (0·x y : A) → (1·xy : x ≡ y) → Eq [i ⇒ P (xy i)] (p x) (p y)", testTC "cong" $ - check_ empty sone + check_ empty SOne ([< "x", "y", "xy"] :\\ [< "i"] :\\% E (F "p" :@ E (BV 0 :% BV 0))) (PiY Zero "x" (FT "A") $ PiY Zero "y" (FT "A") $ @@ -567,7 +568,7 @@ tests = "typechecker" :- [ note "1 · λ eq ⇒ δ i ⇒ λ x ⇒ eq x i", note " ⇐ (1·eq : (1·x : A) → p x ≡ q x) → p ≡ q", testTC "funext" $ - check_ empty sone + check_ empty SOne ([< "eq"] :\\ [< "i"] :\\% [< "x"] :\\ E (BV 1 :@ BVT 0 :% BV 0)) (PiY One "eq" (PiY One "x" (FT "A") diff --git a/tests/TypingImpls.idr b/tests/TypingImpls.idr index e84ed32..c86ad66 100644 --- a/tests/TypingImpls.idr +++ b/tests/TypingImpls.idr @@ -3,19 +3,31 @@ module TypingImpls import TAP import public Quox.Typing import public Quox.Pretty +import Quox.Equal +import Quox.Typechecker +import Control.Monad.ST.Extra import PrettyExtra import Derive.Prelude %language ElabReflection -%runElab deriveIndexed "TyContext" [Show] -%runElab deriveIndexed "EqContext" [Show] -%runElab deriveIndexed "NameContexts" [Show] -%runElab derive "Error" [Show] - export ToInfo Error where toInfo err = let str = render (Opts 60) $ runPrettyDef $ prettyError True err in [("err", str)] + + +export +runEqual : Definitions -> Eff Equal a -> Either Error a +runEqual defs act = runSTErr $ do + runEff act $ with Union.(::) + [handleExcept (\e => stLeft e), + handleReaderConst defs, + handleStateSTRef !(newSTRef' 0), + handleLogDiscardST !(newSTRef' 0)] + +export +runTC : Definitions -> Eff TC a -> Either Error a +runTC = runEqual diff --git a/tests/on-hold/Tests/Lexer.idr b/tests/on-hold/Tests/Lexer.idr deleted file mode 100644 index c432360..0000000 --- a/tests/on-hold/Tests/Lexer.idr +++ /dev/null @@ -1,144 +0,0 @@ -module Tests.Lexer - -import Quox.Lexer -import TAP - - -RealError = Quox.Lexer.Error -%hide Quox.Lexer.Error - -export -ToInfo RealError where - toInfo (Err reason line col char) = - [("reason", show reason), - ("line", show line), - ("col", show col), - ("char", show char)] - -data Error -= LexerError RealError -| WrongAnswer (List Token) (List Token) -| TestFailed (List Token) - -ToInfo Error where - toInfo (LexerError err) = toInfo err - toInfo (WrongAnswer exp got) = - [("expected", show exp), ("received", show got)] - toInfo (TestFailed got) = - [("failed", show got)] - - -lex' : String -> Either Error (List Token) -lex' = bimap LexerError (map val) . lex - -parameters (label : String) (input : String) - acceptsSuchThat' : (List Token -> Maybe Error) -> Test - acceptsSuchThat' p = test label $ delay $ do - res <- bimap LexerError (map val) $ lex input - case p res of - Just err => throwError err - Nothing => pure () - - acceptsSuchThat : (List Token -> Bool) -> Test - acceptsSuchThat p = acceptsSuchThat' $ \res => - if p res then Nothing else Just $ TestFailed res - - acceptsWith : List Token -> Test - acceptsWith expect = acceptsSuchThat' $ \res => - if res == expect then Nothing else Just $ WrongAnswer expect res - - accepts : Test - accepts = acceptsSuchThat $ const True - - rejects : Test - rejects = testThrows label (\case LexerError _ => True; _ => False) $ delay $ - bimap LexerError (map val) $ lex input - -parameters (input : String) {default False esc : Bool} - show' : String -> String - show' s = if esc then show s else "\"\{s}\"" - - acceptsWith' : List Token -> Test - acceptsWith' = acceptsWith (show' input) input - - accepts' : Test - accepts' = accepts (show' input) input - - rejects' : Test - rejects' = rejects "\{show' input} (reject)" input - - -tests = "lexer" :- [ - "comments" :- [ - acceptsWith' "" [], - acceptsWith' " \n \t\t " [] {esc = True}, - acceptsWith' "-- a" [], - acceptsWith' "{- -}" [], - acceptsWith' "{--}" [], - acceptsWith' "{------}" [], - acceptsWith' "{- {- -} -}" [], - acceptsWith' "{- } -}" [], - rejects' "{-}", - rejects' "{- {- -}", - acceptsWith' "( -- comment \n )" [P LParen, P RParen] {esc = True} - ], - - "punctuation" :- [ - acceptsWith' "({[:,]})" - [P LParen, P LBrace, P LSquare, - P Colon, P Comma, - P RSquare, P RBrace, P RParen], - acceptsWith' " ( { [ : , ] } ) " - [P LParen, P LBrace, P LSquare, - P Colon, P Comma, - P RSquare, P RBrace, P RParen], - acceptsWith' "→ ⇒ × ⊲ ∷" - [P Arrow, P DblArrow, P Times, P Triangle, P DblColon], - acceptsWith' "_" [P Wild] - ], - - "names & symbols" :- [ - acceptsWith' "a" [Name "a"], - acceptsWith' "abc" [Name "abc"], - acceptsWith' "_a" [Name "_a"], - acceptsWith' "a_" [Name "a_"], - acceptsWith' "a_b" [Name "a_b"], - acceptsWith' "abc'" [Name "abc'"], - acceptsWith' "a'b'c''" [Name "a'b'c''"], - acceptsWith' "abc123" [Name "abc123"], - acceptsWith' "_1" [Name "_1"], - acceptsWith' "ab cd" [Name "ab", Name "cd"], - acceptsWith' "ab{--}cd" [Name "ab", Name "cd"], - acceptsWith' "'a" [Symbol "a"], - acceptsWith' "'ab" [Symbol "ab"], - acceptsWith' "'_b" [Symbol "_b"], - acceptsWith' "a.b.c" [Name "a", P Dot, Name "b", P Dot, Name "c"], - rejects' "'", - rejects' "1abc" - ], - - "keywords" :- [ - acceptsWith' "λ" [K Lam], - acceptsWith' "let" [K Let], - acceptsWith' "in" [K In], - acceptsWith' "case" [K Case], - acceptsWith' "of" [K Of], - acceptsWith' "ω" [K Omega], - acceptsWith' "Π" [K Pi], - acceptsWith' "Σ" [K Sigma], - acceptsWith' "W" [K W], - acceptsWith' "WAAA" [Name "WAAA"] - ], - - "universes" :- [ - acceptsWith' "★10" [TYPE 10], - rejects' "★" - ], - - "numbers" :- [ - acceptsWith' "0" [N Zero], - acceptsWith' "1" [N One], - acceptsWith' "2" [N $ Other 2], - acceptsWith' "69" [N $ Other 69] - ] -] diff --git a/tests/on-hold/Tests/Parser.idr b/tests/on-hold/Tests/Parser.idr deleted file mode 100644 index d335a7a..0000000 --- a/tests/on-hold/Tests/Parser.idr +++ /dev/null @@ -1,144 +0,0 @@ -module Tests.Parser - -import Quox.Syntax -import Quox.Parser -import Quox.Lexer -import Tests.Lexer -import Quox.Pretty - -import TermImpls -import Data.SnocVect -import Text.Parser -import TAP - - -export -Show tok => ToInfo (ParsingError tok) where - toInfo (Error msg Nothing) = [("msg", msg)] - toInfo (Error msg (Just loc)) = [("loc", show loc), ("msg", msg)] - - -numberErrs : List1 Info -> Info -numberErrs (head ::: []) = head -numberErrs (head ::: tail) = go 0 (head :: tail) where - number1 : Nat -> Info -> Info - number1 n = map $ \(k, v) => (show n ++ k, v) - - go : Nat -> List Info -> Info - go k [] = [] - go k (x :: xs) = number1 k x ++ go (S k) xs - -export -ToInfo Parser.Error where - toInfo (Lex err) = toInfo err - toInfo (Parse errs) = numberErrs $ map toInfo errs - toInfo (Leftover toks) = toInfo [("leftover", toks)] - - -RealError = Quox.Parser.Error -%hide Lexer.RealError -%hide Quox.Parser.Error - -data Error a -= Parser RealError -| Unexpected a a -| ShouldFail a - -export -Show a => ToInfo (Error a) where - toInfo (Parser err) = toInfo err - toInfo (Unexpected exp got) = toInfo $ - [("expected", exp), ("received", got)] - toInfo (ShouldFail got) = toInfo [("success", got)] - - -parameters {c : Bool} (grm : Grammar c a) (note : String) (input : String) - parsesNote : (Show a, Eq a) => a -> Test - parsesNote exp = test "\"\{input}\"\{note}" $ delay $ - case lexParseAll grm input of - Right got => if got == exp then Right () - else Left $ Unexpected exp got - Left err => Left $ Parser err - - rejectsNote : Show a => Test - rejectsNote = test "\"\{input}\"\{note} ‹reject›" $ do - case lexParseAll grm input of - Left err => Right () - Right val => Left $ ShouldFail val - -parameters {c : Bool} (grm : Grammar c a) (input : String) - parses : (Show a, Eq a) => a -> Test - parses = parsesNote grm "" input - - rejects : Show a => Test - rejects = rejectsNote grm "" input - -tests = "parser" :- [ - "numbers" :- - let parses = parses number - in [ - parses "0" 0, - parses "1" 1, - parses "1000" 1000 - ], - - "bound vars (x, y, z | a ⊢)" :- - let grm = bound "test" {bound = [< "x", "y", "z"], avoid = [< "a"]} - parses = parses grm; rejects = rejects grm; rejectsNote = rejectsNote grm - in [ - parses "x" (V 2), - parses "y" (V 1), - parses "z" (V 0), - rejects "M.x", - rejects "x.a", - rejectsNote " (avoid)" "a", - rejectsNote " (not in scope)" "c" - ], - - "bound or free vars (x, y, z ⊢)" :- - let parses = parses $ nameWith {bound = [< "x", "y", "z"], avoid = [<]} - in [ - parses "x" (Left (V 2)), - parses "y" (Left (V 1)), - parses "z" (Left (V 0)), - parses "a" (Right (MakeName [<] (UN "a"))), - parses "a.b.c" (Right (MakeName [< "a", "b"] (UN "c"))), - parses "a . b . c" (Right (MakeName [< "a", "b"] (UN "c"))), - parses "M.x" (Right (MakeName [< "M"] (UN "x"))), - parses "x.a" (Right (MakeName [< "x"] (UN "a"))) - ], - - "dimension (i, j | x, y, z ⊢)" :- - let grm = dimension {dvars = [< "i", "j"], tvars = [< "x", "y", "z"]} - parses = parses grm; rejects = rejects grm; rejectsNote = rejectsNote grm - in [ - parses "0" (K Zero), - parses "1" (K One), - rejects "2", - parses "i" (B (V 1)), - rejectsNote " (tvar)" "x", - rejectsNote " (not in scope)" "a" - ], - - "terms & elims (i, j | x, y, z ⊢)" :- - let dvars = [< "i", "j"]; tvars = [< "x", "y", "z"] - tgrm = term {dvars, tvars}; egrm = elim {dvars, tvars} - tparses = parsesNote tgrm " (term)" - eparses = parsesNote egrm " (elim)" - trejects = rejectsNote tgrm " (term)" - erejects = rejectsNote egrm " (elim)" - in [ - "universes" :- [ - tparses "★0" (TYPE 0), - tparses "★1000" (TYPE 1000) - ], - - "variables" :- [ - eparses "a" (F "a"), - eparses "x" (BV 2), - trejects "a", - tparses "[a]" (FT "a"), - tparses "[x]" (BVT 2) - ] - ] -] diff --git a/tests/on-hold/Tests/Unicode.idr b/tests/on-hold/Tests/Unicode.idr deleted file mode 100644 index e3b0c1c..0000000 --- a/tests/on-hold/Tests/Unicode.idr +++ /dev/null @@ -1,90 +0,0 @@ -module Tests.Unicode - -import Quox.NatExtra -import Quox.Unicode -import Data.List -import Data.String -import Data.Maybe -import TAP - - -maxLatin1 = '\xFF' - -escape : Char -> Maybe String -escape '\'' = Nothing -escape c = - if c > maxLatin1 then Nothing else - case unpack $ show c of - '\'' :: '\\' :: cs => pack . ('\\' ::) <$> init' cs - _ => Nothing - -codepoint : Char -> String -codepoint = padLeft 4 '0' . showHex . cast - -display : Char -> String -display c = - let c' = fromMaybe (singleton c) $ escape c in - if '\x20' <= c && c <= maxLatin1 - then "「\{c'}」" - else "「\{c'}」 (U+\{codepoint c})" - -displayS' : String -> String -displayS' = - foldMap (\c => if c <= maxLatin1 then singleton c else "\\x\{codepoint c}") . - unpack - -displayS : String -> String -displayS str = - if all (<= maxLatin1) (unpack str) - then "「\{str}」" - else "「\{str}」 (\"\{displayS' str}\")" - -testOneChar : (Char -> Bool) -> Char -> Test -testOneChar pred c = test (display c) $ unless (pred c) $ Left () - -testAllChars : String -> (Char -> Bool) -> List Char -> Test -testAllChars label pred chars = label :- map (testOneChar pred) chars - - -testNfc : String -> String -> Test -testNfc input result = - test (displayS input) $ - let norm = normalizeNfc input in - unless (norm == result) $ - Left [("expected", displayS result), ("received", displayS norm)] - -testAlreadyNfc : String -> Test -testAlreadyNfc input = testNfc input input - - - -tests = "unicode" :- [ - "general categories" :- [ - testAllChars "id starts" isIdStart - ['a', 'á', '𝕕', '개', 'ʨ', '𒁙', '𝟙'], - testAllChars "not id starts" (not . isIdStart) - ['0', '_', '-', '‿', ' ', '[', ',', '.', '\1'], - testAllChars "id continuations" isIdCont - ['a', 'á', '𝕕', '개', 'ʨ', '𒁙', '0', '\''], - testAllChars "not id continuations" (not . isIdCont) - ['_', '‿', ' ', '[', ',', '.', '\1'], - testAllChars "id connectors" isIdConnector - ['_', '‿'], - testAllChars "not id connectors" (not . isIdConnector) - ['a', ' ', ',', '-'], - testAllChars "white space" isWhitespace - [' ', '\t', '\r', '\n', - '\x2028', -- line separator - '\x2029' -- paragraph separator - ], - testAllChars "not white space" (not . isWhitespace) - ['a', '-', '_', '\1'] - ], - - "normalisation" :- [ - testNfc "e\x301" "é", - testAlreadyNfc "é", - testAlreadyNfc "" - -- idk if this is wrong it's chez's fault. or unicode's - ] -] diff --git a/tests/quox-tests.ipkg b/tests/quox-tests.ipkg index c98b60d..3757f91 100644 --- a/tests/quox-tests.ipkg +++ b/tests/quox-tests.ipkg @@ -8,6 +8,7 @@ modules = AstExtra, TypingImpls, PrettyExtra, + Tests.FreeVars, Tests.DimEq, Tests.Reduce, Tests.Equal,