add DimEq

This commit is contained in:
rhiannon morris 2021-12-23 19:05:00 +01:00
parent 730cedc4c0
commit f363dc3122
3 changed files with 140 additions and 0 deletions

View file

@ -1,6 +1,7 @@
module Quox.Syntax
import public Quox.Syntax.Dim
import public Quox.Syntax.DimEq
import public Quox.Syntax.Qty
import public Quox.Syntax.Shift
import public Quox.Syntax.Subst

135
src/Quox/Syntax/DimEq.idr Normal file
View file

@ -0,0 +1,135 @@
module Quox.Syntax.DimEq
import public Quox.Syntax.Var
import public Quox.Syntax.Dim
import public Quox.Syntax.Subst
import public Quox.Context
import Data.Maybe
import Data.Nat
import Data.DPair
%default total
public export
DimEq' : Nat -> Type
DimEq' = Context (Maybe . Dim)
public export
data DimEq : Nat -> Type where
ZeroIsOne : DimEq d
C : (eqs : DimEq' d) -> DimEq d
%name DimEq eqs
export
new' : (d : Nat) -> DimEq' d
new' 0 = [<]
new' (S d) = new' d :< Nothing
export
new : (d : Nat) -> DimEq d
new d = C (new' d)
export
get : DimEq' d -> Dim d -> Dim d
get _ (K e) = K e
get eqs (B i) = fromMaybe (B i) $ (eqs !! i) @{Compose}
export
equal : DimEq d -> (p, q : Dim d) -> Bool
equal ZeroIsOne p q = True
equal (C eqs) p q = get eqs p == get eqs q
infixl 5 :<?
export
(:<?) : DimEq d -> Maybe (Dim d) -> DimEq (S d)
ZeroIsOne :<? d = ZeroIsOne
C eqs :<? d = C $ eqs :< d
private
checkConst : (e, f : DimConst) -> (eqs : Lazy (DimEq' d)) -> DimEq d
checkConst Zero Zero eqs = C eqs
checkConst One One eqs = C eqs
checkConst _ _ _ = ZeroIsOne
export
setConst : Var d -> DimConst -> DimEq' d -> DimEq d
setConst VZ e (eqs :< Nothing) = C $ eqs :< Just (K e)
setConst VZ e (eqs :< Just (K f)) = checkConst e f $ eqs :< Just (K f)
setConst VZ e (eqs :< Just (B i)) = setConst i e eqs :<? Just (K e)
setConst (VS i) e (eqs :< x) =
setConst i e eqs :<? (if x == Just (B i) then Just (K e) else x)
mutual
private
setVar' : (i, j : Var d) -> i `LT` j -> DimEq' d -> DimEq d
setVar' VZ (VS i) LTZ (eqs :< Nothing) = C $ eqs :< Just (B i)
setVar' VZ (VS i) LTZ (eqs :< Just (K e)) = setConst i e eqs :<? Just (K e)
setVar' VZ (VS i) LTZ (eqs :< Just (B j)) = setVar i j eqs :<? Just (B (max i j))
setVar' (VS i) (VS j) (LTS lt) (eqs :< p) =
setVar' i j lt eqs :<? map (\k => if k == B i then B j else k) p
export
setVar : (i, j : Var d) -> DimEq' d -> DimEq d
setVar i j eqs =
case compareP i j of
IsLT lt => setVar' i j lt eqs
IsEQ => C eqs
IsGT gt => setVar' j i gt eqs
export
set : (p, q : Dim d) -> DimEq d -> DimEq d
set _ _ ZeroIsOne = ZeroIsOne
set (K e) (K f) (C eqs) = checkConst e f eqs
set (K e) (B i) (C eqs) = setConst i e eqs
set (B i) (K e) (C eqs) = setConst i e eqs
set (B i) (B j) (C eqs) = setVar i j eqs
export
setSelf : (p : Dim d) -> (eqs : DimEq d) -> set p p eqs = eqs
setSelf p ZeroIsOne = Refl
setSelf (K Zero) (C eqs) = Refl
setSelf (K One) (C eqs) = Refl
setSelf (B i) (C eqs) with (compareP i i)
_ | IsLT lt = absurd lt
_ | IsEQ = Refl
_ | IsGT gt = absurd gt
public export
Split : Nat -> Type
Split d = (DimEq' d, DSubst (S d) d)
export
split1 : DimConst -> DimEq' (S d) -> Maybe (Split d)
split1 e eqs = case setConst VZ e eqs of
ZeroIsOne => Nothing
C (eqs :< _) => Just (eqs, K e ::: id)
export
split : DimEq' (S d) -> List (Split d)
split eqs = toList (split1 Zero eqs) <+> toList (split1 One eqs)
export
splits' : DimEq' d -> List (DSubst d 0)
splits' [<] = [id]
splits' eqs@(_ :< _) = do
(eqs, th) <- split eqs
ph <- splits' eqs
pure $ th . ph
export
splits : DimEq d -> List (DSubst d 0)
splits ZeroIsOne = []
splits (C eqs) = splits' eqs

View file

@ -206,5 +206,9 @@ interface CanShift f where
export CanShift Var where i // by = shift by i
namespace CanShift
export
[Compose] (Functor f, CanShift tm) => CanShift (f . tm) where
x // by = map (// by) x
export
[Const] CanShift (\_ => a) where x // _ = x