add DimEq
This commit is contained in:
parent
730cedc4c0
commit
f363dc3122
3 changed files with 140 additions and 0 deletions
|
@ -1,6 +1,7 @@
|
||||||
module Quox.Syntax
|
module Quox.Syntax
|
||||||
|
|
||||||
import public Quox.Syntax.Dim
|
import public Quox.Syntax.Dim
|
||||||
|
import public Quox.Syntax.DimEq
|
||||||
import public Quox.Syntax.Qty
|
import public Quox.Syntax.Qty
|
||||||
import public Quox.Syntax.Shift
|
import public Quox.Syntax.Shift
|
||||||
import public Quox.Syntax.Subst
|
import public Quox.Syntax.Subst
|
||||||
|
|
135
src/Quox/Syntax/DimEq.idr
Normal file
135
src/Quox/Syntax/DimEq.idr
Normal file
|
@ -0,0 +1,135 @@
|
||||||
|
module Quox.Syntax.DimEq
|
||||||
|
|
||||||
|
import public Quox.Syntax.Var
|
||||||
|
import public Quox.Syntax.Dim
|
||||||
|
import public Quox.Syntax.Subst
|
||||||
|
import public Quox.Context
|
||||||
|
|
||||||
|
import Data.Maybe
|
||||||
|
import Data.Nat
|
||||||
|
import Data.DPair
|
||||||
|
|
||||||
|
%default total
|
||||||
|
|
||||||
|
|
||||||
|
public export
|
||||||
|
DimEq' : Nat -> Type
|
||||||
|
DimEq' = Context (Maybe . Dim)
|
||||||
|
|
||||||
|
|
||||||
|
public export
|
||||||
|
data DimEq : Nat -> Type where
|
||||||
|
ZeroIsOne : DimEq d
|
||||||
|
C : (eqs : DimEq' d) -> DimEq d
|
||||||
|
|
||||||
|
%name DimEq eqs
|
||||||
|
|
||||||
|
|
||||||
|
export
|
||||||
|
new' : (d : Nat) -> DimEq' d
|
||||||
|
new' 0 = [<]
|
||||||
|
new' (S d) = new' d :< Nothing
|
||||||
|
|
||||||
|
export
|
||||||
|
new : (d : Nat) -> DimEq d
|
||||||
|
new d = C (new' d)
|
||||||
|
|
||||||
|
|
||||||
|
export
|
||||||
|
get : DimEq' d -> Dim d -> Dim d
|
||||||
|
get _ (K e) = K e
|
||||||
|
get eqs (B i) = fromMaybe (B i) $ (eqs !! i) @{Compose}
|
||||||
|
|
||||||
|
export
|
||||||
|
equal : DimEq d -> (p, q : Dim d) -> Bool
|
||||||
|
equal ZeroIsOne p q = True
|
||||||
|
equal (C eqs) p q = get eqs p == get eqs q
|
||||||
|
|
||||||
|
|
||||||
|
infixl 5 :<?
|
||||||
|
export
|
||||||
|
(:<?) : DimEq d -> Maybe (Dim d) -> DimEq (S d)
|
||||||
|
ZeroIsOne :<? d = ZeroIsOne
|
||||||
|
C eqs :<? d = C $ eqs :< d
|
||||||
|
|
||||||
|
private
|
||||||
|
checkConst : (e, f : DimConst) -> (eqs : Lazy (DimEq' d)) -> DimEq d
|
||||||
|
checkConst Zero Zero eqs = C eqs
|
||||||
|
checkConst One One eqs = C eqs
|
||||||
|
checkConst _ _ _ = ZeroIsOne
|
||||||
|
|
||||||
|
|
||||||
|
export
|
||||||
|
setConst : Var d -> DimConst -> DimEq' d -> DimEq d
|
||||||
|
setConst VZ e (eqs :< Nothing) = C $ eqs :< Just (K e)
|
||||||
|
setConst VZ e (eqs :< Just (K f)) = checkConst e f $ eqs :< Just (K f)
|
||||||
|
setConst VZ e (eqs :< Just (B i)) = setConst i e eqs :<? Just (K e)
|
||||||
|
setConst (VS i) e (eqs :< x) =
|
||||||
|
setConst i e eqs :<? (if x == Just (B i) then Just (K e) else x)
|
||||||
|
|
||||||
|
mutual
|
||||||
|
private
|
||||||
|
setVar' : (i, j : Var d) -> i `LT` j -> DimEq' d -> DimEq d
|
||||||
|
setVar' VZ (VS i) LTZ (eqs :< Nothing) = C $ eqs :< Just (B i)
|
||||||
|
setVar' VZ (VS i) LTZ (eqs :< Just (K e)) = setConst i e eqs :<? Just (K e)
|
||||||
|
setVar' VZ (VS i) LTZ (eqs :< Just (B j)) = setVar i j eqs :<? Just (B (max i j))
|
||||||
|
setVar' (VS i) (VS j) (LTS lt) (eqs :< p) =
|
||||||
|
setVar' i j lt eqs :<? map (\k => if k == B i then B j else k) p
|
||||||
|
|
||||||
|
export
|
||||||
|
setVar : (i, j : Var d) -> DimEq' d -> DimEq d
|
||||||
|
setVar i j eqs =
|
||||||
|
case compareP i j of
|
||||||
|
IsLT lt => setVar' i j lt eqs
|
||||||
|
IsEQ => C eqs
|
||||||
|
IsGT gt => setVar' j i gt eqs
|
||||||
|
|
||||||
|
|
||||||
|
export
|
||||||
|
set : (p, q : Dim d) -> DimEq d -> DimEq d
|
||||||
|
set _ _ ZeroIsOne = ZeroIsOne
|
||||||
|
set (K e) (K f) (C eqs) = checkConst e f eqs
|
||||||
|
set (K e) (B i) (C eqs) = setConst i e eqs
|
||||||
|
set (B i) (K e) (C eqs) = setConst i e eqs
|
||||||
|
set (B i) (B j) (C eqs) = setVar i j eqs
|
||||||
|
|
||||||
|
|
||||||
|
export
|
||||||
|
setSelf : (p : Dim d) -> (eqs : DimEq d) -> set p p eqs = eqs
|
||||||
|
setSelf p ZeroIsOne = Refl
|
||||||
|
setSelf (K Zero) (C eqs) = Refl
|
||||||
|
setSelf (K One) (C eqs) = Refl
|
||||||
|
setSelf (B i) (C eqs) with (compareP i i)
|
||||||
|
_ | IsLT lt = absurd lt
|
||||||
|
_ | IsEQ = Refl
|
||||||
|
_ | IsGT gt = absurd gt
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
public export
|
||||||
|
Split : Nat -> Type
|
||||||
|
Split d = (DimEq' d, DSubst (S d) d)
|
||||||
|
|
||||||
|
export
|
||||||
|
split1 : DimConst -> DimEq' (S d) -> Maybe (Split d)
|
||||||
|
split1 e eqs = case setConst VZ e eqs of
|
||||||
|
ZeroIsOne => Nothing
|
||||||
|
C (eqs :< _) => Just (eqs, K e ::: id)
|
||||||
|
|
||||||
|
export
|
||||||
|
split : DimEq' (S d) -> List (Split d)
|
||||||
|
split eqs = toList (split1 Zero eqs) <+> toList (split1 One eqs)
|
||||||
|
|
||||||
|
|
||||||
|
export
|
||||||
|
splits' : DimEq' d -> List (DSubst d 0)
|
||||||
|
splits' [<] = [id]
|
||||||
|
splits' eqs@(_ :< _) = do
|
||||||
|
(eqs, th) <- split eqs
|
||||||
|
ph <- splits' eqs
|
||||||
|
pure $ th . ph
|
||||||
|
|
||||||
|
export
|
||||||
|
splits : DimEq d -> List (DSubst d 0)
|
||||||
|
splits ZeroIsOne = []
|
||||||
|
splits (C eqs) = splits' eqs
|
|
@ -206,5 +206,9 @@ interface CanShift f where
|
||||||
export CanShift Var where i // by = shift by i
|
export CanShift Var where i // by = shift by i
|
||||||
|
|
||||||
namespace CanShift
|
namespace CanShift
|
||||||
|
export
|
||||||
|
[Compose] (Functor f, CanShift tm) => CanShift (f . tm) where
|
||||||
|
x // by = map (// by) x
|
||||||
|
|
||||||
export
|
export
|
||||||
[Const] CanShift (\_ => a) where x // _ = x
|
[Const] CanShift (\_ => a) where x // _ = x
|
||||||
|
|
Loading…
Reference in a new issue