add source locations to inner syntax

This commit is contained in:
rhiannon morris 2023-05-02 03:06:25 +02:00
parent 30fa93ab4e
commit d5f4a012c5
35 changed files with 3210 additions and 2482 deletions

View file

@ -2,6 +2,7 @@ module Tests.DimEq
import Quox.Syntax.DimEq
import PrettyExtra
import AstExtra
import TAP
import Data.Maybe
@ -95,9 +96,9 @@ tests = "dimension constraints" :- [
testPrettyD ii new "𝑖",
testPrettyD iijj (fromGround [< Zero, One])
"𝑖, 𝑗, 𝑖 = 0, 𝑗 = 1",
testPrettyD iijj (C [< Just (K Zero), Nothing])
testPrettyD iijj (C [< Just (^K Zero), Nothing])
"𝑖, 𝑗, 𝑖 = 0",
testPrettyD iijjkk (C [< Nothing, Just (BV 0), Just (BV 1)])
testPrettyD iijjkk (C [< Nothing, Just (^BV 0), Just (^BV 1)])
"𝑖, 𝑗, 𝑘, 𝑗 = 𝑖, 𝑘 = 𝑖"
],
@ -108,56 +109,56 @@ tests = "dimension constraints" :- [
testNeq [<] new ZeroIsOne,
testNeq iijj new ZeroIsOne,
testSet iijj
(C [< Nothing, Just (BV 0)])
new [(BV 1, BV 0)],
(C [< Nothing, Just (^BV 0)])
new [(^BV 1, ^BV 0)],
testSet iijj
(C [< Nothing, Just (BV 0)])
new [(BV 0, BV 1)],
(C [< Nothing, Just (^BV 0)])
new [(^BV 0, ^BV 1)],
testNeq iijj
new
(C [< Nothing, Just (BV 0)]),
(C [< Nothing, Just (^BV 0)]),
testSet [<]
ZeroIsOne
new [(K Zero, K One)],
new [(^K Zero, ^K One)],
testSet iijjkk
(C [< Nothing, Just (BV 0), Just (BV 1)])
new [(BV 0, BV 1), (BV 1, BV 2)],
(C [< Nothing, Just (^BV 0), Just (^BV 1)])
new [(^BV 0, ^BV 1), (^BV 1, ^BV 2)],
testSet iijjkk
(C [< Nothing, Just (BV 0), Just (BV 1)])
new [(BV 0, BV 1), (BV 0, BV 2)],
(C [< Nothing, Just (^BV 0), Just (^BV 1)])
new [(^BV 0, ^BV 1), (^BV 0, ^BV 2)],
testSet iijjkk
(C [< Nothing, Nothing, Just (BV 0)])
new [(BV 0, BV 1), (BV 0, BV 1)],
(C [< Nothing, Nothing, Just (^BV 0)])
new [(^BV 0, ^BV 1), (^BV 0, ^BV 1)],
testSet iijj
(C [< Just (K Zero), Just (K Zero)])
new [(BV 1, K Zero), (BV 0, BV 1)],
(C [< Just (^K Zero), Just (^K Zero)])
new [(^BV 1, ^K Zero), (^BV 0, ^BV 1)],
testSet iijjkk
(C [< Just (K Zero), Just (K Zero), Just (K Zero)])
new [(BV 2, K Zero), (BV 1, BV 2), (BV 0, BV 1)],
(C [< Just (^K Zero), Just (^K Zero), Just (^K Zero)])
new [(^BV 2, ^K Zero), (^BV 1, ^BV 2), (^BV 0, ^BV 1)],
testSet iijjkk
(C [< Just (K Zero), Just (K Zero), Just (K Zero)])
new [(BV 2, K Zero), (BV 0, BV 1), (BV 1, BV 2)],
(C [< Just (^K Zero), Just (^K Zero), Just (^K Zero)])
new [(^BV 2, ^K Zero), (^BV 0, ^BV 1), (^BV 1, ^BV 2)],
testSet iijjkk
(C [< Just (K Zero), Just (K Zero), Just (K Zero)])
new [(BV 0, BV 2), (BV 1, K Zero), (BV 2, BV 1)],
(C [< Just (^K Zero), Just (^K Zero), Just (^K Zero)])
new [(^BV 0, ^BV 2), (^BV 1, ^K Zero), (^BV 2, ^BV 1)],
testSet iijjkk
(C [< Nothing, Just (BV 0), Just (BV 1)])
new [(BV 0, BV 2), (BV 2, BV 1)],
(C [< Nothing, Just (^BV 0), Just (^BV 1)])
new [(^BV 0, ^BV 2), (^BV 2, ^BV 1)],
testSet iijjkkll
(C [< Nothing, Just (BV 0), Just (BV 1), Just (BV 2)])
new [(BV 2, BV 1), (BV 3, BV 0), (BV 2, BV 3)],
(C [< Nothing, Just (^BV 0), Just (^BV 1), Just (^BV 2)])
new [(^BV 2, ^BV 1), (^BV 3, ^BV 0), (^BV 2, ^BV 3)],
testSet iijjkk
(C [< Just (K One), Just (K One), Just (K One)])
(C [< Just (K One), Nothing, Just (BV 0)])
[(BV 1, BV 2)],
(C [< Just (^K One), Just (^K One), Just (^K One)])
(C [< Just (^K One), Nothing, Just (^BV 0)])
[(^BV 1, ^BV 2)],
testSet iijj
ZeroIsOne
(C [< Just (K One), Just (K Zero)])
[(BV 1, BV 0)],
(C [< Just (^K One), Just (^K Zero)])
[(^BV 1, ^BV 0)],
testSet iijj
ZeroIsOne
(C [< Nothing, Just (BV 0)])
[(BV 1, K Zero), (BV 0, K One)]
(C [< Nothing, Just (^BV 0)])
[(^BV 1, ^K Zero), (^BV 0, ^K One)]
],
"wf" :- [
@ -165,9 +166,9 @@ tests = "dimension constraints" :- [
testWf ii ZeroIsOne,
testWf [<] new,
testWf iijjkk new,
testWf iijjkk (C [< Nothing, Just (BV 0), Just (BV 1)]),
testNwf iijjkk (C [< Nothing, Just (BV 0), Just (BV 0)]),
testWf iijj (C [< Just (K Zero), Just (K Zero)]),
testNwf iijj (C [< Just (K Zero), Just (BV 0)])
testWf iijjkk (C [< Nothing, Just (^BV 0), Just (^BV 1)]),
testNwf iijjkk (C [< Nothing, Just (^BV 0), Just (^BV 0)]),
testWf iijj (C [< Just (^K Zero), Just (^K Zero)]),
testNwf iijj (C [< Just (^K Zero), Just (^BV 0)])
]
]

View file

@ -5,52 +5,40 @@ import Quox.Typechecker
import public TypingImpls
import TAP
import Quox.EffExtra
import AstExtra
defGlobals : Definitions
defGlobals = fromList
[("A", mkPostulate gzero $ TYPE 0),
("B", mkPostulate gzero $ TYPE 0),
("a", mkPostulate gany $ FT "A"),
("a'", mkPostulate gany $ FT "A"),
("b", mkPostulate gany $ FT "B"),
("f", mkPostulate gany $ Arr One (FT "A") (FT "A")),
("id", mkDef gany (Arr One (FT "A") (FT "A")) ([< "x"] :\\ BVT 0)),
("eq-AB", mkPostulate gzero $ Eq0 (TYPE 0) (FT "A") (FT "B")),
("two", mkDef gany Nat (Succ (Succ Zero)))]
[("A", ^mkPostulate gzero (^TYPE 0)),
("B", ^mkPostulate gzero (^TYPE 0)),
("a", ^mkPostulate gany (^FT "A")),
("a'", ^mkPostulate gany (^FT "A")),
("b", ^mkPostulate gany (^FT "B")),
("f", ^mkPostulate gany (^Arr One (^FT "A") (^FT "A"))),
("id", ^mkDef gany (^Arr One (^FT "A") (^FT "A")) (^LamY "x" (^BVT 0))),
("eq-AB", ^mkPostulate gzero (^Eq0 (^TYPE 0) (^FT "A") (^FT "B"))),
("two", ^mkDef gany (^Nat) (^Succ (^Succ (^Zero))))]
parameters (label : String) (act : Lazy (TC ()))
parameters (label : String) (act : Equal ())
{default defGlobals globals : Definitions}
testEq : Test
testEq = test label $ runTC globals act
testEq = test label $ runEqual globals act
testNeq : Test
testNeq = testThrows label (const True) $ runTC globals act $> "()"
parameters (0 d : Nat) (ctx : TyContext d n)
subTD, equalTD : Term d n -> Term d n -> Term d n -> TC ()
subTD ty s t = Term.sub ctx ty s t
equalTD ty s t = Term.equal ctx ty s t
equalTyD : Term d n -> Term d n -> TC ()
equalTyD s t = Term.equalType ctx s t
parameters (ctx : TyContext d n)
subT, equalT : Term d n -> Term d n -> Term d n -> TC ()
subT ty s t = lift $ Term.sub noLoc ctx ty s t
equalT ty s t = lift $ Term.equal noLoc ctx ty s t
equalTy : Term d n -> Term d n -> TC ()
equalTy s t = lift $ Term.equalType noLoc ctx s t
subED, equalED : Elim d n -> Elim d n -> TC ()
subED e f = Elim.sub ctx e f
equalED e f = Elim.equal ctx e f
parameters (ctx : TyContext 0 n)
subT, equalT : Term 0 n -> Term 0 n -> Term 0 n -> TC ()
subT = subTD 0 ctx
equalT = equalTD 0 ctx
equalTy : Term 0 n -> Term 0 n -> TC ()
equalTy = equalTyD 0 ctx
subE, equalE : Elim 0 n -> Elim 0 n -> TC ()
subE = subED 0 ctx
equalE = equalED 0 ctx
empty01 : TyContext 0 0
empty01 = eqDim (K Zero) (K One) empty
subE, equalE : Elim d n -> Elim d n -> TC ()
subE e f = lift $ Elim.sub noLoc ctx e f
equalE e f = lift $ Elim.equal noLoc ctx e f
export
@ -61,410 +49,434 @@ tests = "equality & subtyping" :- [
"universes" :- [
testEq "★₀ = ★₀" $
equalT empty (TYPE 1) (TYPE 0) (TYPE 0),
equalT empty (^TYPE 1) (^TYPE 0) (^TYPE 0),
testNeq "★₀ ≠ ★₁" $
equalT empty (TYPE 2) (TYPE 0) (TYPE 1),
equalT empty (^TYPE 2) (^TYPE 0) (^TYPE 1),
testNeq "★₁ ≠ ★₀" $
equalT empty (TYPE 2) (TYPE 1) (TYPE 0),
equalT empty (^TYPE 2) (^TYPE 1) (^TYPE 0),
testEq "★₀ <: ★₀" $
subT empty (TYPE 1) (TYPE 0) (TYPE 0),
subT empty (^TYPE 1) (^TYPE 0) (^TYPE 0),
testEq "★₀ <: ★₁" $
subT empty (TYPE 2) (TYPE 0) (TYPE 1),
subT empty (^TYPE 2) (^TYPE 0) (^TYPE 1),
testNeq "★₁ ≮: ★₀" $
subT empty (TYPE 2) (TYPE 1) (TYPE 0)
subT empty (^TYPE 2) (^TYPE 1) (^TYPE 0)
],
"function types" :- [
note #""𝐴𝐵" for (1·𝐴)𝐵"#,
note #""𝐴𝐵" for (0·𝐴)𝐵"#,
testEq "★₀ ⇾ ★₀ = ★₀ ⇾ ★₀" $
let tm = Arr Zero (TYPE 0) (TYPE 0) in
equalT empty (TYPE 1) tm tm,
testEq "★₀ ⇾ ★₀ <: ★₀ ⇾ ★₀" $
let tm = Arr Zero (TYPE 0) (TYPE 0) in
subT empty (TYPE 1) tm tm,
testNeq "★₁ ⊸ ★₀ ≠ ★₀ ⇾ ★₀" $
let tm1 = Arr Zero (TYPE 1) (TYPE 0)
tm2 = Arr Zero (TYPE 0) (TYPE 0) in
equalT empty (TYPE 2) tm1 tm2,
testEq "★₁ ⊸ ★₀ <: ★₀ ⊸ ★₀" $
let tm1 = Arr One (TYPE 1) (TYPE 0)
tm2 = Arr One (TYPE 0) (TYPE 0) in
subT empty (TYPE 2) tm1 tm2,
testEq "★₀ ⊸ ★₀ <: ★₀ ⊸ ★₁" $
let tm1 = Arr One (TYPE 0) (TYPE 0)
tm2 = Arr One (TYPE 0) (TYPE 1) in
subT empty (TYPE 2) tm1 tm2,
testEq "★₀ ⊸ ★₀ <: ★₀ ⊸ ★₁" $
let tm1 = Arr One (TYPE 0) (TYPE 0)
tm2 = Arr One (TYPE 0) (TYPE 1) in
subT empty (TYPE 2) tm1 tm2,
testEq "A ⊸ B = A ⊸ B" $
let tm = Arr One (FT "A") (FT "B") in
equalT empty (TYPE 0) tm tm,
testEq "A ⊸ B <: A ⊸ B" $
let tm = Arr One (FT "A") (FT "B") in
subT empty (TYPE 0) tm tm,
note "cumulativity",
testEq "0.★₀ → ★₀ = 0.★₀ → ★₀" $
let tm = ^Arr Zero (^TYPE 0) (^TYPE 0) in
equalT empty (^TYPE 1) tm tm,
testEq "0.★₀ → ★₀ <: 0.★₀ → ★₀" $
let tm = ^Arr Zero (^TYPE 0) (^TYPE 0) in
subT empty (^TYPE 1) tm tm,
testNeq "0.★₁ → ★₀ ≠ 0.★₀ → ★₀" $
let tm1 = ^Arr Zero (^TYPE 1) (^TYPE 0)
tm2 = ^Arr Zero (^TYPE 0) (^TYPE 0) in
equalT empty (^TYPE 2) tm1 tm2,
testEq "1.★₁ → ★₀ <: 1.★₀ → ★₀" $
let tm1 = ^Arr One (^TYPE 1) (^TYPE 0)
tm2 = ^Arr One (^TYPE 0) (^TYPE 0) in
subT empty (^TYPE 2) tm1 tm2,
testEq "1.★₀ → ★₀ <: 1.★₀ → ★₁" $
let tm1 = ^Arr One (^TYPE 0) (^TYPE 0)
tm2 = ^Arr One (^TYPE 0) (^TYPE 1) in
subT empty (^TYPE 2) tm1 tm2,
testEq "1.★₀ → ★₀ <: 1.★₀ → ★₁" $
let tm1 = ^Arr One (^TYPE 0) (^TYPE 0)
tm2 = ^Arr One (^TYPE 0) (^TYPE 1) in
subT empty (^TYPE 2) tm1 tm2,
testEq "1.A → B = 1.A → B" $
let tm = ^Arr One (^FT "A") (^FT "B") in
equalT empty (^TYPE 0) tm tm,
testEq "1.A → B <: 1.A → B" $
let tm = ^Arr One (^FT "A") (^FT "B") in
subT empty (^TYPE 0) tm tm,
note "incompatible quantities",
testNeq "★₀ ⊸ ★₀ ≠ ★₀ ⇾ ★₁" $
let tm1 = Arr Zero (TYPE 0) (TYPE 0)
tm2 = Arr Zero (TYPE 0) (TYPE 1) in
equalT empty (TYPE 2) tm1 tm2,
testNeq "A ⇾ B ≠ A ⊸ B" $
let tm1 = Arr Zero (FT "A") (FT "B")
tm2 = Arr One (FT "A") (FT "B") in
equalT empty (TYPE 0) tm1 tm2,
testNeq "A ⇾ B ≮: A ⊸ B" $
let tm1 = Arr Zero (FT "A") (FT "B")
tm2 = Arr One (FT "A") (FT "B") in
subT empty (TYPE 0) tm1 tm2,
testEq "0=1 ⊢ A ⇾ B = A ⊸ B" $
let tm1 = Arr Zero (FT "A") (FT "B")
tm2 = Arr One (FT "A") (FT "B") in
equalT empty01 (TYPE 0) tm1 tm2,
todo "dependent function types",
note "[todo] should π ≤ ρ ⊢ (ρ·A) → B <: (π·A) → B?"
testNeq "1.★₀ → ★₀ ≠ 0.★₀ → ★₁" $
let tm1 = ^Arr Zero (^TYPE 0) (^TYPE 0)
tm2 = ^Arr Zero (^TYPE 0) (^TYPE 1) in
equalT empty (^TYPE 2) tm1 tm2,
testNeq "0.A → B ≠ 1.A → B" $
let tm1 = ^Arr Zero (^FT "A") (^FT "B")
tm2 = ^Arr One (^FT "A") (^FT "B") in
equalT empty (^TYPE 0) tm1 tm2,
testNeq "0.A → B ≮: 1.A → B" $
let tm1 = ^Arr Zero (^FT "A") (^FT "B")
tm2 = ^Arr One (^FT "A") (^FT "B") in
subT empty (^TYPE 0) tm1 tm2,
testEq "0=1 ⊢ 0.A → B = 1.A → B" $
let tm1 = ^Arr Zero (^FT "A") (^FT "B")
tm2 = ^Arr One (^FT "A") (^FT "B") in
equalT empty01 (^TYPE 0) tm1 tm2,
todo "dependent function types"
],
"lambda" :- [
testEq "λ x ⇒ [x] = λ x ⇒ [x]" $
equalT empty (Arr One (FT "A") (FT "A"))
([< "x"] :\\ BVT 0)
([< "x"] :\\ BVT 0),
testEq "λ x ⇒ [x] <: λ x ⇒ [x]" $
subT empty (Arr One (FT "A") (FT "A"))
([< "x"] :\\ BVT 0)
([< "x"] :\\ BVT 0),
testEq "λ x ⇒ [x] = λ y ⇒ [y]" $
equalT empty (Arr One (FT "A") (FT "A"))
([< "x"] :\\ BVT 0)
([< "y"] :\\ BVT 0),
testEq "λ x ⇒ [x] <: λ y ⇒ [y]" $
equalT empty (Arr One (FT "A") (FT "A"))
([< "x"] :\\ BVT 0)
([< "y"] :\\ BVT 0),
testNeq "λ x y ⇒ [x] ≠ λ x y ⇒ [y]" $
equalT empty (Arr One (FT "A") $ Arr One (FT "A") (FT "A"))
([< "x", "y"] :\\ BVT 1)
([< "x", "y"] :\\ BVT 0),
testEq "λ x ⇒ [a] = λ x ⇒ [a] (Y vs N)" $
equalT empty (Arr Zero (FT "B") (FT "A"))
(Lam $ SY [< "x"] $ FT "a")
(Lam $ SN $ FT "a"),
testEq "λ x ⇒ [f [x]] = [f] (η)" $
equalT empty (Arr One (FT "A") (FT "A"))
([< "x"] :\\ E (F "f" :@ BVT 0))
(FT "f")
testEq "λ x ⇒ x = λ x ⇒ x" $
equalT empty (^Arr One (^FT "A") (^FT "A"))
(^LamY "x" (^BVT 0))
(^LamY "x" (^BVT 0)),
testEq "λ x ⇒ x <: λ x ⇒ x" $
subT empty (^Arr One (^FT "A") (^FT "A"))
(^LamY "x" (^BVT 0))
(^LamY "x" (^BVT 0)),
testEq "λ x ⇒ x = λ y ⇒ y" $
equalT empty (^Arr One (^FT "A") (^FT "A"))
(^LamY "x" (^BVT 0))
(^LamY "y" (^BVT 0)),
testEq "λ x ⇒ x <: λ y ⇒ y" $
subT empty (^Arr One (^FT "A") (^FT "A"))
(^LamY "x" (^BVT 0))
(^LamY "y" (^BVT 0)),
testNeq "λ x y ⇒ x ≠ λ x y ⇒ y" $
equalT empty
(^Arr One (^FT "A") (^Arr One (^FT "A") (^FT "A")))
(^LamY "x" (^LamY "y" (^BVT 1)))
(^LamY "x" (^LamY "y" (^BVT 0))),
testEq "λ x ⇒ a = λ x ⇒ a (Y vs N)" $
equalT empty
(^Arr Zero (^FT "B") (^FT "A"))
(^LamY "x" (^FT "a"))
(^LamN (^FT "a")),
testEq "λ x ⇒ f x = f (η)" $
equalT empty
(^Arr One (^FT "A") (^FT "A"))
(^LamY "x" (E $ ^App (^F "f") (^BVT 0)))
(^FT "f")
],
"eq type" :- [
testEq "(★₀ ≡ ★₀ : ★₁) = (★₀ ≡ ★₀ : ★₁)" $
let tm = Eq0 (TYPE 1) (TYPE 0) (TYPE 0) in
equalT empty (TYPE 2) tm tm,
let tm = ^Eq0 (^TYPE 1) (^TYPE 0) (^TYPE 0) in
equalT empty (^TYPE 2) tm tm,
testEq "A ≔ ★₁ ⊢ (★₀ ≡ ★₀ : ★₁) = (★₀ ≡ ★₀ : A)"
{globals = fromList [("A", mkDef gzero (TYPE 2) (TYPE 1))]} $
equalT empty (TYPE 2)
(Eq0 (TYPE 1) (TYPE 0) (TYPE 0))
(Eq0 (FT "A") (TYPE 0) (TYPE 0)),
{globals = fromList [("A", ^mkDef gzero (^TYPE 2) (^TYPE 1))]} $
equalT empty (^TYPE 2)
(^Eq0 (^TYPE 1) (^TYPE 0) (^TYPE 0))
(^Eq0 (^FT "A") (^TYPE 0) (^TYPE 0)),
todo "dependent equality types"
],
"equalities and uip" :-
let refl : Term d n -> Term d n -> Elim d n
refl a x = (DLam $ S [< "_"] $ N x) :# (Eq0 a x x)
refl a x = ^Ann (^DLam (SN x)) (^Eq0 a x x)
in
[
note #""refl [A] x" is an abbreviation for "(δ i ⇒ x)(x ≡ x : A)""#,
note "binds before ∥ are globals, after it are BVs",
testEq "refl [A] a = refl [A] a" $
equalE empty (refl (FT "A") (FT "a")) (refl (FT "A") (FT "a")),
note #"refl A x is an abbreviation for "(δ i ⇒ x)(x ≡ x : A)""#,
testEq "refl A a = refl A a" $
equalE empty (refl (^FT "A") (^FT "a")) (refl (^FT "A") (^FT "a")),
testEq "p : (a ≡ a' : A), q : (a ≡ a' : A) ∥ ⊢ p = q (free)"
{globals =
let def = mkPostulate gzero $ Eq0 (FT "A") (FT "a") (FT "a'") in
defGlobals `mergeLeft` fromList [("p", def), ("q", def)]} $
equalE empty (F "p") (F "q"),
let def = ^mkPostulate gzero (^Eq0 (^FT "A") (^FT "a") (^FT "a'"))
in defGlobals `mergeLeft` fromList [("p", def), ("q", def)]} $
equalE empty (^F "p") (^F "q"),
testEq "∥ x : (a ≡ a' : A), y : (a ≡ a' : A) ⊢ x = y (bound)" $
let ty : forall n. Term 0 n := Eq0 (FT "A") (FT "a") (FT "a'") in
let ty : forall n. Term 0 n := ^Eq0 (^FT "A") (^FT "a") (^FT "a'") in
equalE (extendTyN [< (Any, "x", ty), (Any, "y", ty)] empty)
(BV 0) (BV 1),
(^BV 0) (^BV 1),
testEq "∥ x : [(a ≡ a' : A) ∷ Type 0], y : [ditto] ⊢ x = y" $
testEq "∥ x : (a ≡ a' : A) ∷ Type 0, y : [ditto] ⊢ x = y" $
let ty : forall n. Term 0 n :=
E (Eq0 (FT "A") (FT "a") (FT "a'") :# TYPE 0) in
E $ ^Ann (^Eq0 (^FT "A") (^FT "a") (^FT "a'")) (^TYPE 0) in
equalE (extendTyN [< (Any, "x", ty), (Any, "y", ty)] empty)
(BV 0) (BV 1),
(^BV 0) (^BV 1),
testEq "E ≔ a ≡ a' : A, EE ≔ E ∥ x : EE, y : EE ⊢ x = y"
{globals = defGlobals `mergeLeft` fromList
[("E", mkDef gzero (TYPE 0) (Eq0 (FT "A") (FT "a") (FT "a'"))),
("EE", mkDef gzero (TYPE 0) (FT "E"))]} $
equalE (extendTyN [< (Any, "x", FT "EE"), (Any, "y", FT "EE")] empty)
(BV 0) (BV 1),
[("E", ^mkDef gzero (^TYPE 0)
(^Eq0 (^FT "A") (^FT "a") (^FT "a'"))),
("EE", ^mkDef gzero (^TYPE 0) (^FT "E"))]} $
equalE (extendTyN [< (Any, "x", ^FT "EE"), (Any, "y", ^FT "EE")] empty)
(^BV 0) (^BV 1),
testEq "E ≔ a ≡ a' : A, EE ≔ E ∥ x : EE, y : E ⊢ x = y"
{globals = defGlobals `mergeLeft` fromList
[("E", mkDef gzero (TYPE 0) (Eq0 (FT "A") (FT "a") (FT "a'"))),
("EE", mkDef gzero (TYPE 0) (FT "E"))]} $
equalE (extendTyN [< (Any, "x", FT "EE"), (Any, "y", FT "E")] empty)
(BV 0) (BV 1),
[("E", ^mkDef gzero (^TYPE 0)
(^Eq0 (^FT "A") (^FT "a") (^FT "a'"))),
("EE", ^mkDef gzero (^TYPE 0) (^FT "E"))]} $
equalE (extendTyN [< (Any, "x", ^FT "EE"), (Any, "y", ^FT "E")] empty)
(^BV 0) (^BV 1),
testEq "E ≔ a ≡ a' : A ∥ x : E, y : E ⊢ x = y"
{globals = defGlobals `mergeLeft` fromList
[("E", mkDef gzero (TYPE 0) (Eq0 (FT "A") (FT "a") (FT "a'")))]} $
equalE (extendTyN [< (Any, "x", FT "E"), (Any, "y", FT "E")] empty)
(BV 0) (BV 1),
[("E", ^mkDef gzero (^TYPE 0)
(^Eq0 (^FT "A") (^FT "a") (^FT "a'")))]} $
equalE (extendTyN [< (Any, "x", ^FT "E"), (Any, "y", ^FT "E")] empty)
(^BV 0) (^BV 1),
testEq "E ≔ a ≡ a' : A ∥ x : (E×E), y : (E×E) ⊢ x = y"
{globals = defGlobals `mergeLeft` fromList
[("E", mkDef gzero (TYPE 0) (Eq0 (FT "A") (FT "a") (FT "a'")))]} $
let ty : forall n. Term 0 n :=
Sig (FT "E") $ S [< "_"] $ N $ FT "E" in
[("E", ^mkDef gzero (^TYPE 0)
(^Eq0 (^FT "A") (^FT "a") (^FT "a'")))]} $
let ty : forall n. Term 0 n := ^Sig (^FT "E") (SN $ ^FT "E") in
equalE (extendTyN [< (Any, "x", ty), (Any, "y", ty)] empty)
(BV 0) (BV 1),
(^BV 0) (^BV 1),
testEq "E ≔ a ≡ a' : A, W ≔ E × E ∥ x : W, y : W ⊢ x = y"
testEq "E ≔ a ≡ a' : A, W ≔ E × E ∥ x : W, y : E×E ⊢ x = y"
{globals = defGlobals `mergeLeft` fromList
[("E", mkDef gzero (TYPE 0) (Eq0 (FT "A") (FT "a") (FT "a'"))),
("W", mkDef gzero (TYPE 0) (FT "E" `And` FT "E"))]} $
[("E", ^mkDef gzero (^TYPE 0)
(^Eq0 (^FT "A") (^FT "a") (^FT "a'"))),
("W", ^mkDef gzero (^TYPE 0) (^And (^FT "E") (^FT "E")))]} $
equalE
(extendTyN [< (Any, "x", FT "W"), (Any, "y", FT "W")] empty)
(BV 0) (BV 1)
(extendTyN [< (Any, "x", ^FT "W"),
(Any, "y", ^And (^FT "E") (^FT "E"))] empty)
(^BV 0) (^BV 1)
],
"term closure" :- [
testEq "[#0]{} = [#0] : A" $
equalT (extendTy Any "x" (FT "A") empty)
(FT "A")
(CloT (Sub (BVT 0) id))
(BVT 0),
testEq "[#0]{a} = [a] : A" $
equalT empty (FT "A")
(CloT (Sub (BVT 0) (F "a" ::: id)))
(FT "a"),
testEq "[#0]{a,b} = [a] : A" $
equalT empty (FT "A")
(CloT (Sub (BVT 0) (F "a" ::: F "b" ::: id)))
(FT "a"),
testEq "[#1]{a,b} = [b] : A" $
equalT empty (FT "A")
(CloT (Sub (BVT 1) (F "a" ::: F "b" ::: id)))
(FT "b"),
testEq "(λy ⇒ [#1]){a} = λy ⇒ [a] : B ⇾ A (N)" $
equalT empty (Arr Zero (FT "B") (FT "A"))
(CloT (Sub (Lam $ S [< "y"] $ N $ BVT 0) (F "a" ::: id)))
(Lam $ S [< "y"] $ N $ FT "a"),
testEq "(λy ⇒ [#1]){a} = λy ⇒ [a] : B ⇾ A (Y)" $
equalT empty (Arr Zero (FT "B") (FT "A"))
(CloT (Sub ([< "y"] :\\ BVT 1) (F "a" ::: id)))
([< "y"] :\\ FT "a")
note "bold numbers for de bruijn indices",
testEq "𝟎{} = 𝟎 : A" $
equalT (extendTy Any "x" (^FT "A") empty)
(^FT "A")
(CloT (Sub (^BVT 0) id))
(^BVT 0),
testEq "𝟎{a} = a : A" $
equalT empty (^FT "A")
(CloT (Sub (^BVT 0) (^F "a" ::: id)))
(^FT "a"),
testEq "𝟎{a,b} = a : A" $
equalT empty (^FT "A")
(CloT (Sub (^BVT 0) (^F "a" ::: ^F "b" ::: id)))
(^FT "a"),
testEq "𝟏{a,b} = b : A" $
equalT empty (^FT "A")
(CloT (Sub (^BVT 1) (^F "a" ::: ^F "b" ::: id)))
(^FT "b"),
testEq "(λy ⇒ 𝟏){a} = λy ⇒ a : 0.B → A (N)" $
equalT empty (^Arr Zero (^FT "B") (^FT "A"))
(CloT (Sub (^LamN (^BVT 0)) (^F "a" ::: id)))
(^LamN (^FT "a")),
testEq "(λy ⇒ 𝟏){a} = λy ⇒ a : 0.B → A (Y)" $
equalT empty (^Arr Zero (^FT "B") (^FT "A"))
(CloT (Sub (^LamY "y" (^BVT 1)) (^F "a" ::: id)))
(^LamY "y" (^FT "a"))
],
"term d-closure" :- [
testEq "★₀‹𝟎› = ★₀ : ★₁" $
equalTD 1
(extendDim "𝑗" empty)
(TYPE 1) (DCloT (Sub (TYPE 0) (K Zero ::: id))) (TYPE 0),
testEq "(δ i ⇒ a)𝟎 = (δ i ⇒ a) : (a ≡ a : A)" $
equalTD 1
(extendDim "𝑗" empty)
(Eq0 (FT "A") (FT "a") (FT "a"))
(DCloT (Sub ([< "i"] :\\% FT "a") (K Zero ::: id)))
([< "i"] :\\% FT "a"),
testEq "★₀0 = ★₀ : ★₁" $
equalT (extendDim "𝑗" empty)
(^TYPE 1) (DCloT (Sub (^TYPE 0) (^K Zero ::: id))) (^TYPE 0),
testEq "(δ i ⇒ a)0 = (δ i ⇒ a) : (a ≡ a : A)" $
equalT (extendDim "𝑗" empty)
(^Eq0 (^FT "A") (^FT "a") (^FT "a"))
(DCloT (Sub (^DLamN (^FT "a")) (^K Zero ::: id)))
(^DLamN (^FT "a")),
note "it is hard to think of well-typed terms with big dctxs"
],
"free var" :-
let au_bu = fromList
[("A", mkDef gany (TYPE 1) (TYPE 0)),
("B", mkDef gany (TYPE 1) (TYPE 0))]
[("A", ^mkDef gany (^TYPE 1) (^TYPE 0)),
("B", ^mkDef gany (^TYPE 1) (^TYPE 0))]
au_ba = fromList
[("A", mkDef gany (TYPE 1) (TYPE 0)),
("B", mkDef gany (TYPE 1) (FT "A"))]
[("A", ^mkDef gany (^TYPE 1) (^TYPE 0)),
("B", ^mkDef gany (^TYPE 1) (^FT "A"))]
in [
testEq "A = A" $
equalE empty (F "A") (F "A"),
equalE empty (^F "A") (^F "A"),
testNeq "A ≠ B" $
equalE empty (F "A") (F "B"),
equalE empty (^F "A") (^F "B"),
testEq "0=1 ⊢ A = B" $
equalE empty01 (F "A") (F "B"),
equalE empty01 (^F "A") (^F "B"),
testEq "A : ★₁ ≔ ★₀ ⊢ A = (★₀ ∷ ★₁)" {globals = au_bu} $
equalE empty (F "A") (TYPE 0 :# TYPE 1),
testEq "A : ★₁ ≔ ★₀ ⊢ [A] = ★₀" {globals = au_bu} $
equalT empty (TYPE 1) (FT "A") (TYPE 0),
equalE empty (^F "A") (^Ann (^TYPE 0) (^TYPE 1)),
testEq "A : ★₁ ≔ ★₀ ⊢ A = ★₀" {globals = au_bu} $
equalT empty (^TYPE 1) (^FT "A") (^TYPE 0),
testEq "A ≔ ★₀, B ≔ ★₀ ⊢ A = B" {globals = au_bu} $
equalE empty (F "A") (F "B"),
equalE empty (^F "A") (^F "B"),
testEq "A ≔ ★₀, B ≔ A ⊢ A = B" {globals = au_ba} $
equalE empty (F "A") (F "B"),
equalE empty (^F "A") (^F "B"),
testEq "A <: A" $
subE empty (F "A") (F "A"),
subE empty (^F "A") (^F "A"),
testNeq "A ≮: B" $
subE empty (F "A") (F "B"),
subE empty (^F "A") (^F "B"),
testEq "A : ★₃ ≔ ★₀, B : ★₃ ≔ ★₂ ⊢ A <: B"
{globals = fromList [("A", mkDef gany (TYPE 3) (TYPE 0)),
("B", mkDef gany (TYPE 3) (TYPE 2))]} $
subE empty (F "A") (F "B"),
{globals = fromList [("A", ^mkDef gany (^TYPE 3) (^TYPE 0)),
("B", ^mkDef gany (^TYPE 3) (^TYPE 2))]} $
subE empty (^F "A") (^F "B"),
note "(A and B in different universes)",
testEq "A : ★₁ ≔ ★₀, B : ★₃ ≔ ★₂ ⊢ A <: B"
{globals = fromList [("A", mkDef gany (TYPE 1) (TYPE 0)),
("B", mkDef gany (TYPE 3) (TYPE 2))]} $
subE empty (F "A") (F "B"),
{globals = fromList [("A", ^mkDef gany (^TYPE 1) (^TYPE 0)),
("B", ^mkDef gany (^TYPE 3) (^TYPE 2))]} $
subE empty (^F "A") (^F "B"),
testEq "0=1 ⊢ A <: B" $
subE empty01 (F "A") (F "B")
subE empty01 (^F "A") (^F "B")
],
"bound var" :- [
testEq "#0 = #0" $
equalE (extendTy Any "A" (TYPE 0) empty) (BV 0) (BV 0),
testEq "#0 <: #0" $
subE (extendTy Any "A" (TYPE 0) empty) (BV 0) (BV 0),
testNeq "#0 ≠ #1" $
equalE (extendTyN [< (Any, "A", TYPE 0), (Any, "B", TYPE 0)] empty)
(BV 0) (BV 1),
testNeq "#0 ≮: #1" $
subE (extendTyN [< (Any, "A", TYPE 0), (Any, "B", TYPE 0)] empty)
(BV 0) (BV 1),
testEq "0=1 ⊢ #0 = #1" $
equalE (extendTyN [< (Any, "A", TYPE 0), (Any, "B", TYPE 0)] empty01)
(BV 0) (BV 1)
note "bold numbers for de bruijn indices",
testEq "𝟎 = 𝟎" $
equalE (extendTy Any "A" (^TYPE 0) empty) (^BV 0) (^BV 0),
testEq "𝟎 <: 𝟎" $
subE (extendTy Any "A" (^TYPE 0) empty) (^BV 0) (^BV 0),
testNeq "𝟎𝟏" $
equalE (extendTyN [< (Any, "A", ^TYPE 0), (Any, "B", ^TYPE 0)] empty)
(^BV 0) (^BV 1),
testNeq "𝟎 ≮: 𝟏" $
subE (extendTyN [< (Any, "A", ^TYPE 0), (Any, "B", ^TYPE 0)] empty)
(^BV 0) (^BV 1),
testEq "0=1 ⊢ 𝟎 = 𝟏" $
equalE (extendTyN [< (Any, "A", ^TYPE 0), (Any, "B", ^TYPE 0)] empty01)
(^BV 0) (^BV 1)
],
"application" :- [
testEq "f [a] = f [a]" $
equalE empty (F "f" :@ FT "a") (F "f" :@ FT "a"),
testEq "f [a] <: f [a]" $
subE empty (F "f" :@ FT "a") (F "f" :@ FT "a"),
testEq "(λ x ⇒ [x] ∷ A ⊸ A) a = ([a ∷ A] ∷ A) (β)" $
testEq "f a = f a" $
equalE empty (^App (^F "f") (^FT "a")) (^App (^F "f") (^FT "a")),
testEq "f a <: f a" $
subE empty (^App (^F "f") (^FT "a")) (^App (^F "f") (^FT "a")),
testEq "(λ x ⇒ x ∷ 1.A → A) a = ((a ∷ A) ∷ A) (β)" $
equalE empty
((([< "x"] :\\ BVT 0) :# Arr One (FT "A") (FT "A")) :@ FT "a")
(E (FT "a" :# FT "A") :# FT "A"),
testEq "(λ x ⇒ [x] ∷ A ⊸ A) a = a (βυ)" $
(^App (^Ann (^LamY "x" (^BVT 0)) (^Arr One (^FT "A") (^FT "A")))
(^FT "a"))
(^Ann (E $ ^Ann (^FT "a") (^FT "A")) (^FT "A")),
testEq "(λ x ⇒ x ∷ A ⊸ A) a = a (βυ)" $
equalE empty
((([< "x"] :\\ BVT 0) :# Arr One (FT "A") (FT "A")) :@ FT "a")
(F "a"),
testEq "(λ g ⇒ [g [a]] ∷ ⋯)) [f] = (λ y ⇒ [f [y]] ∷ ⋯) [a] (β↘↙)" $
let a = FT "A"; a2a = (Arr One a a) in
(^App (^Ann (^LamY "x" (^BVT 0)) (^Arr One (^FT "A") (^FT "A")))
(^FT "a"))
(^F "a"),
testEq "((λ g ⇒ g a) ∷ 1.(1.A → A) → A) f = ((λ y ⇒ f y) ∷ 1.A → A) a # β↘↙" $
let a = ^FT "A"; a2a = ^Arr One a a; aa2a = ^Arr One a2a a in
equalE empty
((([< "g"] :\\ E (BV 0 :@ FT "a")) :# Arr One a2a a) :@ FT "f")
((([< "y"] :\\ E (F "f" :@ BVT 0)) :# a2a) :@ FT "a"),
testEq "(λ x ⇒ [x] ∷ A ⊸ A) a <: a" $
(^App (^Ann (^LamY "g" (E $ ^App (^BV 0) (^FT "a"))) aa2a) (^FT "f"))
(^App (^Ann (^LamY "y" (E $ ^App (^F "f") (^BVT 0))) a2a) (^FT "a")),
testEq "((λ x ⇒ x) ∷ 1.A → A) a <: a" $
subE empty
((([< "x"] :\\ BVT 0) :# (Arr One (FT "A") (FT "A"))) :@ FT "a")
(F "a"),
note "id : A ⊸ A ≔ λ x ⇒ [x]",
testEq "id [a] = a" $ equalE empty (F "id" :@ FT "a") (F "a"),
testEq "id [a] <: a" $ subE empty (F "id" :@ FT "a") (F "a")
(^App (^Ann (^LamY "x" (^BVT 0)) (^Arr One (^FT "A") (^FT "A")))
(^FT "a"))
(^F "a"),
note "id : A ⊸ A ≔ λ x ⇒ x",
testEq "id a = a" $ equalE empty (^App (^F "id") (^FT "a")) (^F "a"),
testEq "id a <: a" $ subE empty (^App (^F "id") (^FT "a")) (^F "a")
],
"dim application" :- [
testEq "eq-AB @0 = eq-AB @0" $
equalE empty (F "eq-AB" :% K Zero) (F "eq-AB" :% K Zero),
equalE empty
(^DApp (^F "eq-AB") (^K Zero))
(^DApp (^F "eq-AB") (^K Zero)),
testNeq "eq-AB @0 ≠ eq-AB @1" $
equalE empty (F "eq-AB" :% K Zero) (F "eq-AB" :% K One),
equalE empty
(^DApp (^F "eq-AB") (^K Zero))
(^DApp (^F "eq-AB") (^K One)),
testEq "𝑖 | ⊢ eq-AB @𝑖 = eq-AB @𝑖" $
equalED 1
equalE
(extendDim "𝑖" empty)
(F "eq-AB" :% BV 0) (F "eq-AB" :% BV 0),
(^DApp (^F "eq-AB") (^BV 0))
(^DApp (^F "eq-AB") (^BV 0)),
testNeq "𝑖 | ⊢ eq-AB @𝑖 ≠ eq-AB @0" $
equalED 1
(extendDim "𝑖" empty)
(F "eq-AB" :% BV 0) (F "eq-AB" :% K Zero),
equalE (extendDim "𝑖" empty)
(^DApp (^F "eq-AB") (^BV 0))
(^DApp (^F "eq-AB") (^K Zero)),
testEq "𝑖, 𝑖=0 | ⊢ eq-AB @𝑖 = eq-AB @0" $
equalED 1
(eqDim (BV 0) (K Zero) $ extendDim "𝑖" empty)
(F "eq-AB" :% BV 0) (F "eq-AB" :% K Zero),
equalE (eqDim (^BV 0) (^K Zero) $ extendDim "𝑖" empty)
(^DApp (^F "eq-AB") (^BV 0))
(^DApp (^F "eq-AB") (^K Zero)),
testNeq "𝑖, 𝑖=1 | ⊢ eq-AB @𝑖 ≠ eq-AB @0" $
equalED 1
(eqDim (BV 0) (K One) $ extendDim "𝑖" empty)
(F "eq-AB" :% BV 0) (F "eq-AB" :% K Zero),
equalE (eqDim (^BV 0) (^K One) $ extendDim "𝑖" empty)
(^DApp (^F "eq-AB") (^BV 0))
(^DApp (^F "eq-AB") (^K Zero)),
testNeq "𝑖, 𝑗 | ⊢ eq-AB @𝑖 ≠ eq-AB @𝑗" $
equalED 2
(extendDim "𝑗" $ extendDim "𝑖" empty)
(F "eq-AB" :% BV 1) (F "eq-AB" :% BV 0),
equalE (extendDim "𝑗" $ extendDim "𝑖" empty)
(^DApp (^F "eq-AB") (^BV 1))
(^DApp (^F "eq-AB") (^BV 0)),
testEq "𝑖, 𝑗, 𝑖=𝑗 | ⊢ eq-AB @𝑖 = eq-AB @𝑗" $
equalED 2
(eqDim (BV 0) (BV 1) $ extendDim "𝑗" $ extendDim "𝑖" empty)
(F "eq-AB" :% BV 1) (F "eq-AB" :% BV 0),
equalE (eqDim (^BV 0) (^BV 1) $ extendDim "𝑗" $ extendDim "𝑖" empty)
(^DApp (^F "eq-AB") (^BV 1))
(^DApp (^F "eq-AB") (^BV 0)),
testEq "𝑖, 𝑗, 𝑖=0, 𝑗=0 | ⊢ eq-AB @𝑖 = eq-AB @𝑗" $
equalED 2
(eqDim (BV 0) (K Zero) $ eqDim (BV 1) (K Zero) $
equalE
(eqDim (^BV 0) (^K Zero) $ eqDim (^BV 1) (^K Zero) $
extendDim "𝑗" $ extendDim "𝑖" empty)
(F "eq-AB" :% BV 1) (F "eq-AB" :% BV 0),
(^DApp (^F "eq-AB") (^BV 1))
(^DApp (^F "eq-AB") (^BV 0)),
testEq "0=1 | ⊢ eq-AB @𝑖 = eq-AB @𝑗" $
equalED 2
(extendDim "𝑗" $ extendDim "𝑖" empty01)
(F "eq-AB" :% BV 1) (F "eq-AB" :% BV 0),
testEq "eq-AB @0 = A" $ equalE empty (F "eq-AB" :% K Zero) (F "A"),
testEq "eq-AB @1 = B" $ equalE empty (F "eq-AB" :% K One) (F "B"),
testEq "((δ i ⇒ a) ∷ a ≡ a) @0 = a" $
equalE (extendDim "𝑗" $ extendDim "𝑖" empty01)
(^DApp (^F "eq-AB") (^BV 1))
(^DApp (^F "eq-AB") (^BV 0)),
testEq "eq-AB @0 = A" $
equalE empty (^DApp (^F "eq-AB") (^K Zero)) (^F "A"),
testEq "eq-AB @1 = B" $
equalE empty (^DApp (^F "eq-AB") (^K One)) (^F "B"),
testEq "((δ i ⇒ a) ∷ a ≡ a : A) @0 = a" $
equalE empty
(((DLam $ SN $ FT "a") :# Eq0 (FT "A") (FT "a") (FT "a")) :% K Zero)
(F "a"),
testEq "((δ i ⇒ a) ∷ a ≡ a) @0 = ((δ i ⇒ a) ∷ a ≡ a) @1" $
(^DApp (^Ann (^DLamN (^FT "a")) (^Eq0 (^FT "A") (^FT "a") (^FT "a")))
(^K Zero))
(^F "a"),
testEq "((δ i ⇒ a) ∷ a ≡ a : A) @0 = ((δ i ⇒ a) ∷ a ≡ a : A) @1" $
equalE empty
(((DLam $ SN $ FT "a") :# Eq0 (FT "A") (FT "a") (FT "a")) :% K Zero)
(((DLam $ SN $ FT "a") :# Eq0 (FT "A") (FT "a") (FT "a")) :% K One)
(^DApp (^Ann (^DLamN (^FT "a")) (^Eq0 (^FT "A") (^FT "a") (^FT "a")))
(^K Zero))
(^DApp (^Ann (^DLamN (^FT "a")) (^Eq0 (^FT "A") (^FT "a") (^FT "a")))
(^K One))
],
"annotation" :- [
testEq "(λ x ⇒ f [x]) ∷ A ⊸ A = [f] ∷ A ⊸ A" $
testEq "(λ x ⇒ f x) ∷ 1.A → A = f ∷ 1.A → A" $
equalE empty
(([< "x"] :\\ E (F "f" :@ BVT 0)) :# Arr One (FT "A") (FT "A"))
(FT "f" :# Arr One (FT "A") (FT "A")),
testEq "[f] ∷ A ⊸ A = f" $
equalE empty (FT "f" :# Arr One (FT "A") (FT "A")) (F "f"),
testEq "(λ x ⇒ f [x]) ∷ A ⊸ A = f" $
(^Ann (^LamY "x" (E $ ^App (^F "f") (^BVT 0)))
(^Arr One (^FT "A") (^FT "A")))
(^Ann (^FT "f") (^Arr One (^FT "A") (^FT "A"))),
testEq "f ∷ 1.A → A = f" $
equalE empty
(([< "x"] :\\ E (F "f" :@ BVT 0)) :# Arr One (FT "A") (FT "A"))
(F "f")
(^Ann (^FT "f") (^Arr One (^FT "A") (^FT "A")))
(^F "f"),
testEq "(λ x ⇒ f x) ∷ 1.A → A = f" $
equalE empty
(^Ann (^LamY "x" (E $ ^App (^F "f") (^BVT 0)))
(^Arr One (^FT "A") (^FT "A")))
(^F "f")
],
"natural type" :- [
testEq " = " $ equalTy empty Nat Nat,
testEq " = : ★₀" $ equalT empty (TYPE 0) Nat Nat,
testEq " = : ★₆₉" $ equalT empty (TYPE 69) Nat Nat,
testNeq " ≠ {}" $ equalTy empty Nat (enum []),
testEq "0=1 ⊢ = {}" $ equalTy empty01 Nat (enum [])
testEq " = " $ equalTy empty (^Nat) (^Nat),
testEq " = : ★₀" $ equalT empty (^TYPE 0) (^Nat) (^Nat),
testEq " = : ★₆₉" $ equalT empty (^TYPE 69) (^Nat) (^Nat),
testNeq " ≠ {}" $ equalTy empty (^Nat) (^enum []),
testEq "0=1 ⊢ = {}" $ equalTy empty01 (^Nat) (^enum [])
],
"natural numbers" :- [
testEq "zero = zero" $ equalT empty Nat Zero Zero,
testEq "0 = 0" $ equalT empty (^Nat) (^Zero) (^Zero),
testEq "succ two = succ two" $
equalT empty Nat (Succ (FT "two")) (Succ (FT "two")),
equalT empty (^Nat) (^Succ (^FT "two")) (^Succ (^FT "two")),
testNeq "succ two ≠ two" $
equalT empty Nat (Succ (FT "two")) (FT "two"),
testNeq "zero ≠ succ zero" $
equalT empty Nat Zero (Succ Zero),
testEq "0=1 ⊢ zero = succ zero" $
equalT empty01 Nat Zero (Succ Zero)
equalT empty (^Nat) (^Succ (^FT "two")) (^FT "two"),
testNeq "0 ≠ 1" $
equalT empty (^Nat) (^Zero) (^Succ (^Zero)),
testEq "0=1 ⊢ 0 = 1" $
equalT empty01 (^Nat) (^Zero) (^Succ (^Zero))
],
"natural elim" :- [
testEq "caseω 0 return {a,b} of {zero ⇒ 'a; succ _ ⇒ 'b} = 'a" $
equalT empty
(enum ["a", "b"])
(E $ CaseNat Any Zero (Zero :# Nat)
(SN $ enum ["a", "b"])
(Tag "a")
(SN $ Tag "b"))
(Tag "a"),
(^enum ["a", "b"])
(E $ ^CaseNat Any Zero (^Ann (^Zero) (^Nat))
(SN $ ^enum ["a", "b"])
(^Tag "a")
(SN $ ^Tag "b"))
(^Tag "a"),
testEq "caseω 1 return {a,b} of {zero ⇒ 'a; succ _ ⇒ 'b} = 'b" $
equalT empty
(enum ["a", "b"])
(E $ CaseNat Any Zero (Succ Zero :# Nat)
(SN $ enum ["a", "b"])
(Tag "a")
(SN $ Tag "b"))
(Tag "b"),
(^enum ["a", "b"])
(E $ ^CaseNat Any Zero (^Ann (^Succ (^Zero)) (^Nat))
(SN $ ^enum ["a", "b"])
(^Tag "a")
(SN $ ^Tag "b"))
(^Tag "b"),
testEq "caseω 4 return of {0 ⇒ 0; succ n ⇒ n} = 3" $
equalT empty
Nat
(E $ CaseNat Any Zero (makeNat 4 :# Nat)
(SN Nat)
Zero
(SY [< "n", Unused] $ BVT 1))
(makeNat 3)
(^Nat)
(E $ ^CaseNat Any Zero (^Ann (^makeNat 4) (^Nat))
(SN $ ^Nat)
(^Zero)
(SY [< "n", ^BN Unused] $ ^BVT 1))
(^makeNat 3)
],
todo "pair types",
@ -472,24 +484,24 @@ tests = "equality & subtyping" :- [
"pairs" :- [
testEq "('a, 'b) = ('a, 'b) : {a} × {b}" $
equalT empty
(enum ["a"] `And` enum ["b"])
(Tag "a" `Pair` Tag "b")
(Tag "a" `Pair` Tag "b"),
(^And (^enum ["a"]) (^enum ["b"]))
(^Pair (^Tag "a") (^Tag "b"))
(^Pair (^Tag "a") (^Tag "b")),
testNeq "('a, 'b) ≠ ('b, 'a) : {a,b} × {a,b}" $
equalT empty
(enum ["a", "b"] `And` enum ["a", "b"])
(Tag "a" `Pair` Tag "b")
(Tag "b" `Pair` Tag "a"),
(^And (^enum ["a", "b"]) (^enum ["a", "b"]))
(^Pair (^Tag "a") (^Tag "b"))
(^Pair (^Tag "b") (^Tag "a")),
testEq "0=1 ⊢ ('a, 'b) = ('b, 'a) : {a,b} × {a,b}" $
equalT empty01
(enum ["a", "b"] `And` enum ["a", "b"])
(Tag "a" `Pair` Tag "b")
(Tag "b" `Pair` Tag "a"),
(^And (^enum ["a", "b"]) (^enum ["a", "b"]))
(^Pair (^Tag "a") (^Tag "b"))
(^Pair (^Tag "b") (^Tag "a")),
testEq "0=1 ⊢ ('a, 'b) = ('b, 'a) : " $
equalT empty01
Nat
(Tag "a" `Pair` Tag "b")
(Tag "b" `Pair` Tag "a")
(^Nat)
(^Pair (^Tag "a") (^Tag "b"))
(^Pair (^Tag "b") (^Tag "a"))
],
todo "pair elim",
@ -503,61 +515,60 @@ tests = "equality & subtyping" :- [
todo "box elim",
"elim closure" :- [
testEq "#0{a} = a" $
equalE empty (CloE (Sub (BV 0) (F "a" ::: id))) (F "a"),
testEq "#1{a} = #0" $
equalE (extendTy Any "x" (FT "A") empty)
(CloE (Sub (BV 1) (F "a" ::: id))) (BV 0)
note "bold numbers for de bruijn indices",
testEq "𝟎{a} = a" $
equalE empty (CloE (Sub (^BV 0) (^F "a" ::: id))) (^F "a"),
testEq "𝟏{a} = 𝟎" $
equalE (extendTy Any "x" (^FT "A") empty)
(CloE (Sub (^BV 1) (^F "a" ::: id))) (^BV 0)
],
"elim d-closure" :- [
note "bold numbers for de bruijn indices",
note "0·eq-AB : (A ≡ B : ★₀)",
testEq "(eq-AB #0)𝟎 = eq-AB 𝟎" $
equalED 1
(extendDim "𝑖" empty)
(DCloE (Sub (F "eq-AB" :% BV 0) (K Zero ::: id)))
(F "eq-AB" :% K Zero),
testEq "(eq-AB #0)𝟎 = A" $
equalED 1
(extendDim "𝑖" empty)
(DCloE (Sub (F "eq-AB" :% BV 0) (K Zero ::: id))) (F "A"),
testEq "(eq-AB #0)𝟏 = B" $
equalED 1
(extendDim "𝑖" empty)
(DCloE (Sub (F "eq-AB" :% BV 0) (K One ::: id))) (F "B"),
testNeq "(eq-AB #0)𝟏 ≠ A" $
equalED 1
(extendDim "𝑖" empty)
(DCloE (Sub (F "eq-AB" :% BV 0) (K One ::: id))) (F "A"),
testEq "(eq-AB #0)#0,𝟎 = (eq-AB #0)" $
equalED 2
(extendDim "𝑗" $ extendDim "𝑖" empty)
(DCloE (Sub (F "eq-AB" :% BV 0) (BV 0 ::: K Zero ::: id)))
(F "eq-AB" :% BV 0),
testNeq "(eq-AB #0)𝟎 ≠ (eq-AB 𝟎)" $
equalED 2
(extendDim "𝑗" $ extendDim "𝑖" empty)
(DCloE (Sub (F "eq-AB" :% BV 0) (BV 0 ::: K Zero ::: id)))
(F "eq-AB" :% K Zero),
testEq "#0𝟎 = #0 # term and dim vars distinct" $
equalED 1
(extendTy Any "x" (FT "A") $ extendDim "𝑖" empty)
(DCloE (Sub (BV 0) (K Zero ::: id))) (BV 0),
testEq "a𝟎 = a" $
equalED 1 (extendDim "𝑖" empty)
(DCloE (Sub (F "a") (K Zero ::: id))) (F "a"),
testEq "(f [a])𝟎 = f𝟎 [a]𝟎" $
let th = K Zero ::: id in
equalED 1 (extendDim "𝑖" empty)
(DCloE (Sub (F "f" :@ FT "a") th))
(DCloE (Sub (F "f") th) :@ DCloT (Sub (FT "a") th))
testEq "(eq-AB @𝟎)0 = eq-AB @0" $
equalE empty
(DCloE (Sub (^DApp (^F "eq-AB") (^BV 0)) (^K Zero ::: id)))
(^DApp (^F "eq-AB") (^K Zero)),
testEq "(eq-AB @𝟎)0 = A" $
equalE empty
(DCloE (Sub (^DApp (^F "eq-AB") (^BV 0)) (^K Zero ::: id)))
(^F "A"),
testEq "(eq-AB @𝟎)1 = B" $
equalE empty
(DCloE (Sub (^DApp (^F "eq-AB") (^BV 0)) (^K One ::: id)))
(^F "B"),
testNeq "(eq-AB @𝟎)1 ≠ A" $
equalE empty
(DCloE (Sub (^DApp (^F "eq-AB") (^BV 0)) (^K One ::: id)))
(^F "A"),
testEq "(eq-AB @𝟎)𝟎,0 = (eq-AB 𝟎)" $
equalE (extendDim "𝑖" empty)
(DCloE (Sub (^DApp (^F "eq-AB") (^BV 0)) (^BV 0 ::: ^K Zero ::: id)))
(^DApp (^F "eq-AB") (^BV 0)),
testNeq "(eq-AB 𝟎)0 ≠ (eq-AB 0)" $
equalE (extendDim "𝑖" empty)
(DCloE (Sub (^DApp (^F "eq-AB") (^BV 0)) (^BV 0 ::: ^K Zero ::: id)))
(^DApp (^F "eq-AB") (^K Zero)),
testEq "𝟎0 = 𝟎 # term and dim vars distinct" $
equalE
(extendTy Any "x" (^FT "A") empty)
(DCloE (Sub (^BV 0) (^K Zero ::: id))) (^BV 0),
testEq "a0 = a" $
equalE empty
(DCloE (Sub (^F "a") (^K Zero ::: id))) (^F "a"),
testEq "(f a)0 = f0 a0" $
let th = ^K Zero ::: id in
equalE empty
(DCloE (Sub (^App (^F "f") (^FT "a")) th))
(^App (DCloE (Sub (^F "f") th)) (DCloT (Sub (^FT "a") th)))
],
"clashes" :- [
testNeq "★₀ ≠ ★₀ ⇾ ★₀" $
equalT empty (TYPE 1) (TYPE 0) (Arr Zero (TYPE 0) (TYPE 0)),
testEq "0=1 ⊢ ★₀ = ★₀ ⇾ ★₀" $
equalT empty01 (TYPE 1) (TYPE 0) (Arr Zero (TYPE 0) (TYPE 0)),
testNeq "★₀ ≠ 0.★₀ → ★₀" $
equalT empty (^TYPE 1) (^TYPE 0) (^Arr Zero (^TYPE 0) (^TYPE 0)),
testEq "0=1 ⊢ ★₀ = 0.★₀ → ★₀" $
equalT empty01 (^TYPE 1) (^TYPE 0) (^Arr Zero (^TYPE 0) (^TYPE 0)),
todo "others"
]
]

View file

@ -4,8 +4,9 @@ import Quox.Parser.FromParser
import Quox.Parser
import TypingImpls
import Tests.Parser as TParser
import TAP
import Quox.EffExtra
import TAP
import AstExtra
import System.File
import Derive.Prelude
@ -49,6 +50,11 @@ parameters {c : Bool} {auto _ : Show b}
parses : Test
parses = parsesWith $ const True
%macro
parseMatch : TTImp -> Elab Test
parseMatch pat =
parsesWith <$> check `(\case ~(pat) => True; _ => False)
parsesAs : Eq b => b -> Test
parsesAs exp = parsesWith (== exp)
@ -59,11 +65,9 @@ parameters {c : Bool} {auto _ : Show b}
either (const $ Right ()) (Left . ExpectedFail . show) $ fromP pres
FromString PatVar where fromString x = PV x Nothing
runFromParser : {default empty defs : Definitions} ->
Eff FromParserPure a -> Either FromParser.Error a
runFromParser = map fst . fromParserPure defs
runFromParser = map fst . fst . fromParserPure 0 defs
export
tests : Test
@ -72,30 +76,35 @@ tests = "PTerm → Term" :- [
let fromPDim = runFromParser . fromPDimWith [< "𝑖", "𝑗"]
in [
note "dim ctx: [𝑖, 𝑗]",
parsesAs dim fromPDim "𝑖" (BV 1),
parsesAs dim fromPDim "𝑗" (BV 0),
parseMatch dim fromPDim "𝑖" `(B (VS VZ) _),
parseMatch dim fromPDim "𝑗" `(B VZ _),
parseFails dim fromPDim "𝑘",
parsesAs dim fromPDim "0" (K Zero),
parsesAs dim fromPDim "1" (K One)
parseMatch dim fromPDim "0" `(K Zero _),
parseMatch dim fromPDim "1" `(K One _)
],
"terms" :-
let defs = fromList [("f", mkDef gany Nat Zero)]
let defs = fromList [("f", mkDef gany (Nat noLoc) (Zero noLoc) noLoc)]
-- doesn't have to be well typed yet, just well scoped
fromPTerm = runFromParser {defs} .
fromPTermWith [< "𝑖", "𝑗"] [< "A", "x", "y", "z"]
in [
note "dim ctx: [𝑖, 𝑗]; term ctx: [A, x, y, z]",
parsesAs term fromPTerm "x" $ BVT 2,
parseMatch term fromPTerm "x" `(E $ B (VS $ VS VZ) _),
parseFails term fromPTerm "𝑖",
parsesAs term fromPTerm "f" $ FT "f",
parsesAs term fromPTerm "λ w ⇒ w" $ [< "w"] :\\ BVT 0,
parsesAs term fromPTerm "λ w ⇒ x" $ [< "w"] :\\ BVT 3,
parsesAs term fromPTerm "λ x ⇒ x" $ [< "x"] :\\ BVT 0,
parsesAs term fromPTerm "λ a b ⇒ f a b" $
[< "a", "b"] :\\ E (F "f" :@@ [BVT 1, BVT 0]),
parsesAs term fromPTerm "f @𝑖" $
E $ F "f" :% BV 1
parseMatch term fromPTerm "f" `(E $ F "f" _),
parseMatch term fromPTerm "λ w ⇒ w"
`(Lam (S _ $ Y $ E $ B VZ _) _),
parseMatch term fromPTerm "λ w ⇒ x"
`(Lam (S _ $ N $ E $ B (VS $ VS VZ) _) _),
parseMatch term fromPTerm "λ x ⇒ x"
`(Lam (S _ $ Y $ E $ B VZ _) _),
parseMatch term fromPTerm "λ a b ⇒ f a b"
`(Lam (S _ $ Y $
Lam (S _ $ Y $
E $ App (App (F "f" _) (E $ B (VS VZ) _) _) (E $ B VZ _) _) _) _),
parseMatch term fromPTerm "f @𝑖" $
`(E $ DApp (F "f" _) (B (VS VZ) _) _)
],
todo "everything else"

View file

@ -23,128 +23,179 @@ parameters (ds : NContext d) (ns : NContext n)
{default str label : String} -> Test
testPrettyE1 e str {label} = testPrettyT1 (E e) str {label}
prefix 9 ^
(^) : (Loc -> a) -> a
(^) a = a noLoc
FromString BindName where fromString str = BN (fromString str) noLoc
export
tests : Test
tests = "pretty printing terms" :- [
"free vars" :- [
testPrettyE1 [<] [<] (F "x") "x",
testPrettyE1 [<] [<] (F $ MakeName [< "A", "B", "C"] "x") "A.B.C.x"
testPrettyE1 [<] [<] (^F "x") "x",
testPrettyE1 [<] [<] (^F (MakeName [< "A", "B", "C"] "x")) "A.B.C.x"
],
"bound vars" :- [
testPrettyE1 [< "𝑖", "𝑗"] [< "x", "y"] (BV 0) "y",
testPrettyE1 [< "𝑖", "𝑗"] [< "x", "y"] (BV 1) "x",
testPrettyE1 [< "𝑖", "𝑗"] [< "x", "y"] (F "eq" :% BV 1) "eq @𝑖",
testPrettyE1 [< "𝑖", "𝑗"] [< "x", "y"] (F "eq" :% BV 1 :% BV 0) "eq @𝑖 @𝑗"
testPrettyE1 [< "𝑖", "𝑗"] [< "x", "y"] (^BV 0) "y",
testPrettyE1 [< "𝑖", "𝑗"] [< "x", "y"] (^BV 1) "x",
testPrettyE1 [< "𝑖", "𝑗"] [< "x", "y"]
(^DApp (^F "eq") (^BV 1))
"eq @𝑖",
testPrettyE1 [< "𝑖", "𝑗"] [< "x", "y"]
(^DApp (^DApp (^F "eq") (^BV 1)) (^BV 0))
"eq @𝑖 @𝑗"
],
"applications" :- [
testPrettyE1 [<] [<] (F "f" :@ FT "x") "f x",
testPrettyE1 [<] [<] (F "f" :@@ [FT "x", FT "y"]) "f x y",
testPrettyE1 [<] [<] (F "f" :% K Zero) "f @0",
testPrettyE1 [<] [<] (F "f" :@ FT "x" :% K Zero) "f x @0",
testPrettyE1 [<] [<] (F "g" :% K One :@ FT "y") "g @1 y"
testPrettyE1 [<] [<]
(^App (^F "f") (^FT "x"))
"f x",
testPrettyE1 [<] [<]
(^App (^App (^F "f") (^FT "x")) (^FT "y"))
"f x y",
testPrettyE1 [<] [<]
(^DApp (^F "f") (^K Zero))
"f @0",
testPrettyE1 [<] [<]
(^DApp (^App (^F "f") (^FT "x")) (^K Zero))
"f x @0",
testPrettyE1 [<] [<]
(^App (^DApp (^F "g") (^K One)) (^FT "y"))
"g @1 y"
],
"lambda" :- [
testPrettyT [<] [<] ([< "x"] :\\ BVT 0) "λ x ⇒ x" "fun x => x",
testPrettyT [<] [<] (Lam $ SN $ FT "a") "λ _ ⇒ a" "fun _ => a",
testPrettyT [<] [< "y"] ([< "x"] :\\ BVT 1) "λ x ⇒ y" "fun x => y",
testPrettyT [<] [<]
([< "x", "y", "f"] :\\ E (BV 0 :@@ [BVT 2, BVT 1]))
(^LamY "x" (^BVT 0))
"λ x ⇒ x"
"fun x => x",
testPrettyT [<] [<]
(^LamN (^FT "a"))
"λ _ ⇒ a"
"fun _ => a",
testPrettyT [<] [< "y"]
(^LamY "x" (^BVT 1))
"λ x ⇒ y"
"fun x => y",
testPrettyT [<] [<]
(^LamY "x" (^LamY "y" (^LamY "f"
(E $ ^App (^App (^BV 0) (^BVT 2)) (^BVT 1)))))
"λ x y f ⇒ f x y"
"fun x y f => f x y",
testPrettyT [<] [<] (DLam $ SN $ FT "a") "δ _ ⇒ a" "dfun _ => a",
testPrettyT [<] [<] ([< "i"] :\\% FT "x") "δ i ⇒ x" "dfun i => x",
testPrettyT [<] [<]
([< "x"] :\\ [< "i"] :\\% E (BV 0 :% BV 0))
(^DLam (SN (^FT "a")))
"δ _ ⇒ a"
"dfun _ => a",
testPrettyT [<] [<]
(^DLamY "i" (^FT "x"))
"δ i ⇒ x"
"dfun i => x",
testPrettyT [<] [<]
(^LamY "x" (^DLamY "i" (E $ ^DApp (^BV 0) (^BV 0))))
"λ x ⇒ δ i ⇒ x @i"
"fun x => dfun i => x @i"
],
"type universes" :- [
testPrettyT [<] [<] (TYPE 0) "★₀" "Type0",
testPrettyT [<] [<] (TYPE 100) "★₁₀₀" "Type100"
testPrettyT [<] [<] (^TYPE 0) "★₀" "Type0",
testPrettyT [<] [<] (^TYPE 100) "★₁₀₀" "Type100"
],
"function types" :- [
testPrettyT [<] [<] (Arr One (FT "A") (FT "B")) "1.A → B" "1.A -> B",
testPrettyT [<] [<]
(PiY One "x" (FT "A") (E $ F "B" :@ BVT 0))
(^Arr One (^FT "A") (^FT "B"))
"1.A → B"
"1.A -> B",
testPrettyT [<] [<]
(^PiY One "x" (^FT "A") (E $ ^App (^F "B") (^BVT 0)))
"1.(x : A) → B x"
"1.(x : A) -> B x",
testPrettyT [<] [<]
(PiY Zero "A" (TYPE 0) $ Arr Any (BVT 0) (BVT 0))
(^PiY Zero "A" (^TYPE 0) (^Arr Any (^BVT 0) (^BVT 0)))
"0.(A : ★₀) → ω.A → A"
"0.(A : Type0) -> #.A -> A",
testPrettyT [<] [<]
(Arr Any (Arr Any (FT "A") (FT "A")) (FT "A"))
(^Arr Any (^Arr Any (^FT "A") (^FT "A")) (^FT "A"))
"ω.(ω.A → A) → A"
"#.(#.A -> A) -> A",
testPrettyT [<] [<]
(Arr Any (FT "A") (Arr Any (FT "A") (FT "A")))
(^Arr Any (^FT "A") (^Arr Any (^FT "A") (^FT "A")))
"ω.A → ω.A → A"
"#.A -> #.A -> A",
testPrettyT [<] [<]
(PiY Zero "P" (Arr Zero (FT "A") (TYPE 0)) (E $ BV 0 :@ FT "a"))
(^PiY Zero "P" (^Arr Zero (^FT "A") (^TYPE 0))
(E $ ^App (^BV 0) (^FT "a")))
"0.(P : 0.A → ★₀) → P a"
"0.(P : 0.A -> Type0) -> P a"
],
"pair types" :- [
testPrettyT [<] [<] (FT "A" `And` FT "B") "A × B" "A ** B",
testPrettyT [<] [<]
(SigY "x" (FT "A") (E $ F "B" :@ BVT 0))
(^And (^FT "A") (^FT "B"))
"A × B"
"A ** B",
testPrettyT [<] [<]
(^SigY "x" (^FT "A") (E $ ^App (^F "B") (^BVT 0)))
"(x : A) × B x"
"(x : A) ** B x",
testPrettyT [<] [<]
(SigY "x" (FT "A") $
SigY "y" (E $ F "B" :@ BVT 0) $
E $ F "C" :@@ [BVT 1, BVT 0])
(^SigY "x" (^FT "A")
(^SigY "y" (E $ ^App (^F "B") (^BVT 0))
(E $ ^App (^App (^F "C") (^BVT 1)) (^BVT 0))))
"(x : A) × (y : B x) × C x y"
"(x : A) ** (y : B x) ** C x y",
todo "non-dependent, left and right nested"
],
"pairs" :- [
testPrettyT1 [<] [<] (Pair (FT "A") (FT "B")) "(A, B)",
testPrettyT1 [<] [<] (Pair (FT "A") (Pair (FT "B") (FT "C"))) "(A, B, C)",
testPrettyT1 [<] [<] (Pair (Pair (FT "A") (FT "B")) (FT "C")) "((A, B), C)",
testPrettyT1 [<] [<]
(^Pair (^FT "A") (^FT "B"))
"(A, B)",
testPrettyT1 [<] [<]
(^Pair (^FT "A") (^Pair (^FT "B") (^FT "C")))
"(A, B, C)",
testPrettyT1 [<] [<]
(^Pair (^Pair (^FT "A") (^FT "B")) (^FT "C"))
"((A, B), C)",
testPrettyT [<] [<]
(Pair ([< "x"] :\\ BVT 0) (Arr One (FT "B₁") (FT "B₂")))
(^Pair (^LamY "x" (^BVT 0)) (^Arr One (^FT "B₁") (^FT "B₂")))
"(λ x ⇒ x, 1.B₁ → B₂)"
"(fun x => x, 1.B₁ -> B₂)"
],
"enum types" :- [
testPrettyT1 [<] [<] (enum []) "{}",
testPrettyT1 [<] [<] (enum ["a"]) "{a}",
testPrettyT1 [<] [<] (enum ["aa", "bb", "cc"]) "{aa, bb, cc}",
testPrettyT1 [<] [<] (enum ["a b c"]) #"{"a b c"}"#,
testPrettyT1 [<] [<] (enum ["\"", ",", "\\"]) #" {"\"", ",", \} "#
testPrettyT1 [<] [<] (^enum []) "{}",
testPrettyT1 [<] [<] (^enum ["a"]) "{a}",
testPrettyT1 [<] [<] (^enum ["aa", "bb", "cc"]) "{aa, bb, cc}",
testPrettyT1 [<] [<] (^enum ["a b c"]) #"{"a b c"}"#,
testPrettyT1 [<] [<] (^enum ["\"", ",", "\\"]) #" {"\"", ",", \} "#
{label = #"{"\"", ",", \} # 「\」 is an identifier"#}
],
"tags" :- [
testPrettyT1 [<] [<] (Tag "a") "'a",
testPrettyT1 [<] [<] (Tag "hello") "'hello",
testPrettyT1 [<] [<] (Tag "qualified.tag") "'qualified.tag",
testPrettyT1 [<] [<] (Tag "non-identifier tag") #"'"non-identifier tag""#,
testPrettyT1 [<] [<] (Tag #"""#) #" '"\"" "#
testPrettyT1 [<] [<] (^Tag "a") "'a",
testPrettyT1 [<] [<] (^Tag "hello") "'hello",
testPrettyT1 [<] [<] (^Tag "qualified.tag") "'qualified.tag",
testPrettyT1 [<] [<] (^Tag "non-identifier tag") #"'"non-identifier tag""#,
testPrettyT1 [<] [<] (^Tag #"""#) #" '"\"" "#
],
todo "equality types",
"case" :- [
testPrettyE [<] [<]
(CasePair One (F "a") (SN $ TYPE 1) (SN $ TYPE 0))
(^CasePair One (^F "a") (SN $ ^TYPE 1) (SN $ ^TYPE 0))
"case1 a return ★₁ of { (_, _) ⇒ ★₀ }"
"case1 a return Type1 of { (_, _) => Type0 }",
testPrettyT [<] [<]
([< "u"] :\\
E (CaseEnum One (F "u")
(SY [< "x"] $ Eq0 (enum ["tt"]) (BVT 0) (Tag "tt"))
(fromList [("tt", [< Unused] :\\% Tag "tt")])))
(^LamY "u" (E $
^CaseEnum One (^F "u")
(SY [< "x"] $ ^Eq0 (^enum ["tt"]) (^BVT 0) (^Tag "tt"))
(fromList [("tt", ^DLamN (^Tag "tt"))])))
"λ u ⇒ case1 u return x ⇒ x ≡ 'tt : {tt} of { 'tt ⇒ δ _ ⇒ 'tt }"
"""
fun u =>
@ -155,27 +206,30 @@ tests = "pretty printing terms" :- [
"type-case" :- [
testPrettyE [<] [<]
{label = "type-case ∷ ★₀ return ★₀ of { ⋯ }"}
(TypeCase (Nat :# TYPE 0) (TYPE 0) empty Nat)
(^TypeCase (^Ann (^Nat) (^TYPE 0)) (^TYPE 0) empty (^Nat))
"type-case ∷ ★₀ return ★₀ of { _ ⇒ }"
"type-case Nat :: Type0 return Type0 of { _ => Nat }"
],
"annotations" :- [
testPrettyE [<] [<] (FT "a" :# FT "A") "a ∷ A" "a :: A",
testPrettyE [<] [<]
(FT "a" :# E (FT "A" :# FT "𝐀"))
(^Ann (^FT "a") (^FT "A"))
"a ∷ A"
"a :: A",
testPrettyE [<] [<]
(^Ann (^FT "a") (E $ ^Ann (^FT "A") (^FT "𝐀")))
"a ∷ A ∷ 𝐀"
"a :: A :: 𝐀",
testPrettyE [<] [<]
(E (FT "α" :# FT "a") :# FT "A")
(^Ann (E $ ^Ann (^FT "α") (^FT "a")) (^FT "A"))
"(α ∷ a) ∷ A"
"(α :: a) :: A",
testPrettyE [<] [<]
(([< "x"] :\\ BVT 0) :# Arr One (FT "A") (FT "A"))
(^Ann (^LamY "x" (^BVT 0)) (^Arr One (^FT "A") (^FT "A")))
"(λ x ⇒ x) ∷ 1.A → A"
"(fun x => x) :: 1.A -> A",
testPrettyE [<] [<]
(Arr One (FT "A") (FT "A") :# TYPE 7)
(^Ann (^Arr One (^FT "A") (^FT "A")) (^TYPE 7))
"(1.A → A) ∷ ★₇"
"(1.A -> A) :: Type7"
]

View file

@ -3,7 +3,12 @@ module Tests.Reduce
import Quox.Syntax as Lib
import Quox.Equal
import TypingImpls
import AstExtra
import TAP
import Control.Eff
%hide Prelude.App
%hide Pretty.App
parameters {0 isRedex : RedexTest tm} {auto _ : Whnf tm isRedex} {d, n : Nat}
@ -12,7 +17,7 @@ parameters {0 isRedex : RedexTest tm} {auto _ : Whnf tm isRedex} {d, n : Nat}
private
testWhnf : String -> WhnfContext d n -> tm d n -> tm d n -> Test
testWhnf label ctx from to = test "\{label} (whnf)" $ do
result <- bimap toInfo fst $ whnf defs ctx from
result <- mapFst toInfo $ runWhnf $ whnf0 defs ctx from
unless (result == to) $ Left [("exp", show to), ("got", show result)]
private
@ -20,7 +25,7 @@ parameters {0 isRedex : RedexTest tm} {auto _ : Whnf tm isRedex} {d, n : Nat}
testNoStep label ctx e = testWhnf label ctx e e
private
ctx : Context (\n => (BaseName, Term 0 n)) n -> WhnfContext 0 n
ctx : Context (\n => (BindName, Term 0 n)) n -> WhnfContext 0 n
ctx xs = let (ns, ts) = unzip xs in MkWhnfContext [<] ns ts
@ -28,91 +33,101 @@ export
tests : Test
tests = "whnf" :- [
"head constructors" :- [
testNoStep "★₀" empty $ TYPE 0,
testNoStep "[A] ⊸ [B]" empty $
Arr One (FT "A") (FT "B"),
testNoStep "(x: [A]) ⊸ [B [x]]" empty $
Pi One (FT "A") (S [< "x"] $ Y $ E $ F "B" :@ BVT 0),
testNoStep "λx. [x]" empty $
Lam $ S [< "x"] $ Y $ BVT 0,
testNoStep "[f [a]]" empty $
E $ F "f" :@ FT "a"
testNoStep "★₀" empty $ ^TYPE 0,
testNoStep "1.A → B" empty $
^Arr One (^FT "A") (^FT "B"),
testNoStep "(x: A) ⊸ B x" empty $
^PiY One "x" (^FT "A") (E $ ^App (^F "B") (^BVT 0)),
testNoStep "λ x ⇒ x" empty $
^LamY "x" (^BVT 0),
testNoStep "f a" empty $
E $ ^App (^F "f") (^FT "a")
],
"neutrals" :- [
testNoStep "x" (ctx [< ("A", Nat)]) $ BV 0,
testNoStep "a" empty $ F "a",
testNoStep "f [a]" empty $ F "f" :@ FT "a",
testNoStep "★₀ ∷ ★₁" empty $ TYPE 0 :# TYPE 1
testNoStep "x" (ctx [< ("A", ^Nat)]) $ ^BV 0,
testNoStep "a" empty $ ^F "a",
testNoStep "f a" empty $ ^App (^F "f") (^FT "a"),
testNoStep "★₀ ∷ ★₁" empty $ ^Ann (^TYPE 0) (^TYPE 1)
],
"redexes" :- [
testWhnf "[a] ∷ [A]" empty
(FT "a" :# FT "A")
(F "a"),
testWhnf "[★₁ ∷ ★₃]" empty
(E (TYPE 1 :# TYPE 3))
(TYPE 1),
testWhnf "(λx. [x] ∷ [A] ⊸ [A]) [a]" empty
((([< "x"] :\\ BVT 0) :# Arr One (FT "A") (FT "A")) :@ FT "a")
(F "a")
testWhnf "a ∷ A" empty
(^Ann (^FT "a") (^FT "A"))
(^F "a"),
testWhnf "★₁ ∷ ★₃" empty
(E $ ^Ann (^TYPE 1) (^TYPE 3))
(^TYPE 1),
testWhnf "(λ x ⇒ x ∷ 1.A → A) a" empty
(^App (^Ann (^LamY "x" (^BVT 0)) (^Arr One (^FT "A") (^FT "A")))
(^FT "a"))
(^F "a")
],
"definitions" :- [
testWhnf "a (transparent)" empty
{defs = fromList [("a", mkDef gzero (TYPE 1) (TYPE 0))]}
(F "a") (TYPE 0 :# TYPE 1)
{defs = fromList [("a", ^mkDef gzero (^TYPE 1) (^TYPE 0))]}
(^F "a") (^Ann (^TYPE 0) (^TYPE 1)),
testNoStep "a (opaque)" empty
{defs = fromList [("a", ^mkPostulate gzero (^TYPE 1))]}
(^F "a")
],
"elim closure" :- [
testWhnf "x{}" (ctx [< ("A", Nat)])
(CloE (Sub (BV 0) id))
(BV 0),
testWhnf "x{}" (ctx [< ("x", ^Nat)])
(CloE (Sub (^BV 0) id))
(^BV 0),
testWhnf "x{a/x}" empty
(CloE (Sub (BV 0) (F "a" ::: id)))
(F "a"),
testWhnf "x{x/x,a/y}" (ctx [< ("A", Nat)])
(CloE (Sub (BV 0) (BV 0 ::: F "a" ::: id)))
(BV 0),
(CloE (Sub (^BV 0) (^F "a" ::: id)))
(^F "a"),
testWhnf "x{a/y}" (ctx [< ("x", ^Nat)])
(CloE (Sub (^BV 0) (^BV 0 ::: ^F "a" ::: id)))
(^BV 0),
testWhnf "x{(y{a/y})/x}" empty
(CloE (Sub (BV 0) ((CloE (Sub (BV 0) (F "a" ::: id))) ::: id)))
(F "a"),
(CloE (Sub (^BV 0) ((CloE (Sub (^BV 0) (^F "a" ::: id))) ::: id)))
(^F "a"),
testWhnf "(x y){f/x,a/y}" empty
(CloE (Sub (BV 0 :@ BVT 1) (F "f" ::: F "a" ::: id)))
(F "f" :@ FT "a"),
testWhnf "([y] ∷ [x]){A/x}" (ctx [< ("A", Nat)])
(CloE (Sub (BVT 1 :# BVT 0) (F "A" ::: id)))
(BV 0),
testWhnf "([y] ∷ [x]){A/x,a/y}" empty
(CloE (Sub (BVT 1 :# BVT 0) (F "A" ::: F "a" ::: id)))
(F "a")
(CloE (Sub (^App (^BV 0) (^BVT 1)) (^F "f" ::: ^F "a" ::: id)))
(^App (^F "f") (^FT "a")),
testWhnf "(y ∷ x){A/x}" (ctx [< ("x", ^Nat)])
(CloE (Sub (^Ann (^BVT 1) (^BVT 0)) (^F "A" ::: id)))
(^BV 0),
testWhnf "(y ∷ x){A/x,a/y}" empty
(CloE (Sub (^Ann (^BVT 1) (^BVT 0)) (^F "A" ::: ^F "a" ::: id)))
(^F "a")
],
"term closure" :- [
testWhnf "y. x){a/x}" empty
(CloT (Sub (Lam $ S [< "y"] $ N $ BVT 0) (F "a" ::: id)))
(Lam $ S [< "y"] $ N $ FT "a"),
testWhnf " y ⇒ x){a/x}" empty
(CloT (Sub (^LamN (^BVT 0)) (^F "a" ::: id)))
(^LamN (^FT "a")),
testWhnf "(λy. y){a/x}" empty
(CloT (Sub ([< "y"] :\\ BVT 0) (F "a" ::: id)))
([< "y"] :\\ BVT 0)
(CloT (Sub (^LamY "y" (^BVT 0)) (^F "a" ::: id)))
(^LamY "y" (^BVT 0))
],
"looking inside […]" :- [
testWhnf "[(λx. x ∷ A ⊸ A) [a]]" empty
(E $ (([< "x"] :\\ BVT 0) :# Arr One (FT "A") (FT "A")) :@ FT "a")
(FT "a")
"looking inside `E`" :- [
testWhnf "(λx. x ∷ A ⊸ A) a" empty
(E $ ^App (^Ann (^LamY "x" (^BVT 0)) (^Arr One (^FT "A") (^FT "A")))
(^FT "a"))
(^FT "a")
],
"nested redex" :- [
note "whnf only looks at top level redexes",
testNoStep "λy. [(λx. [x] ∷ [A] ⊸ [A]) [y]]" empty $
[< "y"] :\\ E ((([< "x"] :\\ BVT 0) :# Arr One (FT "A") (FT "A")) :@ BVT 0),
testNoStep "f [(λx. [x] ∷ [A] ⊸ [A]) [a]]" empty $
F "a" :@
E ((([< "x"] :\\ BVT 0) :# Arr One (FT "A") (FT "A")) :@ FT "a"),
testNoStep "λx. [y [x]]{x/x,a/y}" (ctx [< ("A", Nat)]) $
[< "x"] :\\ CloT (Sub (E $ BV 1 :@ BVT 0) (BV 0 ::: F "a" ::: id)),
testNoStep "f ([y [x]]{x/x,a/y})" (ctx [< ("A", Nat)]) $
F "f" :@ CloT (Sub (E $ BV 1 :@ BVT 0) (BV 0 ::: F "a" ::: id))
testNoStep "λ y ⇒ ((λ x ⇒ x) ∷ 1.A → A) y" empty $
^LamY "y" (E $
^App (^Ann (^LamY "x" (^BVT 0)) (^Arr One (^FT "A") (^FT "A")))
(^BVT 0)),
testNoStep "f (((λ x ⇒ x) ∷ 1.A → A) a)" empty $
^App (^F "f")
(E $ ^App (^Ann (^LamY "x" (^BVT 0)) (^Arr One (^FT "A") (^FT "A")))
(^FT "a")),
testNoStep "λx. (y x){x/x,a/y}" (ctx [< ("y", ^Nat)]) $
^LamY "x" (CloT $ Sub (E $ ^App (^BV 1) (^BVT 0))
(^BV 0 ::: ^F "a" ::: id)),
testNoStep "f (y x){x/x,a/y}" (ctx [< ("y", ^Nat)]) $
^App (^F "f")
(CloT (Sub (E $ ^App (^BV 1) (^BVT 0))
(^BV 0 ::: ^F "a" ::: id)))
]
]

View file

@ -5,6 +5,11 @@ import Quox.Typechecker as Lib
import public TypingImpls
import TAP
import Quox.EffExtra
import AstExtra
%hide Prelude.App
%hide Pretty.App
data Error'
@ -28,64 +33,75 @@ ToInfo Error' where
M = Eff [Except Error', DefsReader]
inj : TC a -> M a
inj = rethrow . mapFst TCError <=< lift . runExcept
inj act = rethrow $ mapFst TCError $ runTC !defs act
reflTy : Term d n
reflTy =
PiY Zero "A" (TYPE 0) $
PiY One "x" (BVT 0) $
Eq0 (BVT 1) (BVT 0) (BVT 0)
^PiY Zero "A" (^TYPE 0)
(^PiY One "x" (^BVT 0)
(^Eq0 (^BVT 1) (^BVT 0) (^BVT 0)))
reflDef : Term d n
reflDef = [< "A","x"] :\\ [< "i"] :\\% BVT 0
reflDef = ^LamY "A" (^LamY "x" (^DLamY "i" (^BVT 0)))
fstTy : Term d n
fstTy =
(PiY Zero "A" (TYPE 1) $
PiY Zero "B" (Arr Any (BVT 0) (TYPE 1)) $
Arr Any (SigY "x" (BVT 1) $ E $ BV 1 :@ BVT 0) (BVT 1))
^PiY Zero "A" (^TYPE 1)
(^PiY Zero "B" (^Arr Any (^BVT 0) (^TYPE 1))
(^Arr Any (^SigY "x" (^BVT 1) (E $ ^App (^BV 1) (^BVT 0))) (^BVT 1)))
fstDef : Term d n
fstDef =
([< "A","B","p"] :\\
E (CasePair Any (BV 0) (SN $ BVT 2) (SY [< "x","y"] $ BVT 1)))
^LamY "A" (^LamY "B" (^LamY "p"
(E $ ^CasePair Any (^BV 0) (SN $ ^BVT 2)
(SY [< "x", "y"] $ ^BVT 1))))
sndTy : Term d n
sndTy =
(PiY Zero "A" (TYPE 1) $
PiY Zero "B" (Arr Any (BVT 0) (TYPE 1)) $
PiY Any "p" (SigY "x" (BVT 1) $ E $ BV 1 :@ BVT 0) $
E (BV 1 :@ E (F "fst" :@@ [BVT 2, BVT 1, BVT 0])))
^PiY Zero "A" (^TYPE 1)
(^PiY Zero "B" (^Arr Any (^BVT 0) (^TYPE 1))
(^PiY Any "p" (^SigY "x" (^BVT 1) (E $ ^App (^BV 1) (^BVT 0)))
(E $ ^App (^BV 1)
(E $ ^App (^App (^App (^F "fst") (^BVT 2)) (^BVT 1)) (^BVT 0)))))
sndDef : Term d n
sndDef =
([< "A","B","p"] :\\
E (CasePair Any (BV 0)
(SY [< "p"] $ E $ BV 2 :@ E (F "fst" :@@ [BVT 3, BVT 2, BVT 0]))
(SY [< "x","y"] $ BVT 0)))
-- λ A B p ⇒ caseω p return p' ⇒ B (fst A B p') of { (x, y) ⇒ y }
^LamY "A" (^LamY "B" (^LamY "p"
(E $ ^CasePair Any (^BV 0)
(SY [< "p"] $ E $
^App (^BV 2)
(E $ ^App (^App (^App (^F "fst") (^BVT 3)) (^BVT 2)) (^BVT 0)))
(SY [< "x", "y"] $ ^BVT 0))))
nat : Term d n
nat = ^Nat
defGlobals : Definitions
defGlobals = fromList
[("A", mkPostulate gzero $ TYPE 0),
("B", mkPostulate gzero $ TYPE 0),
("C", mkPostulate gzero $ TYPE 1),
("D", mkPostulate gzero $ TYPE 1),
("P", mkPostulate gzero $ Arr Any (FT "A") (TYPE 0)),
("a", mkPostulate gany $ FT "A"),
("a'", mkPostulate gany $ FT "A"),
("b", mkPostulate gany $ FT "B"),
("f", mkPostulate gany $ Arr One (FT "A") (FT "A")),
("", mkPostulate gany $ Arr Any (FT "A") (FT "A")),
("g", mkPostulate gany $ Arr One (FT "A") (FT "B")),
("f2", mkPostulate gany $ Arr One (FT "A") $ Arr One (FT "A") (FT "B")),
("p", mkPostulate gany $ PiY One "x" (FT "A") $ E $ F "P" :@ BVT 0),
("q", mkPostulate gany $ PiY One "x" (FT "A") $ E $ F "P" :@ BVT 0),
("refl", mkDef gany reflTy reflDef),
("fst", mkDef gany fstTy fstDef),
("snd", mkDef gany sndTy sndDef)]
[("A", ^mkPostulate gzero (^TYPE 0)),
("B", ^mkPostulate gzero (^TYPE 0)),
("C", ^mkPostulate gzero (^TYPE 1)),
("D", ^mkPostulate gzero (^TYPE 1)),
("P", ^mkPostulate gzero (^Arr Any (^FT "A") (^TYPE 0))),
("a", ^mkPostulate gany (^FT "A")),
("a'", ^mkPostulate gany (^FT "A")),
("b", ^mkPostulate gany (^FT "B")),
("f", ^mkPostulate gany (^Arr One (^FT "A") (^FT "A"))),
("", ^mkPostulate gany (^Arr Any (^FT "A") (^FT "A"))),
("g", ^mkPostulate gany (^Arr One (^FT "A") (^FT "B"))),
("f2", ^mkPostulate gany
(^Arr One (^FT "A") (^Arr One (^FT "A") (^FT "B")))),
("p", ^mkPostulate gany
(^PiY One "x" (^FT "A") (E $ ^App (^F "P") (^BVT 0)))),
("q", ^mkPostulate gany
(^PiY One "x" (^FT "A") (E $ ^App (^F "P") (^BVT 0)))),
("refl", ^mkDef gany reflTy reflDef),
("fst", ^mkDef gany fstTy fstDef),
("snd", ^mkDef gany sndTy sndDef)]
parameters (label : String) (act : Lazy (M ()))
{default defGlobals globals : Definitions}
@ -98,23 +114,10 @@ parameters (label : String) (act : Lazy (M ()))
(extract $ runExcept $ runReaderAt DEFS globals act) $> "()"
anys : {n : Nat} -> QContext n
anys {n = 0} = [<]
anys {n = S n} = anys :< Any
ctx, ctx01 : {n : Nat} -> Context (\n => (BaseName, Term 0 n)) n ->
TyContext 0 n
ctx tel = let (ns, ts) = unzip tel in
MkTyContext new [<] ts ns anys
ctx01 tel = let (ns, ts) = unzip tel in
MkTyContext ZeroIsOne [<] ts ns anys
empty01 : TyContext 0 0
empty01 = eqDim (K Zero) (K One) empty
inferredTypeEq : TyContext d n -> (exp, got : Term d n) -> M ()
inferredTypeEq ctx exp got =
wrapErr (const $ WrongInfer exp got) $ inj $ equalType ctx exp got
wrapErr (const $ WrongInfer exp got) $ inj $ lift $
equalType noLoc ctx exp got
qoutEq : (exp, got : QOutput n) -> M ()
qoutEq qout res = unless (qout == res) $ throw $ WrongQOut qout res
@ -156,153 +159,168 @@ tests : Test
tests = "typechecker" :- [
"universes" :- [
testTC "0 · ★₀ ⇐ ★₁ # by checkType" $
checkType_ empty (TYPE 0) (Just 1),
checkType_ empty (^TYPE 0) (Just 1),
testTC "0 · ★₀ ⇐ ★₁ # by check" $
check_ empty szero (TYPE 0) (TYPE 1),
check_ empty szero (^TYPE 0) (^TYPE 1),
testTC "0 · ★₀ ⇐ ★₂" $
checkType_ empty (TYPE 0) (Just 2),
checkType_ empty (^TYPE 0) (Just 2),
testTC "0 · ★₀ ⇐ ★_" $
checkType_ empty (TYPE 0) Nothing,
checkType_ empty (^TYPE 0) Nothing,
testTCFail "0 · ★₁ ⇍ ★₀" $
checkType_ empty (TYPE 1) (Just 0),
checkType_ empty (^TYPE 1) (Just 0),
testTCFail "0 · ★₀ ⇍ ★₀" $
checkType_ empty (TYPE 0) (Just 0),
checkType_ empty (^TYPE 0) (Just 0),
testTC "0=1 ⊢ 0 · ★₁ ⇐ ★₀" $
checkType_ empty01 (TYPE 1) (Just 0),
checkType_ empty01 (^TYPE 1) (Just 0),
testTCFail "1 · ★₀ ⇍ ★₁ # by check" $
check_ empty sone (TYPE 0) (TYPE 1)
check_ empty sone (^TYPE 0) (^TYPE 1)
],
"function types" :- [
note "A, B : ★₀; C, D : ★₁; P : A ⇾ ★₀",
testTC "0 · A ⊸ B ⇐ ★₀" $
check_ empty szero (Arr One (FT "A") (FT "B")) (TYPE 0),
note "A, B : ★₀; C, D : ★₁; P : 0.A → ★₀",
testTC "0 · 1.A → B ⇐ ★₀" $
check_ empty szero (^Arr One (^FT "A") (^FT "B")) (^TYPE 0),
note "subtyping",
testTC "0 · A ⊸ B ⇐ ★₁" $
check_ empty szero (Arr One (FT "A") (FT "B")) (TYPE 1),
testTC "0 · C ⊸ D ⇐ ★₁" $
check_ empty szero (Arr One (FT "C") (FT "D")) (TYPE 1),
testTCFail "0 · C ⊸ D ⇍ ★₀" $
check_ empty szero (Arr One (FT "C") (FT "D")) (TYPE 0),
testTC "0 · (1·x : A) → P x ⇐ ★₀" $
testTC "0 · 1.A → B ⇐ ★₁" $
check_ empty szero (^Arr One (^FT "A") (^FT "B")) (^TYPE 1),
testTC "0 · 1.C → D ⇐ ★₁" $
check_ empty szero (^Arr One (^FT "C") (^FT "D")) (^TYPE 1),
testTCFail "0 · 1.C → D ⇍ ★₀" $
check_ empty szero (^Arr One (^FT "C") (^FT "D")) (^TYPE 0),
testTC "0 · 1.(x : A) → P x ⇐ ★₀" $
check_ empty szero
(PiY One "x" (FT "A") $ E $ F "P" :@ BVT 0)
(TYPE 0),
testTCFail "0 · A ⊸ P ⇍ ★₀" $
check_ empty szero (Arr One (FT "A") $ FT "P") (TYPE 0),
testTC "0=1 ⊢ 0 · A ⊸ P ⇐ ★₀" $
check_ empty01 szero (Arr One (FT "A") $ FT "P") (TYPE 0)
(^PiY One "x" (^FT "A") (E $ ^App (^F "P") (^BVT 0)))
(^TYPE 0),
testTCFail "0 · 1.A → P ⇍ ★₀" $
check_ empty szero (^Arr One (^FT "A") (^FT "P")) (^TYPE 0),
testTC "0=1 ⊢ 0 · 1.A → P ⇐ ★₀" $
check_ empty01 szero (^Arr One (^FT "A") (^FT "P")) (^TYPE 0)
],
"pair types" :- [
note #""A × B" for "(_ : A) × B""#,
testTC "0 · A × A ⇐ ★₀" $
check_ empty szero (FT "A" `And` FT "A") (TYPE 0),
check_ empty szero (^And (^FT "A") (^FT "A")) (^TYPE 0),
testTCFail "0 · A × P ⇍ ★₀" $
check_ empty szero (FT "A" `And` FT "P") (TYPE 0),
check_ empty szero (^And (^FT "A") (^FT "P")) (^TYPE 0),
testTC "0 · (x : A) × P x ⇐ ★₀" $
check_ empty szero
(SigY "x" (FT "A") $ E $ F "P" :@ BVT 0) (TYPE 0),
(^SigY "x" (^FT "A") (E $ ^App (^F "P") (^BVT 0)))
(^TYPE 0),
testTC "0 · (x : A) × P x ⇐ ★₁" $
check_ empty szero
(SigY "x" (FT "A") $ E $ F "P" :@ BVT 0) (TYPE 1),
(^SigY "x" (^FT "A") (E $ ^App (^F "P") (^BVT 0)))
(^TYPE 1),
testTC "0 · (A : ★₀) × A ⇐ ★₁" $
check_ empty szero (SigY "A" (TYPE 0) $ BVT 0) (TYPE 1),
check_ empty szero
(^SigY "A" (^TYPE 0) (^BVT 0))
(^TYPE 1),
testTCFail "0 · (A : ★₀) × A ⇍ ★₀" $
check_ empty szero (SigY "A" (TYPE 0) $ BVT 0) (TYPE 0),
check_ empty szero
(^SigY "A" (^TYPE 0) (^BVT 0))
(^TYPE 0),
testTCFail "1 · A × A ⇍ ★₀" $
check_ empty sone (FT "A" `And` FT "A") (TYPE 0)
check_ empty sone
(^And (^FT "A") (^FT "A"))
(^TYPE 0)
],
"enum types" :- [
testTC "0 · {} ⇐ ★₀" $ check_ empty szero (enum []) (TYPE 0),
testTC "0 · {} ⇐ ★₃" $ check_ empty szero (enum []) (TYPE 3),
testTC "0 · {} ⇐ ★₀" $ check_ empty szero (^enum []) (^TYPE 0),
testTC "0 · {} ⇐ ★₃" $ check_ empty szero (^enum []) (^TYPE 3),
testTC "0 · {a,b,c} ⇐ ★₀" $
check_ empty szero (enum ["a", "b", "c"]) (TYPE 0),
check_ empty szero (^enum ["a", "b", "c"]) (^TYPE 0),
testTC "0 · {a,b,c} ⇐ ★₃" $
check_ empty szero (enum ["a", "b", "c"]) (TYPE 3),
testTCFail "1 · {} ⇍ ★₀" $ check_ empty sone (enum []) (TYPE 0),
testTC "0=1 ⊢ 1 · {} ⇐ ★₀" $ check_ empty01 sone (enum []) (TYPE 0)
check_ empty szero (^enum ["a", "b", "c"]) (^TYPE 3),
testTCFail "1 · {} ⇍ ★₀" $ check_ empty sone (^enum []) (^TYPE 0),
testTC "0=1 ⊢ 1 · {} ⇐ ★₀" $ check_ empty01 sone (^enum []) (^TYPE 0)
],
"free vars" :- [
note "A : ★₀",
testTC "0 · A ⇒ ★₀" $
inferAs empty szero (F "A") (TYPE 0),
inferAs empty szero (^F "A") (^TYPE 0),
testTC "0 · [A] ⇐ ★₀" $
check_ empty szero (FT "A") (TYPE 0),
check_ empty szero (^FT "A") (^TYPE 0),
note "subtyping",
testTC "0 · [A] ⇐ ★₁" $
check_ empty szero (FT "A") (TYPE 1),
check_ empty szero (^FT "A") (^TYPE 1),
note "(fail) runtime-relevant type",
testTCFail "1 · A ⇏ ★₀" $
infer_ empty sone (F "A"),
infer_ empty sone (^F "A"),
testTC "1 . f ⇒ 1.A → A" $
inferAs empty sone (F "f") (Arr One (FT "A") (FT "A")),
inferAs empty sone (^F "f") (^Arr One (^FT "A") (^FT "A")),
testTC "1 . f ⇐ 1.A → A" $
check_ empty sone (FT "f") (Arr One (FT "A") (FT "A")),
check_ empty sone (^FT "f") (^Arr One (^FT "A") (^FT "A")),
testTCFail "1 . f ⇍ 0.A → A" $
check_ empty sone (FT "f") (Arr Zero (FT "A") (FT "A")),
check_ empty sone (^FT "f") (^Arr Zero (^FT "A") (^FT "A")),
testTCFail "1 . f ⇍ ω.A → A" $
check_ empty sone (FT "f") (Arr Any (FT "A") (FT "A")),
check_ empty sone (^FT "f") (^Arr Any (^FT "A") (^FT "A")),
testTC "1 . (λ x ⇒ f x) ⇐ 1.A → A" $
check_ empty sone
([< "x"] :\\ E (F "f" :@ BVT 0))
(Arr One (FT "A") (FT "A")),
(^LamY "x" (E $ ^App (^F "f") (^BVT 0)))
(^Arr One (^FT "A") (^FT "A")),
testTC "1 . (λ x ⇒ f x) ⇐ ω.A → A" $
check_ empty sone
([< "x"] :\\ E (F "f" :@ BVT 0))
(Arr Any (FT "A") (FT "A")),
(^LamY "x" (E $ ^App (^F "f") (^BVT 0)))
(^Arr Any (^FT "A") (^FT "A")),
testTCFail "1 . (λ x ⇒ f x) ⇍ 0.A → A" $
check_ empty sone
([< "x"] :\\ E (F "f" :@ BVT 0))
(Arr Zero (FT "A") (FT "A")),
(^LamY "x" (E $ ^App (^F "f") (^BVT 0)))
(^Arr Zero (^FT "A") (^FT "A")),
testTC "1 . fω ⇒ ω.A → A" $
inferAs empty sone (F "") (Arr Any (FT "A") (FT "A")),
inferAs empty sone (^F "") (^Arr Any (^FT "A") (^FT "A")),
testTC "1 . (λ x ⇒ fω x) ⇐ ω.A → A" $
check_ empty sone
([< "x"] :\\ E (F "" :@ BVT 0))
(Arr Any (FT "A") (FT "A")),
(^LamY "x" (E $ ^App (^F "") (^BVT 0)))
(^Arr Any (^FT "A") (^FT "A")),
testTCFail "1 . (λ x ⇒ fω x) ⇍ 0.A → A" $
check_ empty sone
([< "x"] :\\ E (F "" :@ BVT 0))
(Arr Zero (FT "A") (FT "A")),
(^LamY "x" (E $ ^App (^F "") (^BVT 0)))
(^Arr Zero (^FT "A") (^FT "A")),
testTCFail "1 . (λ x ⇒ fω x) ⇍ 1.A → A" $
check_ empty sone
([< "x"] :\\ E (F "" :@ BVT 0))
(Arr One (FT "A") (FT "A")),
(^LamY "x" (E $ ^App (^F "") (^BVT 0)))
(^Arr One (^FT "A") (^FT "A")),
note "refl : (0·A : ★₀) → (1·x : A) → (x ≡ x : A) ≔ (λ A x ⇒ δ _ ⇒ x)",
testTC "1 · refl ⇒ ⋯" $ inferAs empty sone (F "refl") reflTy,
testTC "1 · [refl] ⇐ ⋯" $ check_ empty sone (FT "refl") reflTy
testTC "1 · refl ⇒ ⋯" $ inferAs empty sone (^F "refl") reflTy,
testTC "1 · [refl] ⇐ ⋯" $ check_ empty sone (^FT "refl") reflTy
],
"bound vars" :- [
testTC "x : A ⊢ 1 · x ⇒ A ⊳ 1·x" $
inferAsQ {n = 1} (ctx [< ("x", FT "A")]) sone
(BV 0) (FT "A") [< One],
testTC "x : A ⊢ 1 · [x] ⇐ A ⊳ 1·x" $
checkQ {n = 1} (ctx [< ("x", FT "A")]) sone (BVT 0) (FT "A") [< One],
note "f2 : A ⊸ A ⊸ B",
testTC "x : A ⊢ 1 · f2 [x] [x] ⇒ B ⊳ ω·x" $
inferAsQ {n = 1} (ctx [< ("x", FT "A")]) sone
(F "f2" :@@ [BVT 0, BVT 0]) (FT "B") [< Any]
inferAsQ (ctx [< ("x", ^FT "A")]) sone
(^BV 0) (^FT "A") [< One],
testTC "x : A ⊢ 1 · x ⇐ A ⊳ 1·x" $
checkQ (ctx [< ("x", ^FT "A")]) sone (^BVT 0) (^FT "A") [< One],
note "f2 : 1.A → 1.A → B",
testTC "x : A ⊢ 1 · f2 x x ⇒ B ⊳ ω·x" $
inferAsQ (ctx [< ("x", ^FT "A")]) sone
(^App (^App (^F "f2") (^BVT 0)) (^BVT 0)) (^FT "B") [< Any]
],
"lambda" :- [
note "linear & unrestricted identity",
testTC "1 · (λ x ⇒ x) ⇐ A ⊸ A" $
check_ empty sone ([< "x"] :\\ BVT 0) (Arr One (FT "A") (FT "A")),
testTC "1 · (λ x ⇒ x) ⇐ A → A" $
check_ empty sone ([< "x"] :\\ BVT 0) (Arr Any (FT "A") (FT "A")),
check_ empty sone
(^LamY "x" (^BVT 0))
(^Arr One (^FT "A") (^FT "A")),
testTC "1 · (λ x ⇒ x) ⇐ ω.A → A" $
check_ empty sone
(^LamY "x" (^BVT 0))
(^Arr Any (^FT "A") (^FT "A")),
note "(fail) zero binding used relevantly",
testTCFail "1 · (λ x ⇒ x) ⇍ A ⇾ A" $
check_ empty sone ([< "x"] :\\ BVT 0) (Arr Zero (FT "A") (FT "A")),
testTCFail "1 · (λ x ⇒ x) ⇍ 0.A → A" $
check_ empty sone
(^LamY "x" (^BVT 0))
(^Arr Zero (^FT "A") (^FT "A")),
note "(but ok in overall erased context)",
testTC "0 · (λ x ⇒ x) ⇐ A ⇾ A" $
check_ empty szero ([< "x"] :\\ BVT 0) (Arr Zero (FT "A") (FT "A")),
check_ empty szero
(^LamY "x" (^BVT 0))
(^Arr Zero (^FT "A") (^FT "A")),
testTC "1 · (λ A x ⇒ refl A x) ⇐ ⋯ # (type of refl)" $
check_ empty sone
([< "A", "x"] :\\ E (F "refl" :@@ [BVT 1, BVT 0]))
(^LamY "A" (^LamY "x" (E $ ^App (^App (^F "refl") (^BVT 1)) (^BVT 0))))
reflTy,
testTC "1 · (λ A x ⇒ δ i ⇒ x) ⇐ ⋯ # (def. and type of refl)" $
check_ empty sone reflDef reflTy
@ -310,148 +328,153 @@ tests = "typechecker" :- [
"pairs" :- [
testTC "1 · (a, a) ⇐ A × A" $
check_ empty sone (Pair (FT "a") (FT "a")) (FT "A" `And` FT "A"),
check_ empty sone
(^Pair (^FT "a") (^FT "a")) (^And (^FT "A") (^FT "A")),
testTC "x : A ⊢ 1 · (x, x) ⇐ A × A ⊳ ω·x" $
checkQ (ctx [< ("x", FT "A")]) sone
(Pair (BVT 0) (BVT 0)) (FT "A" `And` FT "A") [< Any],
checkQ (ctx [< ("x", ^FT "A")]) sone
(^Pair (^BVT 0) (^BVT 0)) (^And (^FT "A") (^FT "A")) [< Any],
testTC "1 · (a, δ i ⇒ a) ⇐ (x : A) × (x ≡ a)" $
check_ empty sone
(Pair (FT "a") ([< "i"] :\\% FT "a"))
(SigY "x" (FT "A") $ Eq0 (FT "A") (BVT 0) (FT "a"))
(^Pair (^FT "a") (^DLamN (^FT "a")))
(^SigY "x" (^FT "A") (^Eq0 (^FT "A") (^BVT 0) (^FT "a")))
],
"unpairing" :- [
testTC "x : A × A ⊢ 1 · (case1 x return B of (l,r) ⇒ f2 l r) ⇒ B ⊳ 1·x" $
inferAsQ (ctx [< ("x", FT "A" `And` FT "A")]) sone
(CasePair One (BV 0) (SN $ FT "B")
(SY [< "l", "r"] $ E $ F "f2" :@@ [BVT 1, BVT 0]))
(FT "B") [< One],
inferAsQ (ctx [< ("x", ^And (^FT "A") (^FT "A"))]) sone
(^CasePair One (^BV 0) (SN $ ^FT "B")
(SY [< "l", "r"] $ E $ ^App (^App (^F "f2") (^BVT 1)) (^BVT 0)))
(^FT "B") [< One],
testTC "x : A × A ⊢ 1 · (caseω x return B of (l,r) ⇒ f2 l r) ⇒ B ⊳ ω·x" $
inferAsQ (ctx [< ("x", FT "A" `And` FT "A")]) sone
(CasePair Any (BV 0) (SN $ FT "B")
(SY [< "l", "r"] $ E $ F "f2" :@@ [BVT 1, BVT 0]))
(FT "B") [< Any],
inferAsQ (ctx [< ("x", ^And (^FT "A") (^FT "A"))]) sone
(^CasePair Any (^BV 0) (SN $ ^FT "B")
(SY [< "l", "r"] $ E $ ^App (^App (^F "f2") (^BVT 1)) (^BVT 0)))
(^FT "B") [< Any],
testTC "x : A × A ⊢ 0 · (caseω x return B of (l,r) ⇒ f2 l r) ⇒ B ⊳ 0·x" $
inferAsQ (ctx [< ("x", FT "A" `And` FT "A")]) szero
(CasePair Any (BV 0) (SN $ FT "B")
(SY [< "l", "r"] $ E $ F "f2" :@@ [BVT 1, BVT 0]))
(FT "B") [< Zero],
inferAsQ (ctx [< ("x", ^And (^FT "A") (^FT "A"))]) szero
(^CasePair Any (^BV 0) (SN $ ^FT "B")
(SY [< "l", "r"] $ E $ ^App (^App (^F "f2") (^BVT 1)) (^BVT 0)))
(^FT "B") [< Zero],
testTCFail "x : A × A ⊢ 1 · (case0 x return B of (l,r) ⇒ f2 l r) ⇏" $
infer_ (ctx [< ("x", FT "A" `And` FT "A")]) sone
(CasePair Zero (BV 0) (SN $ FT "B")
(SY [< "l", "r"] $ E $ F "f2" :@@ [BVT 1, BVT 0])),
infer_ (ctx [< ("x", ^And (^FT "A") (^FT "A"))]) sone
(^CasePair Zero (^BV 0) (SN $ ^FT "B")
(SY [< "l", "r"] $ E $ ^App (^App (^F "f2") (^BVT 1)) (^BVT 0))),
testTC "x : A × B ⊢ 1 · (caseω x return A of (l,r) ⇒ l) ⇒ A ⊳ ω·x" $
inferAsQ (ctx [< ("x", FT "A" `And` FT "B")]) sone
(CasePair Any (BV 0) (SN $ FT "A")
(SY [< "l", "r"] $ BVT 1))
(FT "A") [< Any],
inferAsQ (ctx [< ("x", ^And (^FT "A") (^FT "B"))]) sone
(^CasePair Any (^BV 0) (SN $ ^FT "A")
(SY [< "l", "r"] $ ^BVT 1))
(^FT "A") [< Any],
testTC "x : A × B ⊢ 0 · (case1 x return A of (l,r) ⇒ l) ⇒ A ⊳ 0·x" $
inferAsQ (ctx [< ("x", FT "A" `And` FT "B")]) szero
(CasePair One (BV 0) (SN $ FT "A")
(SY [< "l", "r"] $ BVT 1))
(FT "A") [< Zero],
inferAsQ (ctx [< ("x", ^And (^FT "A") (^FT "B"))]) szero
(^CasePair One (^BV 0) (SN $ ^FT "A")
(SY [< "l", "r"] $ ^BVT 1))
(^FT "A") [< Zero],
testTCFail "x : A × B ⊢ 1 · (case1 x return A of (l,r) ⇒ l) ⇏" $
infer_ (ctx [< ("x", FT "A" `And` FT "B")]) sone
(CasePair One (BV 0) (SN $ FT "A")
(SY [< "l", "r"] $ BVT 1)),
infer_ (ctx [< ("x", ^And (^FT "A") (^FT "B"))]) sone
(^CasePair One (^BV 0) (SN $ ^FT "A")
(SY [< "l", "r"] $ ^BVT 1)),
note "fst : (0·A : ★₁) → (0·B : A ↠ ★₁) → ((x : A) × B x) ↠ A",
note " ≔ (λ A B p ⇒ caseω p return A of (x, y) ⇒ x)",
testTC "0 · type of fst ⇐ ★₂" $
check_ empty szero fstTy (TYPE 2),
check_ empty szero fstTy (^TYPE 2),
testTC "1 · def of fsttype of fst" $
check_ empty sone fstDef fstTy,
note "snd : (0·A : ★₁) → (0·B : A ↠ ★₁) → (ω·p : (x : A) × B x) → B (fst A B p)",
note " ≔ (λ A B p ⇒ caseω p return p ⇒ B (fst A B p) of (x, y) ⇒ y)",
testTC "0 · type of snd ⇐ ★₂" $
check_ empty szero sndTy (TYPE 2),
check_ empty szero sndTy (^TYPE 2),
testTC "1 · def of sndtype of snd" $
check_ empty sone sndDef sndTy,
testTC "0 · snd ★₀ (λ x ⇒ x) ⇒ (ω·p : (A : ★₀) × A) → fst ★₀ (λ x ⇒ x) p" $
inferAs empty szero
(F "snd" :@@ [TYPE 0, [< "x"] :\\ BVT 0])
(PiY Any "A" (SigY "A" (TYPE 0) $ BVT 0) $
(E $ F "fst" :@@ [TYPE 0, [< "x"] :\\ BVT 0, BVT 0]))
(^App (^App (^F "snd") (^TYPE 0)) (^LamY "x" (^BVT 0)))
(^PiY Any "p" (^SigY "A" (^TYPE 0) (^BVT 0))
(E $ ^App (^App (^App (^F "fst") (^TYPE 0)) (^LamY "x" (^BVT 0)))
(^BVT 0)))
],
"enums" :- [
testTC "1 · 'a ⇐ {a}" $
check_ empty sone (Tag "a") (enum ["a"]),
check_ empty sone (^Tag "a") (^enum ["a"]),
testTC "1 · 'a ⇐ {a, b, c}" $
check_ empty sone (Tag "a") (enum ["a", "b", "c"]),
check_ empty sone (^Tag "a") (^enum ["a", "b", "c"]),
testTCFail "1 · 'a ⇍ {b, c}" $
check_ empty sone (Tag "a") (enum ["b", "c"]),
check_ empty sone (^Tag "a") (^enum ["b", "c"]),
testTC "0=1 ⊢ 1 · 'a ⇐ {b, c}" $
check_ empty01 sone (Tag "a") (enum ["b", "c"])
check_ empty01 sone (^Tag "a") (^enum ["b", "c"])
],
"enum matching" :- [
testTC "ω.x : {tt} ⊢ 1 · case1 x return {tt} of { 'tt ⇒ 'tt } ⇒ {tt}" $
inferAs (ctx [< ("x", enum ["tt"])]) sone
(CaseEnum One (BV 0) (SN (enum ["tt"])) $
singleton "tt" (Tag "tt"))
(enum ["tt"]),
inferAs (ctx [< ("x", ^enum ["tt"])]) sone
(^CaseEnum One (^BV 0) (SN (^enum ["tt"]))
(singleton "tt" (^Tag "tt")))
(^enum ["tt"]),
testTCFail "ω.x : {tt} ⊢ 1 · case1 x return {tt} of { 'ff ⇒ 'tt } ⇏" $
infer_ (ctx [< ("x", enum ["tt"])]) sone
(CaseEnum One (BV 0) (SN (enum ["tt"])) $
singleton "ff" (Tag "tt"))
infer_ (ctx [< ("x", ^enum ["tt"])]) sone
(^CaseEnum One (^BV 0) (SN (^enum ["tt"]))
(singleton "ff" (^Tag "tt")))
],
"equality types" :- [
testTC "0 · : ★₀ ⇐ Type" $
checkType_ empty (Eq0 (TYPE 0) Nat Nat) Nothing,
checkType_ empty (^Eq0 (^TYPE 0) nat nat) Nothing,
testTC "0 · : ★₀ ⇐ ★₁" $
check_ empty szero (Eq0 (TYPE 0) Nat Nat) (TYPE 1),
check_ empty szero (^Eq0 (^TYPE 0) nat nat) (^TYPE 1),
testTCFail "1 · : ★₀ ⇍ ★₁" $
check_ empty sone (Eq0 (TYPE 0) Nat Nat) (TYPE 1),
check_ empty sone (^Eq0 (^TYPE 0) nat nat) (^TYPE 1),
testTC "0 · : ★₀ ⇐ ★₂" $
check_ empty szero (Eq0 (TYPE 0) Nat Nat) (TYPE 2),
check_ empty szero (^Eq0 (^TYPE 0) nat nat) (^TYPE 2),
testTC "0 · : ★₁ ⇐ ★₂" $
check_ empty szero (Eq0 (TYPE 1) Nat Nat) (TYPE 2),
check_ empty szero (^Eq0 (^TYPE 1) nat nat) (^TYPE 2),
testTCFail "0 · : ★₁ ⇍ ★₁" $
check_ empty szero (Eq0 (TYPE 1) Nat Nat) (TYPE 1),
check_ empty szero (^Eq0 (^TYPE 1) nat nat) (^TYPE 1),
testTCFail "0 ≡ 'beep : {beep} ⇍ Type" $
checkType_ empty (Eq0 (enum ["beep"]) Zero (Tag "beep")) Nothing,
checkType_ empty
(^Eq0 (^enum ["beep"]) (^Zero) (^Tag "beep"))
Nothing,
testTC "ab : A ≡ B : ★₀, x : A, y : B ⊢ 0 · Eq [i ⇒ ab i] x y ⇐ ★₀" $
check_ (ctx [< ("ab", Eq0 (TYPE 0) (FT "A") (FT "B")),
("x", FT "A"), ("y", FT "B")]) szero
(Eq (SY [< "i"] $ E $ BV 2 :% BV 0) (BVT 1) (BVT 0))
(TYPE 0),
check_ (ctx [< ("ab", ^Eq0 (^TYPE 0) (^FT "A") (^FT "B")),
("x", ^FT "A"), ("y", ^FT "B")]) szero
(^EqY "i" (E $ ^DApp (^BV 2) (^BV 0)) (^BVT 1) (^BVT 0))
(^TYPE 0),
testTCFail "ab : A ≡ B : ★₀, x : A, y : B ⊢ Eq [i ⇒ ab i] y x ⇍ Type" $
checkType_ (ctx [< ("ab", Eq0 (TYPE 0) (FT "A") (FT "B")),
("x", FT "A"), ("y", FT "B")])
(Eq (SY [< "i"] $ E $ BV 2 :% BV 0) (BVT 0) (BVT 1))
Nothing
check_ (ctx [< ("ab", ^Eq0 (^TYPE 0) (^FT "A") (^FT "B")),
("x", ^FT "A"), ("y", ^FT "B")]) szero
(^EqY "i" (E $ ^DApp (^BV 2) (^BV 0)) (^BVT 0) (^BVT 1))
(^TYPE 0)
],
"equalities" :- [
testTC "1 · (δ i ⇒ a) ⇐ a ≡ a" $
check_ empty sone (DLam $ SN $ FT "a")
(Eq0 (FT "A") (FT "a") (FT "a")),
testTC "0 · (λ p q ⇒ δ i ⇒ p) ⇐ (ω·p q : a ≡ a') → p ≡ q" $
check_ empty sone (^DLamN (^FT "a"))
(^Eq0 (^FT "A") (^FT "a") (^FT "a")),
testTC "0 · (λ p q ⇒ δ i ⇒ p) ⇐ (ω·p q : a ≡ a') → p ≡ q # uip" $
check_ empty szero
([< "p","q"] :\\ [< "i"] :\\% BVT 1)
(PiY Any "p" (Eq0 (FT "A") (FT "a") (FT "a")) $
PiY Any "q" (Eq0 (FT "A") (FT "a") (FT "a")) $
Eq0 (Eq0 (FT "A") (FT "a") (FT "a")) (BVT 1) (BVT 0)),
testTC "0 · (λ p q ⇒ δ i ⇒ q) ⇐ (ω·p q : a ≡ a') → p ≡ q" $
(^LamY "p" (^LamY "q" (^DLamN (^BVT 1))))
(^PiY Any "p" (^Eq0 (^FT "A") (^FT "a") (^FT "a"))
(^PiY Any "q" (^Eq0 (^FT "A") (^FT "a") (^FT "a"))
(^Eq0 (^Eq0 (^FT "A") (^FT "a") (^FT "a")) (^BVT 1) (^BVT 0)))),
testTC "0 · (λ p q ⇒ δ i ⇒ q) ⇐ (ω·p q : a ≡ a') → p ≡ q # uip(2)" $
check_ empty szero
([< "p","q"] :\\ [< "i"] :\\% BVT 0)
(PiY Any "p" (Eq0 (FT "A") (FT "a") (FT "a")) $
PiY Any "q" (Eq0 (FT "A") (FT "a") (FT "a")) $
Eq0 (Eq0 (FT "A") (FT "a") (FT "a")) (BVT 1) (BVT 0))
(^LamY "p" (^LamY "q" (^DLamN (^BVT 0))))
(^PiY Any "p" (^Eq0 (^FT "A") (^FT "a") (^FT "a"))
(^PiY Any "q" (^Eq0 (^FT "A") (^FT "a") (^FT "a"))
(^Eq0 (^Eq0 (^FT "A") (^FT "a") (^FT "a")) (^BVT 1) (^BVT 0))))
],
"natural numbers" :- [
testTC "0 · ⇐ ★₀" $ check_ empty szero Nat (TYPE 0),
testTC "0 · ⇐ ★₇" $ check_ empty szero Nat (TYPE 7),
testTCFail "1 · ⇍ ★₀" $ check_ empty sone Nat (TYPE 0),
testTC "1 · zero ⇐ " $ check_ empty sone Zero Nat,
testTCFail "1 · zero ⇍ ×" $ check_ empty sone Zero (Nat `And` Nat),
testTC "0 · ⇐ ★₀" $ check_ empty szero nat (^TYPE 0),
testTC "0 · ⇐ ★₇" $ check_ empty szero nat (^TYPE 7),
testTCFail "1 · ⇍ ★₀" $ check_ empty sone nat (^TYPE 0),
testTC "1 · zero ⇐ " $ check_ empty sone (^Zero) nat,
testTCFail "1 · zero ⇍ ×" $ check_ empty sone (^Zero) (^And nat nat),
testTC "ω·n : ⊢ 1 · succ n ⇐ " $
check_ (ctx [< ("n", Nat)]) sone (Succ (BVT 0)) Nat,
check_ (ctx [< ("n", nat)]) sone (^Succ (^BVT 0)) nat,
testTC "1 · λ n ⇒ succ n ⇐ 1." $
check_ empty sone ([< "n"] :\\ Succ (BVT 0)) (Arr One Nat Nat),
todo "nat elim"
check_ empty sone
(^LamY "n" (^Succ (^BVT 0)))
(^Arr One nat nat)
],
"natural elim" :- [
@ -459,25 +482,28 @@ tests = "typechecker" :- [
note " ⇐ 1.",
testTC "pred" $
check_ empty sone
([< "n"] :\\ E (CaseNat One Zero (BV 0) (SN Nat)
Zero (SY [< "n", Unused] $ BVT 1)))
(Arr One Nat Nat),
(^LamY "n" (E $
^CaseNat One Zero (^BV 0) (SN nat)
(^Zero) (SY [< "n", ^BN Unused] $ ^BVT 1)))
(^Arr One nat nat),
note "1 · λ m n ⇒ case1 m return of { zero ⇒ n; succ _, 1.p ⇒ succ p }",
note " ⇐ 1. → 1. → 1.",
testTC "plus" $
check_ empty sone
([< "m", "n"] :\\ E (CaseNat One One (BV 1) (SN Nat)
(BVT 0) (SY [< Unused, "p"] $ Succ $ BVT 0)))
(Arr One Nat $ Arr One Nat Nat)
(^LamY "m" (^LamY "n" (E $
^CaseNat One One (^BV 1) (SN nat)
(^BVT 0)
(SY [< ^BN Unused, "p"] $ ^Succ (^BVT 0)))))
(^Arr One nat (^Arr One nat nat))
],
"box types" :- [
testTC "0 · [0.] ⇐ ★₀" $
check_ empty szero (BOX Zero Nat) (TYPE 0),
check_ empty szero (^BOX Zero nat) (^TYPE 0),
testTC "0 · [0.★₀] ⇐ ★₁" $
check_ empty szero (BOX Zero (TYPE 0)) (TYPE 1),
check_ empty szero (^BOX Zero (^TYPE 0)) (^TYPE 1),
testTCFail "0 · [0.★₀] ⇍ ★₀" $
check_ empty szero (BOX Zero (TYPE 0)) (TYPE 0)
check_ empty szero (^BOX Zero (^TYPE 0)) (^TYPE 0)
],
todo "box values",
@ -486,10 +512,14 @@ tests = "typechecker" :- [
"type-case" :- [
testTC "0 · type-case ∷ ★₀ return ★₀ of { _ ⇒ } ⇒ ★₀" $
inferAs empty szero
(TypeCase (Nat :# TYPE 0) (TYPE 0) empty Nat)
(TYPE 0)
(^TypeCase (^Ann nat (^TYPE 0)) (^TYPE 0) empty nat)
(^TYPE 0)
],
todo "add the examples dir to the tests"
]
{-
"misc" :- [
note "0·A : Type, 0·P : A → Type, ω·p : (1·x : A) → P x",
note "",
@ -524,4 +554,4 @@ tests = "typechecker" :- [
-- return A
-- of { }
]
]
-}