fix function η with subsingleton types

This commit is contained in:
rhiannon morris 2024-05-12 20:29:09 +02:00
parent c9f66bb6af
commit d2a117fe61
4 changed files with 54 additions and 2 deletions

View file

@ -0,0 +1,33 @@
-- inspired by https://github.com/agda/agda/issues/2556
postulate0 A : ★
def0 ZZ : ★ = 0 ≡ 0 :
def reflZ : ZZ = δ _ ⇒ 0
namespace erased {
def0 ZZA : ★ = 0.ZZ → A
def propeq : (x : ZZA) → x ≡ (λ _ ⇒ x reflZ) : ZZA =
λ x ⇒ δ _ ⇒ x
def defeq : 0.(P : ZZA → ★) → 0.(x : ZZA) → P (λ _ ⇒ x reflZ) → P x =
λ P x p ⇒ p
}
namespace unrestricted {
def0 ZZA : ★ = ω.ZZ → A
def defeq : 0.(P : ZZA → ★) → 0.(x : ZZA) → P (λ _ ⇒ x reflZ) → P x =
λ P x p ⇒ p
}
namespace linear {
def0 ZZA : ★ = 1.ZZ → A
#[fail]
def defeq : 0.(P : ZZA → ★) → 0.(x : ZZA) → P (λ _ ⇒ x reflZ) → P x =
λ P x p ⇒ p
}

View file

@ -0,0 +1,9 @@
0.A : ★
0.ZZ : ★
ω.reflZ : ZZ
0.erased.ZZA : ★
ω.erased.propeq : 1.(x : erased.ZZA) → x ≡ (λ _ ⇒ x reflZ) : erased.ZZA
ω.erased.defeq : 0.(P : 1.erased.ZZA → ★) → 0.(x : erased.ZZA) → 1.(P (λ _ ⇒ (x reflZ))) → P x
0.unrestricted.ZZA : ★
ω.unrestricted.defeq : 0.(P : 1.unrestricted.ZZA → ★) → 0.(x : unrestricted.ZZA) → 1.(P (λ _ ⇒ (x reflZ))) → P x
0.linear.ZZA : ★

View file

@ -0,0 +1,2 @@
. ../lib.sh
check "$1" eta-sing.quox

View file

@ -277,8 +277,16 @@ namespace Term
toLamBody e = E $ App (weakE 1 e) (BVT 0 e.loc) e.loc
eta : Loc -> Elim 0 n -> ScopeTerm 0 n -> Eff EqualInner ()
eta loc e (S _ (N _)) = clashT loc ctx ty s t
eta _ e (S _ (Y b)) = compare0 defs ctx' sg res.term (toLamBody e) b
eta loc e (S _ (N b)) =
if qty /= One then
if !(isSubSing defs ctx sg arg) then
compare0 defs ctx' sg res.term (toLamBody e) (weakT 1 b)
else
clashT loc ctx ty s t
else
clashT loc ctx ty s t
eta _ e (S _ (Y b)) =
compare0 defs ctx' sg res.term (toLamBody e) b
compare0' defs ctx sg ty@(Sig {fst, snd, _}) s t = withEqual $
case (s, t) of