OPE & scope stuff

This commit is contained in:
rhiannon morris 2022-10-10 17:30:46 +02:00
parent 8c05957f60
commit c8187c0801
3 changed files with 370 additions and 169 deletions

View file

@ -55,3 +55,47 @@ parameters {base : Nat} {auto 0 _ : base `GTE` 2} (chars : Vect base Char)
export export
showHex : Nat -> String showHex : Nat -> String
showHex = showAtBase $ fromList $ unpack "0123456789ABCDEF" showHex = showAtBase $ fromList $ unpack "0123456789ABCDEF"
n2i = natToInteger
i2n = fromInteger {ty = Nat}
private partial %inline
divNatViaInteger : (m, n : Nat) -> Nat
divNatViaInteger m n = i2n $ n2i m `div` n2i n
%transform "divNat" divNat = divNatViaInteger
private %inline
divNatViaIntegerNZ : (m, n : Nat) -> (0 _ : NonZero n) -> Nat
divNatViaIntegerNZ m n _ = assert_total divNatViaInteger m n
%transform "divNat" divNatNZ = divNatViaIntegerNZ
private partial %inline
modNatViaInteger : (m, n : Nat) -> Nat
modNatViaInteger m n = i2n $ n2i m `mod` n2i n
%transform "modNat" modNat = modNatViaInteger
private %inline
modNatViaIntegerNZ : (m, n : Nat) -> (0 _ : NonZero n) -> Nat
modNatViaIntegerNZ m n _ = assert_total modNatViaInteger m n
%transform "modNat" modNatNZ = modNatViaIntegerNZ
public export
data ViewLsb : Nat -> Type where
Lsb0 : (n : Nat) -> ViewLsb (2 * n)
Lsb1 : (n : Nat) -> ViewLsb (S (2 * n))
private
viewLsb' : (m, d : Nat) -> (0 _ : m `LT` 2) -> ViewLsb (m + 2 * d)
viewLsb' 0 d p = Lsb0 d
viewLsb' 1 d p = Lsb1 d
viewLsb' (S (S _)) _ (LTESucc p) = void $ absurd p
export
viewLsb : (n : Nat) -> ViewLsb n
viewLsb n =
let nz = the (NonZero 2) %search in
rewrite DivisionTheorem n 2 nz nz in
rewrite multCommutative (divNatNZ n 2 nz) 2 in
viewLsb' (modNatNZ n 2 nz) (divNatNZ n 2 nz) (boundModNatNZ n 2 nz)

View file

@ -3,194 +3,257 @@
module Quox.OPE module Quox.OPE
import Quox.NatExtra import Quox.NatExtra
import public Data.DPair
import Data.Nat import public Data.SnocList
import public Data.SnocList.Elem
%default total %default total
LTE_n = Nat.LTE
public export %hide Nat.LTE
data OPE : Nat -> Nat -> Type where
Id : OPE n n
Drop : OPE m n -> OPE m (S n)
Keep : OPE m n -> OPE (S m) (S n)
%name OPE p, q
public export %inline Injective Drop where injective Refl = Refl
public export %inline Injective Keep where injective Refl = Refl
public export
opeZero : {n : Nat} -> OPE 0 n
opeZero {n = 0} = Id
opeZero {n = S n} = Drop opeZero
public export
(.) : OPE m n -> OPE n p -> OPE m p
p . Id = p
Id . q = q
p . Drop q = Drop $ p . q
Drop p . Keep q = Drop $ p . q
Keep p . Keep q = Keep $ p . q
public export
toLTE : {m : Nat} -> OPE m n -> m `LTE` n
toLTE Id = reflexive
toLTE (Drop p) = lteSuccRight $ toLTE p
toLTE (Keep p) = LTESucc $ toLTE p
public export public export
dropInner' : LTE' m n -> OPE m n Scope : Type -> Type
dropInner' LTERefl = Id Scope = SnocList
dropInner' (LTESuccR p) = Drop $ dropInner' $ force p
public export public export
dropInner : {n : Nat} -> LTE m n -> OPE m n data LTE : Scope a -> Scope a -> Type where
dropInner = dropInner' . fromLte End : [<] `LTE` [<]
Keep : xs `LTE` ys -> xs :< z `LTE` ys :< z
Drop : xs `LTE` ys -> xs `LTE` ys :< z
%name LTE p, q
public export -- [todo] bitmask representation???
dropInnerN : (m : Nat) -> OPE n (m + n)
dropInnerN 0 = Id
dropInnerN (S m) = Drop $ dropInnerN m export
dropLast : (xs :< x) `LTE` ys -> xs `LTE` ys
dropLast (Keep p) = Drop p
dropLast (Drop p) = Drop $ dropLast p
export
Uninhabited (xs :< x `LTE` [<]) where uninhabited _ impossible
export
Uninhabited (xs :< x `LTE` xs) where
uninhabited (Keep p) = uninhabited p
uninhabited (Drop p) = uninhabited $ dropLast p
export
lteLen : xs `LTE` ys -> length xs `LTE_n` length ys
lteLen End = LTEZero
lteLen (Keep p) = LTESucc $ lteLen p
lteLen (Drop p) = lteSuccRight $ lteLen p
export
lteNilRight : xs `LTE` [<] -> xs = [<]
lteNilRight End = Refl
public export public export
interface Tighten t where data Length : Scope a -> Type where
tighten : Alternative f => OPE m n -> t n -> f (t m) Z : Length [<]
S : (s : Length xs) -> Length (xs :< x)
%name Length s
%builtin Natural Length
parameters {auto _ : Tighten t} {auto _ : Alternative f} export %hint
lengthLeft : xs `LTE` ys -> Length xs
lengthLeft End = Z
lengthLeft (Keep p) = S (lengthLeft p)
lengthLeft (Drop p) = lengthLeft p
export %hint
lengthRight : xs `LTE` ys -> Length ys
lengthRight End = Z
lengthRight (Keep p) = S (lengthRight p)
lengthRight (Drop p) = S (lengthRight p)
export
id : Length xs => xs `LTE` xs
id @{Z} = End
id @{S s} = Keep id
export
zero : Length xs => [<] `LTE` xs
zero @{Z} = End
zero @{S s} = Drop zero
export
single : Length xs => x `Elem` xs -> [< x] `LTE` xs
single @{S _} Here = Keep zero
single @{S _} (There p) = Drop $ single p
export
(.) : ys `LTE` zs -> xs `LTE` ys -> xs `LTE` zs
End . End = End
Keep p . Keep q = Keep (p . q)
Keep p . Drop q = Drop (p . q)
Drop p . q = Drop (p . q)
export
(++) : xs1 `LTE` ys1 -> xs2 `LTE` ys2 -> (xs1 ++ xs2) `LTE` (ys1 ++ ys2)
p ++ End = p
p ++ Keep q = Keep (p ++ q)
p ++ Drop q = Drop (p ++ q)
public export
record Split {a : Type} (xs, ys, zs : Scope a) (p : xs `LTE` ys ++ zs) where
constructor MkSplit
{0 leftSub, rightSub : Scope a}
leftThin : leftSub `LTE` ys
rightThin : rightSub `LTE` zs
0 eqScope : xs = leftSub ++ rightSub
0 eqThin : p ~=~ leftThin ++ rightThin
export
split : (zs : Scope a) -> (p : xs `LTE` ys ++ zs) -> Split xs ys zs p
split [<] p = MkSplit p zero Refl Refl
split (zs :< z) (Keep p) with (split zs p)
split (zs :< z) (Keep (l ++ r)) | MkSplit l r Refl Refl =
MkSplit l (Keep r) Refl Refl
split (zs :< z) (Drop p) {xs} with (split zs p)
split (zs :< z) (Drop (l ++ r)) {xs = _} | MkSplit l r Refl Refl =
MkSplit l (Drop r) Refl Refl
public export
data Comp : ys `LTE` zs -> xs `LTE` ys -> xs `LTE` zs -> Type where
CEE : Comp End End End
CKK : Comp p q pq -> Comp (Keep p) (Keep q) (Keep pq)
CKD : Comp p q pq -> Comp (Keep p) (Drop q) (Drop pq)
CD0 : Comp p q pq -> Comp (Drop p) q (Drop pq)
export
comp : (p : ys `LTE` zs) -> (q : xs `LTE` ys) -> Comp p q (p . q)
comp End End = CEE
comp (Keep p) (Keep q) = CKK (comp p q)
comp (Keep p) (Drop q) = CKD (comp p q)
comp (Drop p) q = CD0 (comp p q)
export
0 compOk : Comp p q r -> r = (p . q)
compOk CEE = Refl
compOk (CKK z) = cong Keep $ compOk z
compOk (CKD z) = cong Drop $ compOk z
compOk (CD0 z) = cong Drop $ compOk z
export
compZero : (sx : Length xs) => (sy : Length ys) =>
(p : xs `LTE` ys) -> Comp p (OPE.zero @{sx}) (OPE.zero @{sy})
compZero {sx = Z, sy = Z} End = CEE
compZero {sx = S _, sy = S _} (Keep p) = CKD (compZero p)
compZero {sy = S _} (Drop p) = CD0 (compZero p)
export
compIdLeft : (sy : Length ys) =>
(p : xs `LTE` ys) -> Comp (OPE.id @{sy}) p p
compIdLeft {sy = Z} End = CEE
compIdLeft {sy = S _} (Keep p) = CKK (compIdLeft p)
compIdLeft {sy = S _} (Drop p) = CKD (compIdLeft p)
export
compIdRight : (sx : Length xs) =>
(p : xs `LTE` ys) -> Comp p (OPE.id @{sx}) p
compIdRight {sx = Z} End = CEE
compIdRight {sx = S _} (Keep p) = CKK (compIdRight p)
compIdRight (Drop p) = CD0 (compIdRight p)
private
0 compExample :
Comp {zs = [< a, b, c, d, e]}
(Keep $ Drop $ Keep $ Drop $ Keep End)
(Keep $ Drop $ Keep End)
(Keep $ Drop $ Drop $ Drop $ Keep End)
compExample = %search
export
0 compAssoc : (p : ys `LTE` zs) -> (q : xs `LTE` ys) -> (r : ws `LTE` xs) ->
p . (q . r) = (p . q) . r
compAssoc End End End = Refl
compAssoc (Keep p) (Keep q) (Keep r) = cong Keep $ compAssoc p q r
compAssoc (Keep p) (Keep q) (Drop r) = cong Drop $ compAssoc p q r
compAssoc (Keep p) (Drop q) r = cong Drop $ compAssoc p q r
compAssoc (Drop p) q r = cong Drop $ compAssoc p q r
compAssoc End (Drop _) _ impossible
public export
Scoped : Type -> Type
Scoped a = Scope a -> Type
public export
Subscope : Scope a -> Type
Subscope xs = Exists (`LTE` xs)
public export
SubMap : {xs, ys : Scope a} -> xs `LTE` zs -> ys `LTE` zs -> Type
SubMap p q = DPair (xs `LTE` ys) (\r => Comp q r p)
parameters (p : xs `LTE` ys)
export export
tightenInner : {n : Nat} -> m `LTE` n -> t n -> f (t m) subId : SubMap p p
tightenInner = tighten . dropInner subId = (id ** compIdRight p)
export export
tightenN : (m : Nat) -> t (m + n) -> f (t n) subZero : SubMap OPE.zero p
tightenN m = tighten $ dropInnerN m subZero = (zero ** compZero p)
export
tighten1 : t (S n) -> f (t n) public export
tighten1 = tightenN 1 data All : (a -> Type) -> Scoped a where
Lin : All p [<]
(:<) : All p xs -> p x -> All p (xs :< x)
%name OPE.All ps, qs
export
mapAll : (forall x. p x -> q x) -> All p xs -> All q xs
mapAll f [<] = [<]
mapAll f (x :< y) = mapAll f x :< f y
export
subAll : xs `LTE` ys -> All p ys -> All p xs
subAll End [<] = [<]
subAll (Keep q) (ps :< x) = subAll q ps :< x
subAll (Drop q) (ps :< x) = subAll q ps
public export
data Cover_ : (overlap : Bool) -> xs `LTE` zs -> ys `LTE` zs -> Type where
CE : Cover_ ov End End
CL : Cover_ ov p q -> Cover_ ov (Keep p) (Drop q)
CR : Cover_ ov p q -> Cover_ ov (Drop p) (Keep q)
C2 : Cover_ ov p q -> Cover_ True (Keep p) (Keep q)
public export
Cover : xs `LTE` zs -> ys `LTE` zs -> Type
Cover = Cover_ True
public export
Partition : xs `LTE` zs -> ys `LTE` zs -> Type
Partition = Cover_ False
-- [todo] can this be done with fancy nats too? public export
-- with bitmasks sure but that might not be worth the effort data LTEMaskView : xs `LTE` ys -> Nat -> Type where
-- [the next day] it probably isn't END : LTEMaskView End 0
KEEP : (0 _ : LTEMaskView p n) -> LTEMaskView (Keep p) (S (2 * n))
DROP : (0 _ : LTEMaskView p n) -> LTEMaskView (Drop p) (2 * n)
-- public export record LTEMask {a : Type} (xs, ys : Scope a) where
-- data OPE' : Nat -> Nat -> Type where constructor LTEM
-- None : OPE' 0 0 mask : Nat
-- Drop : OPE' m n -> OPE' m (S n) 0 lte : xs `LTE` ys
-- Keep : OPE' m n -> OPE' (S m) (S n) 0 view0 : LTEMaskView lte mask
-- %name OPE' q
export
-- public export %inline view : (sx : Length xs) => (sy : Length ys) =>
-- drop' : Integer -> Integer (m : LTEMask xs ys) -> LTEMaskView m.lte m.mask
-- drop' n = n * 2
-- public export %inline
-- keep' : Integer -> Integer
-- keep' n = 1 + 2 * n
-- public export
-- data IsOPE : Integer -> (OPE' m n) -> Type where
-- IsNone : 0 `IsOPE` None
-- IsDrop : (0 _ : m `IsOPE` q) -> drop' m `IsOPE` Drop q
-- IsKeep : (0 _ : m `IsOPE` q) -> keep' m `IsOPE` Keep q
-- %name IsOPE p
-- public export
-- record OPE m n where
-- constructor MkOPE
-- value : Integer
-- 0 spec : OPE' m n
-- 0 prf : value `IsOPE` spec
-- 0 pos : So (value >= 0)
-- private
-- 0 idrisPleaseLearnAboutIntegers : {x, y : Integer} -> x = y
-- idrisPleaseLearnAboutIntegers {x, y} = believe_me $ Refl {x}
-- private
-- 0 natIntPlus : (m, n : Nat) ->
-- natToInteger (m + n) = natToInteger m + natToInteger n
-- natIntPlus m n = idrisPleaseLearnAboutIntegers
-- private
-- 0 shiftTwice : (x : Integer) -> (m, n : Nat) ->
-- x `shiftL` (m + n) = (x `shiftL` m) `shiftL` n
-- shiftTwice x m n = idrisPleaseLearnAboutIntegers
-- private
-- 0 shift1 : (x : Integer) -> (x `shiftL` 1) = 2 * x
-- shift1 x = idrisPleaseLearnAboutIntegers
-- private
-- 0 intPlusComm : (x, y : Integer) -> (x + y) = (y + x)
-- intPlusComm x y = idrisPleaseLearnAboutIntegers
-- private
-- 0 intTimes2Minus1 : (x : Integer) -> 2 * x - 1 = 2 * (x - 1) + 1
-- intTimes2Minus1 x = idrisPleaseLearnAboutIntegers
-- private
-- 0 intPosShift : So (x > 0) -> So (x `shiftL` i > 0)
-- intPosShift p = believe_me Oh
-- private
-- 0 intNonnegDec : {x : Integer} -> So (x > 0) -> So (x - 1 >= 0)
-- intNonnegDec p = believe_me Oh
-- private
-- 0 shiftSucc : (x : Integer) -> (n : Nat) ->
-- x `shiftL` S n = 2 * (x `shiftL` n)
-- shiftSucc x n = Calc $
-- |~ x `shiftL` S n
-- ~~ x `shiftL` (n + 1)
-- ...(cong (x `shiftL`) $ sym $ plusCommutative {})
-- ~~ (x `shiftL` n) `shiftL` 1
-- ...(shiftTwice {})
-- ~~ 2 * (x `shiftL` n)
-- ...(shift1 {})
-- private
-- opeIdVal : (n : Nat) -> Integer
-- opeIdVal n = (1 `shiftL` n) - 1
-- private
-- 0 opeIdValSpec : (n : Nat) -> Integer
-- opeIdValSpec 0 = 0
-- opeIdValSpec (S n) = keep' $ opeIdValSpec n
-- private
-- 0 opeIdValOk : (n : Nat) -> opeIdVal n = opeIdValSpec n
-- opeIdValOk 0 = Refl
-- opeIdValOk (S n) = Calc $
-- |~ (1 `shiftL` S n) - 1
-- ~~ 2 * (1 `shiftL` n) - 1 ...(cong (\x => x - 1) $ shiftSucc {})
-- ~~ 2 * (1 `shiftL` n - 1) + 1 ...(intTimes2Minus1 {})
-- ~~ 1 + 2 * (1 `shiftL` n - 1) ...(intPlusComm {})
-- ~~ 1 + 2 * opeIdValSpec n ...(cong (\x => 1 + 2 * x) $ opeIdValOk {})
-- private
-- 0 opeIdSpec : (n : Nat) -> OPE' n n
-- opeIdSpec 0 = None
-- opeIdSpec (S n) = Keep $ opeIdSpec n
-- private
-- 0 opeIdProof' : (n : Nat) -> opeIdValSpec n `IsOPE` opeIdSpec n
-- opeIdProof' 0 = IsNone
-- opeIdProof' (S n) = IsKeep (opeIdProof' n)
-- private
-- 0 opeIdProof : (n : Nat) -> opeIdVal n `IsOPE` opeIdSpec n
-- opeIdProof n = rewrite opeIdValOk n in opeIdProof' n
-- export
-- opeId : {n : Nat} -> OPE n n
-- opeId {n} = MkOPE {prf = opeIdProof n, pos = intNonnegDec $ intPosShift Oh, _}

94
lib/Quox/Scope.idr Normal file
View file

@ -0,0 +1,94 @@
module Quox.Scope
import public Quox.OPE
public export
record Sub {a : Type} (t : Scoped a) (xs : Scope a) where
constructor Su
{0 support : Scope a}
term : t support
thin : support `LTE` xs
public export
CoverS : Sub s xs -> Sub t xs -> Type
CoverS ss tt = Cover ss.thin tt.thin
export %inline
inj : Length xs => t xs -> Sub t xs
inj x = Su x id
export %inline
flat : Sub (Sub t) xs -> Sub t xs
flat (Su (Su x q) p) = Su x (p . q)
export %inline
thinSub : xs `LTE` ys -> Sub t xs -> Sub t ys
thinSub p x = flat $ Su x p
export %inline
map : (forall x. s x -> t x) -> Sub s x -> Sub t x
map f = {term $= f}
public export
data Unit : Scoped a where
Nil : Unit [<]
export %inline
unit : Length xs => Sub Unit xs
unit = Su [] zero
public export
record Coprod {a : Type} {xs, ys, zs : Scope a}
(p : xs `LTE` zs) (q : ys `LTE` zs) where
constructor Cop
{0 scope : Scope a}
{thin : scope `LTE` zs}
{thinP : xs `LTE` scope}
{thinQ : ys `LTE` scope}
compP : Comp thin thinP p
compQ : Comp thin thinQ q
0 cover : Cover thinP thinQ
export
coprod : (p : xs `LTE` zs) -> (q : ys `LTE` zs) -> Coprod p q
coprod End End = %search
coprod (Keep p) (Keep q) = let Cop {} = coprod p q in %search
coprod (Keep p) (Drop q) = let Cop {} = coprod p q in %search
coprod (Drop p) (Keep q) = let Cop {} = coprod p q in %search
coprod (Drop p) (Drop q) =
-- idk why this one is harder to solve
let Cop compP compQ cover = coprod p q in
Cop (CD0 compP) (CD0 compQ) cover
public export
record Pair {a : Type} (s, t : Scoped a) (zs : Scope a) where
constructor MkPair
fst : Sub s zs
snd : Sub t zs
0 cover : CoverS fst snd
export
pair : Sub s xs -> Sub t xs -> Sub (Pair s t) xs
pair (Su x p) (Su y q) =
let c = coprod p q in
Su (MkPair (Su x c.thinP) (Su y c.thinQ) c.cover) c.thin
public export
data Var : a -> Scope a -> Type where
Only : Var x [< x]
export %inline
var : (0 x : a) -> [< x] `LTE` xs => Sub (Var x) xs
var x @{p} = Su Only p
infix 0 \\\, \\
public export
data Bind : (t : Scoped a) -> (new, old : Scope a) -> Type where
(\\\) : new' `LTE` new -> t (old ++ new') -> Bind t new old
(\\) : (new : Scope a) -> Sub t (old ++ new) -> Sub (Bind t new) old
vs \\ Su term p with (split vs p)
vs \\ Su term (l ++ r) | MkSplit l r Refl Refl = Su (r \\\ term) l