don't need this agda file any more
This commit is contained in:
parent
4aa3e5f730
commit
c5fa11bdec
1 changed files with 0 additions and 78 deletions
|
@ -1,78 +0,0 @@
|
|||
open import Axiom.Extensionality.Propositional
|
||||
|
||||
module _ (ext : ∀ {a b} → Extensionality a b) where
|
||||
|
||||
open import Prelude hiding (zero; suc)
|
||||
open import Data.W renaming (induction to induction′)
|
||||
open import Data.Container
|
||||
open import Data.Container.Relation.Unary.All ; open □
|
||||
|
||||
variable
|
||||
𝓀 ℓ : Level
|
||||
A B : Set 𝓀
|
||||
P Q : A → Set ℓ
|
||||
C : Container 𝓀 ℓ
|
||||
|
||||
|
||||
data Tag : Set where `zero `suc : Tag
|
||||
|
||||
Body : Tag → Set
|
||||
Body t = case t of λ {`zero → ⊥ ; `suc → ⊤}
|
||||
|
||||
Repr : Container lzero lzero
|
||||
Repr = Tag ▷ Body
|
||||
|
||||
Nat : Set
|
||||
Nat = W Repr
|
||||
|
||||
Nat′ : Set
|
||||
Nat′ = ⟦ Repr ⟧ Nat
|
||||
|
||||
zero : Nat
|
||||
zero = sup (`zero , λ ())
|
||||
|
||||
suc : Nat → Nat
|
||||
suc n = sup (`suc , const n)
|
||||
|
||||
induction :
|
||||
(P : W C → Set ℓ) →
|
||||
(IH : (t : ⟦ C ⟧ (W C)) → □ C P t → P (sup t)) →
|
||||
(w : W C) → P w
|
||||
induction P IH = induction′ P (λ {t} → IH t)
|
||||
|
||||
|
||||
elim : (P : Nat → Set ℓ) →
|
||||
(Z : P zero) →
|
||||
(S : ∀ n → P n → P (suc n)) →
|
||||
(n : Nat) → P n
|
||||
elim P Z S = induction _ λ (tag , body) →
|
||||
body |>
|
||||
(case tag
|
||||
return (λ t → (n′ : Body t → Nat) →
|
||||
□ Repr P (t , n′) →
|
||||
P (sup (t , n′)))
|
||||
of λ where
|
||||
`zero → λ n′ _ → ≡.subst (λ n′ → P (sup (`zero , n′))) (ext λ ()) Z
|
||||
`suc → λ n′ IH → S (n′ tt) (IH .proof tt))
|
||||
|
||||
pred : Nat → Nat
|
||||
pred = induction _ λ n@(tag , body) _ →
|
||||
body |>
|
||||
(case tag
|
||||
return (λ t → (Body t → Nat) → Nat)
|
||||
of λ where
|
||||
`zero _ → zero
|
||||
`suc n → n tt)
|
||||
|
||||
Subterms : (A : Set 𝓀) (P : A → Set ℓ) → Set _
|
||||
Subterms A P = Σ[ x ∈ A ] (P x → W (A ▷ P))
|
||||
|
||||
subterms : W (A ▷ P) → Subterms A P
|
||||
subterms = induction _ λ t IH → t
|
||||
|
||||
natSub : Nat → List Nat
|
||||
natSub n =
|
||||
case subterms n of λ where
|
||||
(`zero , body) → []
|
||||
(`suc , body) → [ body tt ]
|
||||
where open List
|
Loading…
Reference in a new issue