remove IsQty interface

This commit is contained in:
rhiannon morris 2023-04-01 19:16:43 +02:00
parent 5fdba77d04
commit ba2818a865
24 changed files with 729 additions and 889 deletions

View file

@ -1,7 +1,6 @@
module Tests.Typechecker
import Quox.Syntax
import Quox.Syntax.Qty.Three
import Quox.Typechecker as Lib
import public TypingImpls
import TAP
@ -9,9 +8,9 @@ import Quox.EffExtra
data Error'
= TCError (Typing.Error Three)
| WrongInfer (Term Three d n) (Term Three d n)
| WrongQOut (QOutput Three n) (QOutput Three n)
= TCError Typing.Error
| WrongInfer (Term d n) (Term d n)
| WrongQOut (QOutput n) (QOutput n)
export
ToInfo Error' where
@ -26,41 +25,41 @@ ToInfo Error' where
("wanted", prettyStr True bad)]
0 M : Type -> Type
M = Eff [Except Error', DefsReader Three]
M = Eff [Except Error', DefsReader]
inj : TC Three a -> M a
inj : TC a -> M a
inj = rethrow . mapFst TCError <=< lift . runExcept
reflTy : IsQty q => Term q d n
reflTy : Term d n
reflTy =
Pi_ zero "A" (TYPE 0) $
Pi_ one "x" (BVT 0) $
Pi_ Zero "A" (TYPE 0) $
Pi_ One "x" (BVT 0) $
Eq0 (BVT 1) (BVT 0) (BVT 0)
reflDef : IsQty q => Term q d n
reflDef : Term d n
reflDef = [< "A","x"] :\\ [< "i"] :\\% BVT 0
fstTy : Term Three d n
fstTy : Term d n
fstTy =
(Pi_ Zero "A" (TYPE 1) $
Pi_ Zero "B" (Arr Any (BVT 0) (TYPE 1)) $
Arr Any (Sig_ "x" (BVT 1) $ E $ BV 1 :@ BVT 0) (BVT 1))
fstDef : Term Three d n
fstDef : Term d n
fstDef =
([< "A","B","p"] :\\
E (CasePair Any (BV 0) (SN $ BVT 2) (SY [< "x","y"] $ BVT 1)))
sndTy : Term Three d n
sndTy : Term d n
sndTy =
(Pi_ Zero "A" (TYPE 1) $
Pi_ Zero "B" (Arr Any (BVT 0) (TYPE 1)) $
Pi_ Any "p" (Sig_ "x" (BVT 1) $ E $ BV 1 :@ BVT 0) $
E (BV 1 :@ E (F "fst" :@@ [BVT 2, BVT 1, BVT 0])))
sndDef : Term Three d n
sndDef : Term d n
sndDef =
([< "A","B","p"] :\\
E (CasePair Any (BV 0)
@ -68,27 +67,27 @@ sndDef =
(SY [< "x","y"] $ BVT 0)))
defGlobals : Definitions Three
defGlobals : Definitions
defGlobals = fromList
[("A", mkPostulate Zero $ TYPE 0),
("B", mkPostulate Zero $ TYPE 0),
("C", mkPostulate Zero $ TYPE 1),
("D", mkPostulate Zero $ TYPE 1),
("P", mkPostulate Zero $ Arr Any (FT "A") (TYPE 0)),
("a", mkPostulate Any $ FT "A"),
("a'", mkPostulate Any $ FT "A"),
("b", mkPostulate Any $ FT "B"),
("f", mkPostulate Any $ Arr One (FT "A") (FT "A")),
("g", mkPostulate Any $ Arr One (FT "A") (FT "B")),
("f2", mkPostulate Any $ Arr One (FT "A") $ Arr One (FT "A") (FT "B")),
("p", mkPostulate Any $ Pi_ One "x" (FT "A") $ E $ F "P" :@ BVT 0),
("q", mkPostulate Any $ Pi_ One "x" (FT "A") $ E $ F "P" :@ BVT 0),
("refl", mkDef Any reflTy reflDef),
("fst", mkDef Any fstTy fstDef),
("snd", mkDef Any sndTy sndDef)]
[("A", mkPostulate gzero $ TYPE 0),
("B", mkPostulate gzero $ TYPE 0),
("C", mkPostulate gzero $ TYPE 1),
("D", mkPostulate gzero $ TYPE 1),
("P", mkPostulate gzero $ Arr Any (FT "A") (TYPE 0)),
("a", mkPostulate gany $ FT "A"),
("a'", mkPostulate gany $ FT "A"),
("b", mkPostulate gany $ FT "B"),
("f", mkPostulate gany $ Arr One (FT "A") (FT "A")),
("g", mkPostulate gany $ Arr One (FT "A") (FT "B")),
("f2", mkPostulate gany $ Arr One (FT "A") $ Arr One (FT "A") (FT "B")),
("p", mkPostulate gany $ Pi_ One "x" (FT "A") $ E $ F "P" :@ BVT 0),
("q", mkPostulate gany $ Pi_ One "x" (FT "A") $ E $ F "P" :@ BVT 0),
("refl", mkDef gany reflTy reflDef),
("fst", mkDef gany fstTy fstDef),
("snd", mkDef gany sndTy sndDef)]
parameters (label : String) (act : Lazy (M ()))
{default defGlobals globals : Definitions Three}
{default defGlobals globals : Definitions}
testTC : Test
testTC = test label {e = Error', a = ()} $
extract $ runExcept $ runReader globals act
@ -98,36 +97,35 @@ parameters (label : String) (act : Lazy (M ()))
(extract $ runExcept $ runReader globals act) $> "()"
anys : {n : Nat} -> QContext Three n
anys : {n : Nat} -> QContext n
anys {n = 0} = [<]
anys {n = S n} = anys :< Any
ctx, ctx01 : {n : Nat} -> Context (\n => (BaseName, Term Three 0 n)) n ->
TyContext Three 0 n
ctx, ctx01 : {n : Nat} -> Context (\n => (BaseName, Term 0 n)) n ->
TyContext 0 n
ctx tel = let (ns, ts) = unzip tel in
MkTyContext new [<] ts ns anys
ctx01 tel = let (ns, ts) = unzip tel in
MkTyContext ZeroIsOne [<] ts ns anys
empty01 : TyContext Three 0 0
empty01 : TyContext 0 0
empty01 = eqDim (K Zero) (K One) empty
inferredTypeEq : TyContext Three d n -> (exp, got : Term Three d n) -> M ()
inferredTypeEq : TyContext d n -> (exp, got : Term d n) -> M ()
inferredTypeEq ctx exp got =
wrapErr (const $ WrongInfer exp got) $ inj $ equalType ctx exp got
qoutEq : (exp, got : QOutput Three n) -> M ()
qoutEq : (exp, got : QOutput n) -> M ()
qoutEq qout res = unless (qout == res) $ throw $ WrongQOut qout res
inferAs : TyContext Three d n -> (sg : SQty Three) ->
Elim Three d n -> Term Three d n -> M ()
inferAs : TyContext d n -> (sg : SQty) -> Elim d n -> Term d n -> M ()
inferAs ctx@(MkTyContext {dctx, _}) sg e ty = do
case !(inj $ infer ctx sg e) of
Just res => inferredTypeEq ctx ty res.type
Nothing => pure ()
inferAsQ : TyContext Three d n -> (sg : SQty Three) ->
Elim Three d n -> Term Three d n -> QOutput Three n -> M ()
inferAsQ : TyContext d n -> (sg : SQty) ->
Elim d n -> Term d n -> QOutput n -> M ()
inferAsQ ctx@(MkTyContext {dctx, _}) sg e ty qout = do
case !(inj $ infer ctx sg e) of
Just res => do
@ -135,30 +133,23 @@ inferAsQ ctx@(MkTyContext {dctx, _}) sg e ty qout = do
qoutEq qout res.qout
Nothing => pure ()
infer_ : TyContext Three d n -> (sg : SQty Three) -> Elim Three d n -> M ()
infer_ : TyContext d n -> (sg : SQty) -> Elim d n -> M ()
infer_ ctx sg e = ignore $ inj $ infer ctx sg e
checkQ : TyContext Three d n -> SQty Three ->
Term Three d n -> Term Three d n -> QOutput Three n -> M ()
checkQ : TyContext d n -> SQty ->
Term d n -> Term d n -> QOutput n -> M ()
checkQ ctx@(MkTyContext {dctx, _}) sg s ty qout = do
case !(inj $ check ctx sg s ty) of
Just res => qoutEq qout res
Nothing => pure ()
check_ : TyContext Three d n -> SQty Three ->
Term Three d n -> Term Three d n -> M ()
check_ : TyContext d n -> SQty -> Term d n -> Term d n -> M ()
check_ ctx sg s ty = ignore $ inj $ check ctx sg s ty
checkType_ : TyContext Three d n -> Term Three d n -> Maybe Universe -> M ()
checkType_ : TyContext d n -> Term d n -> Maybe Universe -> M ()
checkType_ ctx s u = inj $ checkType ctx s u
-- ω is not a subject qty
failing "Can't find an implementation"
sany : SQty Three
sany = Element Any %search
export
tests : Test
tests = "typechecker" :- [
@ -253,9 +244,9 @@ tests = "typechecker" :- [
"bound vars" :- [
testTC "x : A ⊢ 1 · x ⇒ A ⊳ 1·x" $
inferAsQ {n = 1} (ctx [< ("x", FT "A")]) sone
(BV 0) (FT "A") [< one],
(BV 0) (FT "A") [< One],
testTC "x : A ⊢ 1 · [x] ⇐ A ⊳ 1·x" $
checkQ {n = 1} (ctx [< ("x", FT "A")]) sone (BVT 0) (FT "A") [< one],
checkQ {n = 1} (ctx [< ("x", FT "A")]) sone (BVT 0) (FT "A") [< One],
note "f2 : A ⊸ A ⊸ B",
testTC "x : A ⊢ 1 · f2 [x] [x] ⇒ B ⊳ ω·x" $
inferAsQ {n = 1} (ctx [< ("x", FT "A")]) sone
@ -371,24 +362,30 @@ tests = "typechecker" :- [
],
"equality types" :- [
testTC "0 · = : ★₀ ⇐ ★₁" $
testTC "0 · : ★₀ ⇐ Type" $
checkType_ empty (Eq0 (TYPE 0) Nat Nat) Nothing,
testTC "0 · : ★₀ ⇐ ★₁" $
check_ empty szero (Eq0 (TYPE 0) Nat Nat) (TYPE 1),
testTC "0 · = : ★₀ ⇐ ★₂" $
testTCFail "1 · : ★₀ ⇍ ★₁" $
check_ empty sone (Eq0 (TYPE 0) Nat Nat) (TYPE 1),
testTC "0 · : ★₀ ⇐ ★₂" $
check_ empty szero (Eq0 (TYPE 0) Nat Nat) (TYPE 2),
testTC "0 · = : ★₁ ⇐ ★₂" $
testTC "0 · : ★₁ ⇐ ★₂" $
check_ empty szero (Eq0 (TYPE 1) Nat Nat) (TYPE 2),
testTCFail "0 · = : ★₁ ⇍ ★₁" $
testTCFail "0 · : ★₁ ⇍ ★₁" $
check_ empty szero (Eq0 (TYPE 1) Nat Nat) (TYPE 1),
testTC "ab : A ≡ B : ★₀, x : A, y : B ⊢ Eq [i ⇒ ab i] x y ⇐ ★₀" $
testTCFail "0 ≡ 'beep : {beep} ⇍ Type" $
checkType_ empty (Eq0 (enum ["beep"]) Zero (Tag "beep")) Nothing,
testTC "ab : A ≡ B : ★₀, x : A, y : B ⊢ 0 · Eq [i ⇒ ab i] x y ⇐ ★₀" $
check_ (ctx [< ("ab", Eq0 (TYPE 0) (FT "A") (FT "B")),
("x", FT "A"), ("y", FT "B")]) szero
(Eq (SY [< "i"] $ E $ BV 2 :% BV 0) (BVT 1) (BVT 0))
(TYPE 0),
testTCFail "ab : A ≡ B : ★₀, x : A, y : B ⊢ Eq [i ⇒ ab i] y x ⇍ ★₀" $
check_ (ctx [< ("ab", Eq0 (TYPE 0) (FT "A") (FT "B")),
("x", FT "A"), ("y", FT "B")]) szero
testTCFail "ab : A ≡ B : ★₀, x : A, y : B ⊢ Eq [i ⇒ ab i] y x ⇍ Type" $
checkType_ (ctx [< ("ab", Eq0 (TYPE 0) (FT "A") (FT "B")),
("x", FT "A"), ("y", FT "B")])
(Eq (SY [< "i"] $ E $ BV 2 :% BV 0) (BVT 0) (BVT 1))
(TYPE 0)
Nothing
],
"equalities" :- [