remove IsQty interface

This commit is contained in:
rhiannon morris 2023-04-01 19:16:43 +02:00
parent 5fdba77d04
commit ba2818a865
24 changed files with 729 additions and 889 deletions

View file

@ -2,28 +2,24 @@ module Tests.Equal
import Quox.Equal
import Quox.Typechecker
import Quox.Syntax.Qty.Three
import public TypingImpls
import TAP
import Quox.EffExtra
0 M : Type -> Type
M = TC Three
defGlobals : Definitions Three
defGlobals : Definitions
defGlobals = fromList
[("A", mkPostulate Zero $ TYPE 0),
("B", mkPostulate Zero $ TYPE 0),
("a", mkPostulate Any $ FT "A"),
("a'", mkPostulate Any $ FT "A"),
("b", mkPostulate Any $ FT "B"),
("f", mkPostulate Any $ Arr One (FT "A") (FT "A")),
("id", mkDef Any (Arr One (FT "A") (FT "A")) ([< "x"] :\\ BVT 0)),
("eq-AB", mkPostulate Zero $ Eq0 (TYPE 0) (FT "A") (FT "B")),
("two", mkDef Any Nat (Succ (Succ Zero)))]
[("A", mkPostulate gzero $ TYPE 0),
("B", mkPostulate gzero $ TYPE 0),
("a", mkPostulate gany $ FT "A"),
("a'", mkPostulate gany $ FT "A"),
("b", mkPostulate gany $ FT "B"),
("f", mkPostulate gany $ Arr One (FT "A") (FT "A")),
("id", mkDef gany (Arr One (FT "A") (FT "A")) ([< "x"] :\\ BVT 0)),
("eq-AB", mkPostulate gzero $ Eq0 (TYPE 0) (FT "A") (FT "B")),
("two", mkDef gany Nat (Succ (Succ Zero)))]
parameters (label : String) (act : Lazy (M ()))
{default defGlobals globals : Definitions Three}
parameters (label : String) (act : Lazy (TC ()))
{default defGlobals globals : Definitions}
testEq : Test
testEq = test label $ runTC globals act
@ -31,29 +27,29 @@ parameters (label : String) (act : Lazy (M ()))
testNeq = testThrows label (const True) $ runTC globals act $> "()"
parameters (0 d : Nat) (ctx : TyContext Three d n)
subTD, equalTD : Term Three d n -> Term Three d n -> Term Three d n -> M ()
parameters (0 d : Nat) (ctx : TyContext d n)
subTD, equalTD : Term d n -> Term d n -> Term d n -> TC ()
subTD ty s t = Term.sub ctx ty s t
equalTD ty s t = Term.equal ctx ty s t
equalTyD : Term Three d n -> Term Three d n -> M ()
equalTyD : Term d n -> Term d n -> TC ()
equalTyD s t = Term.equalType ctx s t
subED, equalED : Elim Three d n -> Elim Three d n -> M ()
subED, equalED : Elim d n -> Elim d n -> TC ()
subED e f = Elim.sub ctx e f
equalED e f = Elim.equal ctx e f
parameters (ctx : TyContext Three 0 n)
subT, equalT : Term Three 0 n -> Term Three 0 n -> Term Three 0 n -> M ()
parameters (ctx : TyContext 0 n)
subT, equalT : Term 0 n -> Term 0 n -> Term 0 n -> TC ()
subT = subTD 0 ctx
equalT = equalTD 0 ctx
equalTy : Term Three 0 n -> Term Three 0 n -> M ()
equalTy : Term 0 n -> Term 0 n -> TC ()
equalTy = equalTyD 0 ctx
subE, equalE : Elim Three 0 n -> Elim Three 0 n -> M ()
subE, equalE : Elim 0 n -> Elim 0 n -> TC ()
subE = subED 0 ctx
equalE = equalED 0 ctx
empty01 : TyContext q 0 0
empty01 : TyContext 0 0
empty01 = eqDim (K Zero) (K One) empty
@ -166,7 +162,7 @@ tests = "equality & subtyping" :- [
let tm = Eq0 (TYPE 1) (TYPE 0) (TYPE 0) in
equalT empty (TYPE 2) tm tm,
testEq "A ≔ ★₁ ⊢ (★₀ ≡ ★₀ : ★₁) = (★₀ ≡ ★₀ : A)"
{globals = fromList [("A", mkDef zero (TYPE 2) (TYPE 1))]} $
{globals = fromList [("A", mkDef gzero (TYPE 2) (TYPE 1))]} $
equalT empty (TYPE 2)
(Eq0 (TYPE 1) (TYPE 0) (TYPE 0))
(Eq0 (FT "A") (TYPE 0) (TYPE 0)),
@ -174,7 +170,7 @@ tests = "equality & subtyping" :- [
],
"equalities and uip" :-
let refl : Term q d n -> Term q d n -> Elim q d n
let refl : Term d n -> Term d n -> Elim d n
refl a x = (DLam $ S [< "_"] $ N x) :# (Eq0 a x x)
in
[
@ -185,53 +181,53 @@ tests = "equality & subtyping" :- [
testEq "p : (a ≡ a' : A), q : (a ≡ a' : A) ∥ ⊢ p = q (free)"
{globals =
let def = mkPostulate Zero $ Eq0 (FT "A") (FT "a") (FT "a'") in
let def = mkPostulate gzero $ Eq0 (FT "A") (FT "a") (FT "a'") in
defGlobals `mergeLeft` fromList [("p", def), ("q", def)]} $
equalE empty (F "p") (F "q"),
testEq "∥ x : (a ≡ a' : A), y : (a ≡ a' : A) ⊢ x = y (bound)" $
let ty : forall n. Term Three 0 n := Eq0 (FT "A") (FT "a") (FT "a'") in
let ty : forall n. Term 0 n := Eq0 (FT "A") (FT "a") (FT "a'") in
equalE (extendTyN [< (Any, "x", ty), (Any, "y", ty)] empty)
(BV 0) (BV 1),
testEq "∥ x : [(a ≡ a' : A) ∷ Type 0], y : [ditto] ⊢ x = y" $
let ty : forall n. Term Three 0 n :=
let ty : forall n. Term 0 n :=
E (Eq0 (FT "A") (FT "a") (FT "a'") :# TYPE 0) in
equalE (extendTyN [< (Any, "x", ty), (Any, "y", ty)] empty)
(BV 0) (BV 1),
testEq "E ≔ a ≡ a' : A, EE ≔ E ∥ x : EE, y : EE ⊢ x = y"
{globals = defGlobals `mergeLeft` fromList
[("E", mkDef zero (TYPE 0) (Eq0 (FT "A") (FT "a") (FT "a'"))),
("EE", mkDef zero (TYPE 0) (FT "E"))]} $
[("E", mkDef gzero (TYPE 0) (Eq0 (FT "A") (FT "a") (FT "a'"))),
("EE", mkDef gzero (TYPE 0) (FT "E"))]} $
equalE (extendTyN [< (Any, "x", FT "EE"), (Any, "y", FT "EE")] empty)
(BV 0) (BV 1),
testEq "E ≔ a ≡ a' : A, EE ≔ E ∥ x : EE, y : E ⊢ x = y"
{globals = defGlobals `mergeLeft` fromList
[("E", mkDef zero (TYPE 0) (Eq0 (FT "A") (FT "a") (FT "a'"))),
("EE", mkDef zero (TYPE 0) (FT "E"))]} $
[("E", mkDef gzero (TYPE 0) (Eq0 (FT "A") (FT "a") (FT "a'"))),
("EE", mkDef gzero (TYPE 0) (FT "E"))]} $
equalE (extendTyN [< (Any, "x", FT "EE"), (Any, "y", FT "E")] empty)
(BV 0) (BV 1),
testEq "E ≔ a ≡ a' : A ∥ x : E, y : E ⊢ x = y"
{globals = defGlobals `mergeLeft` fromList
[("E", mkDef zero (TYPE 0) (Eq0 (FT "A") (FT "a") (FT "a'")))]} $
[("E", mkDef gzero (TYPE 0) (Eq0 (FT "A") (FT "a") (FT "a'")))]} $
equalE (extendTyN [< (Any, "x", FT "E"), (Any, "y", FT "E")] empty)
(BV 0) (BV 1),
testEq "E ≔ a ≡ a' : A ∥ x : (E×E), y : (E×E) ⊢ x = y"
{globals = defGlobals `mergeLeft` fromList
[("E", mkDef zero (TYPE 0) (Eq0 (FT "A") (FT "a") (FT "a'")))]} $
let ty : forall n. Term Three 0 n :=
[("E", mkDef gzero (TYPE 0) (Eq0 (FT "A") (FT "a") (FT "a'")))]} $
let ty : forall n. Term 0 n :=
Sig (FT "E") $ S [< "_"] $ N $ FT "E" in
equalE (extendTyN [< (Any, "x", ty), (Any, "y", ty)] empty)
(BV 0) (BV 1),
testEq "E ≔ a ≡ a' : A, W ≔ E × E ∥ x : W, y : W ⊢ x = y"
{globals = defGlobals `mergeLeft` fromList
[("E", mkDef zero (TYPE 0) (Eq0 (FT "A") (FT "a") (FT "a'"))),
("W", mkDef zero (TYPE 0) (FT "E" `And` FT "E"))]} $
[("E", mkDef gzero (TYPE 0) (Eq0 (FT "A") (FT "a") (FT "a'"))),
("W", mkDef gzero (TYPE 0) (FT "E" `And` FT "E"))]} $
equalE
(extendTyN [< (Any, "x", FT "W"), (Any, "y", FT "W")] empty)
(BV 0) (BV 1)
@ -281,11 +277,11 @@ tests = "equality & subtyping" :- [
"free var" :-
let au_bu = fromList
[("A", mkDef Any (TYPE 1) (TYPE 0)),
("B", mkDef Any (TYPE 1) (TYPE 0))]
[("A", mkDef gany (TYPE 1) (TYPE 0)),
("B", mkDef gany (TYPE 1) (TYPE 0))]
au_ba = fromList
[("A", mkDef Any (TYPE 1) (TYPE 0)),
("B", mkDef Any (TYPE 1) (FT "A"))]
[("A", mkDef gany (TYPE 1) (TYPE 0)),
("B", mkDef gany (TYPE 1) (FT "A"))]
in [
testEq "A = A" $
equalE empty (F "A") (F "A"),
@ -306,13 +302,13 @@ tests = "equality & subtyping" :- [
testNeq "A ≮: B" $
subE empty (F "A") (F "B"),
testEq "A : ★₃ ≔ ★₀, B : ★₃ ≔ ★₂ ⊢ A <: B"
{globals = fromList [("A", mkDef Any (TYPE 3) (TYPE 0)),
("B", mkDef Any (TYPE 3) (TYPE 2))]} $
{globals = fromList [("A", mkDef gany (TYPE 3) (TYPE 0)),
("B", mkDef gany (TYPE 3) (TYPE 2))]} $
subE empty (F "A") (F "B"),
note "(A and B in different universes)",
testEq "A : ★₁ ≔ ★₀, B : ★₃ ≔ ★₂ ⊢ A <: B"
{globals = fromList [("A", mkDef Any (TYPE 1) (TYPE 0)),
("B", mkDef Any (TYPE 3) (TYPE 2))]} $
{globals = fromList [("A", mkDef gany (TYPE 1) (TYPE 0)),
("B", mkDef gany (TYPE 3) (TYPE 2))]} $
subE empty (F "A") (F "B"),
testEq "0=1 ⊢ A <: B" $
subE empty01 (F "A") (F "B")