remove IsQty interface

This commit is contained in:
rhiannon morris 2023-04-01 19:16:43 +02:00
parent 5fdba77d04
commit ba2818a865
24 changed files with 729 additions and 889 deletions

View file

@ -20,7 +20,7 @@ eqSubstLen _ _ = Nothing
mutual
export covering
Eq q => Eq (Term q d n) where
Eq (Term d n) where
TYPE k == TYPE l = k == l
TYPE _ == _ = False
@ -82,7 +82,7 @@ mutual
DCloT {} == _ = False
export covering
Eq q => Eq (Elim q d n) where
Eq (Elim d n) where
F x == F y = x == y
F _ == _ = False
@ -128,9 +128,9 @@ mutual
DCloE {} == _ = False
export covering
IsQty q => PrettyHL q => Show (Term q d n) where
Show (Term d n) where
showPrec d t = showParens (d /= Open) $ prettyStr True t
export covering
IsQty q => PrettyHL q => Show (Elim q d n) where
Show (Elim d n) where
showPrec d e = showParens (d /= Open) $ prettyStr True e

View file

@ -2,28 +2,24 @@ module Tests.Equal
import Quox.Equal
import Quox.Typechecker
import Quox.Syntax.Qty.Three
import public TypingImpls
import TAP
import Quox.EffExtra
0 M : Type -> Type
M = TC Three
defGlobals : Definitions Three
defGlobals : Definitions
defGlobals = fromList
[("A", mkPostulate Zero $ TYPE 0),
("B", mkPostulate Zero $ TYPE 0),
("a", mkPostulate Any $ FT "A"),
("a'", mkPostulate Any $ FT "A"),
("b", mkPostulate Any $ FT "B"),
("f", mkPostulate Any $ Arr One (FT "A") (FT "A")),
("id", mkDef Any (Arr One (FT "A") (FT "A")) ([< "x"] :\\ BVT 0)),
("eq-AB", mkPostulate Zero $ Eq0 (TYPE 0) (FT "A") (FT "B")),
("two", mkDef Any Nat (Succ (Succ Zero)))]
[("A", mkPostulate gzero $ TYPE 0),
("B", mkPostulate gzero $ TYPE 0),
("a", mkPostulate gany $ FT "A"),
("a'", mkPostulate gany $ FT "A"),
("b", mkPostulate gany $ FT "B"),
("f", mkPostulate gany $ Arr One (FT "A") (FT "A")),
("id", mkDef gany (Arr One (FT "A") (FT "A")) ([< "x"] :\\ BVT 0)),
("eq-AB", mkPostulate gzero $ Eq0 (TYPE 0) (FT "A") (FT "B")),
("two", mkDef gany Nat (Succ (Succ Zero)))]
parameters (label : String) (act : Lazy (M ()))
{default defGlobals globals : Definitions Three}
parameters (label : String) (act : Lazy (TC ()))
{default defGlobals globals : Definitions}
testEq : Test
testEq = test label $ runTC globals act
@ -31,29 +27,29 @@ parameters (label : String) (act : Lazy (M ()))
testNeq = testThrows label (const True) $ runTC globals act $> "()"
parameters (0 d : Nat) (ctx : TyContext Three d n)
subTD, equalTD : Term Three d n -> Term Three d n -> Term Three d n -> M ()
parameters (0 d : Nat) (ctx : TyContext d n)
subTD, equalTD : Term d n -> Term d n -> Term d n -> TC ()
subTD ty s t = Term.sub ctx ty s t
equalTD ty s t = Term.equal ctx ty s t
equalTyD : Term Three d n -> Term Three d n -> M ()
equalTyD : Term d n -> Term d n -> TC ()
equalTyD s t = Term.equalType ctx s t
subED, equalED : Elim Three d n -> Elim Three d n -> M ()
subED, equalED : Elim d n -> Elim d n -> TC ()
subED e f = Elim.sub ctx e f
equalED e f = Elim.equal ctx e f
parameters (ctx : TyContext Three 0 n)
subT, equalT : Term Three 0 n -> Term Three 0 n -> Term Three 0 n -> M ()
parameters (ctx : TyContext 0 n)
subT, equalT : Term 0 n -> Term 0 n -> Term 0 n -> TC ()
subT = subTD 0 ctx
equalT = equalTD 0 ctx
equalTy : Term Three 0 n -> Term Three 0 n -> M ()
equalTy : Term 0 n -> Term 0 n -> TC ()
equalTy = equalTyD 0 ctx
subE, equalE : Elim Three 0 n -> Elim Three 0 n -> M ()
subE, equalE : Elim 0 n -> Elim 0 n -> TC ()
subE = subED 0 ctx
equalE = equalED 0 ctx
empty01 : TyContext q 0 0
empty01 : TyContext 0 0
empty01 = eqDim (K Zero) (K One) empty
@ -166,7 +162,7 @@ tests = "equality & subtyping" :- [
let tm = Eq0 (TYPE 1) (TYPE 0) (TYPE 0) in
equalT empty (TYPE 2) tm tm,
testEq "A ≔ ★₁ ⊢ (★₀ ≡ ★₀ : ★₁) = (★₀ ≡ ★₀ : A)"
{globals = fromList [("A", mkDef zero (TYPE 2) (TYPE 1))]} $
{globals = fromList [("A", mkDef gzero (TYPE 2) (TYPE 1))]} $
equalT empty (TYPE 2)
(Eq0 (TYPE 1) (TYPE 0) (TYPE 0))
(Eq0 (FT "A") (TYPE 0) (TYPE 0)),
@ -174,7 +170,7 @@ tests = "equality & subtyping" :- [
],
"equalities and uip" :-
let refl : Term q d n -> Term q d n -> Elim q d n
let refl : Term d n -> Term d n -> Elim d n
refl a x = (DLam $ S [< "_"] $ N x) :# (Eq0 a x x)
in
[
@ -185,53 +181,53 @@ tests = "equality & subtyping" :- [
testEq "p : (a ≡ a' : A), q : (a ≡ a' : A) ∥ ⊢ p = q (free)"
{globals =
let def = mkPostulate Zero $ Eq0 (FT "A") (FT "a") (FT "a'") in
let def = mkPostulate gzero $ Eq0 (FT "A") (FT "a") (FT "a'") in
defGlobals `mergeLeft` fromList [("p", def), ("q", def)]} $
equalE empty (F "p") (F "q"),
testEq "∥ x : (a ≡ a' : A), y : (a ≡ a' : A) ⊢ x = y (bound)" $
let ty : forall n. Term Three 0 n := Eq0 (FT "A") (FT "a") (FT "a'") in
let ty : forall n. Term 0 n := Eq0 (FT "A") (FT "a") (FT "a'") in
equalE (extendTyN [< (Any, "x", ty), (Any, "y", ty)] empty)
(BV 0) (BV 1),
testEq "∥ x : [(a ≡ a' : A) ∷ Type 0], y : [ditto] ⊢ x = y" $
let ty : forall n. Term Three 0 n :=
let ty : forall n. Term 0 n :=
E (Eq0 (FT "A") (FT "a") (FT "a'") :# TYPE 0) in
equalE (extendTyN [< (Any, "x", ty), (Any, "y", ty)] empty)
(BV 0) (BV 1),
testEq "E ≔ a ≡ a' : A, EE ≔ E ∥ x : EE, y : EE ⊢ x = y"
{globals = defGlobals `mergeLeft` fromList
[("E", mkDef zero (TYPE 0) (Eq0 (FT "A") (FT "a") (FT "a'"))),
("EE", mkDef zero (TYPE 0) (FT "E"))]} $
[("E", mkDef gzero (TYPE 0) (Eq0 (FT "A") (FT "a") (FT "a'"))),
("EE", mkDef gzero (TYPE 0) (FT "E"))]} $
equalE (extendTyN [< (Any, "x", FT "EE"), (Any, "y", FT "EE")] empty)
(BV 0) (BV 1),
testEq "E ≔ a ≡ a' : A, EE ≔ E ∥ x : EE, y : E ⊢ x = y"
{globals = defGlobals `mergeLeft` fromList
[("E", mkDef zero (TYPE 0) (Eq0 (FT "A") (FT "a") (FT "a'"))),
("EE", mkDef zero (TYPE 0) (FT "E"))]} $
[("E", mkDef gzero (TYPE 0) (Eq0 (FT "A") (FT "a") (FT "a'"))),
("EE", mkDef gzero (TYPE 0) (FT "E"))]} $
equalE (extendTyN [< (Any, "x", FT "EE"), (Any, "y", FT "E")] empty)
(BV 0) (BV 1),
testEq "E ≔ a ≡ a' : A ∥ x : E, y : E ⊢ x = y"
{globals = defGlobals `mergeLeft` fromList
[("E", mkDef zero (TYPE 0) (Eq0 (FT "A") (FT "a") (FT "a'")))]} $
[("E", mkDef gzero (TYPE 0) (Eq0 (FT "A") (FT "a") (FT "a'")))]} $
equalE (extendTyN [< (Any, "x", FT "E"), (Any, "y", FT "E")] empty)
(BV 0) (BV 1),
testEq "E ≔ a ≡ a' : A ∥ x : (E×E), y : (E×E) ⊢ x = y"
{globals = defGlobals `mergeLeft` fromList
[("E", mkDef zero (TYPE 0) (Eq0 (FT "A") (FT "a") (FT "a'")))]} $
let ty : forall n. Term Three 0 n :=
[("E", mkDef gzero (TYPE 0) (Eq0 (FT "A") (FT "a") (FT "a'")))]} $
let ty : forall n. Term 0 n :=
Sig (FT "E") $ S [< "_"] $ N $ FT "E" in
equalE (extendTyN [< (Any, "x", ty), (Any, "y", ty)] empty)
(BV 0) (BV 1),
testEq "E ≔ a ≡ a' : A, W ≔ E × E ∥ x : W, y : W ⊢ x = y"
{globals = defGlobals `mergeLeft` fromList
[("E", mkDef zero (TYPE 0) (Eq0 (FT "A") (FT "a") (FT "a'"))),
("W", mkDef zero (TYPE 0) (FT "E" `And` FT "E"))]} $
[("E", mkDef gzero (TYPE 0) (Eq0 (FT "A") (FT "a") (FT "a'"))),
("W", mkDef gzero (TYPE 0) (FT "E" `And` FT "E"))]} $
equalE
(extendTyN [< (Any, "x", FT "W"), (Any, "y", FT "W")] empty)
(BV 0) (BV 1)
@ -281,11 +277,11 @@ tests = "equality & subtyping" :- [
"free var" :-
let au_bu = fromList
[("A", mkDef Any (TYPE 1) (TYPE 0)),
("B", mkDef Any (TYPE 1) (TYPE 0))]
[("A", mkDef gany (TYPE 1) (TYPE 0)),
("B", mkDef gany (TYPE 1) (TYPE 0))]
au_ba = fromList
[("A", mkDef Any (TYPE 1) (TYPE 0)),
("B", mkDef Any (TYPE 1) (FT "A"))]
[("A", mkDef gany (TYPE 1) (TYPE 0)),
("B", mkDef gany (TYPE 1) (FT "A"))]
in [
testEq "A = A" $
equalE empty (F "A") (F "A"),
@ -306,13 +302,13 @@ tests = "equality & subtyping" :- [
testNeq "A ≮: B" $
subE empty (F "A") (F "B"),
testEq "A : ★₃ ≔ ★₀, B : ★₃ ≔ ★₂ ⊢ A <: B"
{globals = fromList [("A", mkDef Any (TYPE 3) (TYPE 0)),
("B", mkDef Any (TYPE 3) (TYPE 2))]} $
{globals = fromList [("A", mkDef gany (TYPE 3) (TYPE 0)),
("B", mkDef gany (TYPE 3) (TYPE 2))]} $
subE empty (F "A") (F "B"),
note "(A and B in different universes)",
testEq "A : ★₁ ≔ ★₀, B : ★₃ ≔ ★₂ ⊢ A <: B"
{globals = fromList [("A", mkDef Any (TYPE 1) (TYPE 0)),
("B", mkDef Any (TYPE 3) (TYPE 2))]} $
{globals = fromList [("A", mkDef gany (TYPE 1) (TYPE 0)),
("B", mkDef gany (TYPE 3) (TYPE 2))]} $
subE empty (F "A") (F "B"),
testEq "0=1 ⊢ A <: B" $
subE empty01 (F "A") (F "B")

View file

@ -2,25 +2,24 @@ module Tests.PrettyTerm
import TAP
import Quox.Syntax
import Quox.Syntax.Qty.Three
import PrettyExtra
parameters (ds : NContext d) (ns : NContext n)
testPrettyT : Term Three d n -> (uni, asc : String) ->
testPrettyT : Term d n -> (uni, asc : String) ->
{default uni label : String} -> Test
testPrettyT t uni asc {label} =
testPretty (toSnocList' ds) (toSnocList' ns) t uni asc {label}
testPrettyT1 : Term Three d n -> (str : String) ->
testPrettyT1 : Term d n -> (str : String) ->
{default str label : String} -> Test
testPrettyT1 t str {label} = testPrettyT t str str {label}
testPrettyE : Elim Three d n -> (uni, asc : String) ->
testPrettyE : Elim d n -> (uni, asc : String) ->
{default uni label : String} -> Test
testPrettyE e uni asc {label} = testPrettyT (E e) uni asc {label}
testPrettyE1 : Elim Three d n -> (str : String) ->
testPrettyE1 : Elim d n -> (str : String) ->
{default str label : String} -> Test
testPrettyE1 e str {label} = testPrettyT1 (E e) str {label}

View file

@ -1,7 +1,6 @@
module Tests.Reduce
import Quox.Syntax as Lib
import Quox.Syntax.Qty.Three
import Quox.Equal
import TermImpls
import TypingImpls
@ -10,16 +9,16 @@ import TAP
parameters {0 isRedex : RedexTest tm} {auto _ : Whnf tm isRedex err}
{auto _ : ToInfo err}
{auto _ : forall d, n. Eq (tm Three d n)}
{auto _ : forall d, n. Show (tm Three d n)}
{default empty defs : Definitions Three}
{auto _ : forall d, n. Eq (tm d n)}
{auto _ : forall d, n. Show (tm d n)}
{default empty defs : Definitions}
{default 0 d, n : Nat}
testWhnf : String -> tm Three d n -> tm Three d n -> Test
testWhnf : String -> tm d n -> tm d n -> Test
testWhnf label from to = test "\{label} (whnf)" $ do
result <- bimap toInfo fst $ whnf defs from
unless (result == to) $ Left [("exp", show to), ("got", show result)]
testNoStep : String -> tm Three d n -> Test
testNoStep : String -> tm d n -> Test
testNoStep label e = testWhnf label e e
@ -57,7 +56,7 @@ tests = "whnf" :- [
"definitions" :- [
testWhnf "a (transparent)"
{defs = fromList [("a", mkDef Zero (TYPE 1) (TYPE 0))]}
{defs = fromList [("a", mkDef gzero (TYPE 1) (TYPE 0))]}
(F "a") (TYPE 0 :# TYPE 1)
],

View file

@ -1,7 +1,6 @@
module Tests.Typechecker
import Quox.Syntax
import Quox.Syntax.Qty.Three
import Quox.Typechecker as Lib
import public TypingImpls
import TAP
@ -9,9 +8,9 @@ import Quox.EffExtra
data Error'
= TCError (Typing.Error Three)
| WrongInfer (Term Three d n) (Term Three d n)
| WrongQOut (QOutput Three n) (QOutput Three n)
= TCError Typing.Error
| WrongInfer (Term d n) (Term d n)
| WrongQOut (QOutput n) (QOutput n)
export
ToInfo Error' where
@ -26,41 +25,41 @@ ToInfo Error' where
("wanted", prettyStr True bad)]
0 M : Type -> Type
M = Eff [Except Error', DefsReader Three]
M = Eff [Except Error', DefsReader]
inj : TC Three a -> M a
inj : TC a -> M a
inj = rethrow . mapFst TCError <=< lift . runExcept
reflTy : IsQty q => Term q d n
reflTy : Term d n
reflTy =
Pi_ zero "A" (TYPE 0) $
Pi_ one "x" (BVT 0) $
Pi_ Zero "A" (TYPE 0) $
Pi_ One "x" (BVT 0) $
Eq0 (BVT 1) (BVT 0) (BVT 0)
reflDef : IsQty q => Term q d n
reflDef : Term d n
reflDef = [< "A","x"] :\\ [< "i"] :\\% BVT 0
fstTy : Term Three d n
fstTy : Term d n
fstTy =
(Pi_ Zero "A" (TYPE 1) $
Pi_ Zero "B" (Arr Any (BVT 0) (TYPE 1)) $
Arr Any (Sig_ "x" (BVT 1) $ E $ BV 1 :@ BVT 0) (BVT 1))
fstDef : Term Three d n
fstDef : Term d n
fstDef =
([< "A","B","p"] :\\
E (CasePair Any (BV 0) (SN $ BVT 2) (SY [< "x","y"] $ BVT 1)))
sndTy : Term Three d n
sndTy : Term d n
sndTy =
(Pi_ Zero "A" (TYPE 1) $
Pi_ Zero "B" (Arr Any (BVT 0) (TYPE 1)) $
Pi_ Any "p" (Sig_ "x" (BVT 1) $ E $ BV 1 :@ BVT 0) $
E (BV 1 :@ E (F "fst" :@@ [BVT 2, BVT 1, BVT 0])))
sndDef : Term Three d n
sndDef : Term d n
sndDef =
([< "A","B","p"] :\\
E (CasePair Any (BV 0)
@ -68,27 +67,27 @@ sndDef =
(SY [< "x","y"] $ BVT 0)))
defGlobals : Definitions Three
defGlobals : Definitions
defGlobals = fromList
[("A", mkPostulate Zero $ TYPE 0),
("B", mkPostulate Zero $ TYPE 0),
("C", mkPostulate Zero $ TYPE 1),
("D", mkPostulate Zero $ TYPE 1),
("P", mkPostulate Zero $ Arr Any (FT "A") (TYPE 0)),
("a", mkPostulate Any $ FT "A"),
("a'", mkPostulate Any $ FT "A"),
("b", mkPostulate Any $ FT "B"),
("f", mkPostulate Any $ Arr One (FT "A") (FT "A")),
("g", mkPostulate Any $ Arr One (FT "A") (FT "B")),
("f2", mkPostulate Any $ Arr One (FT "A") $ Arr One (FT "A") (FT "B")),
("p", mkPostulate Any $ Pi_ One "x" (FT "A") $ E $ F "P" :@ BVT 0),
("q", mkPostulate Any $ Pi_ One "x" (FT "A") $ E $ F "P" :@ BVT 0),
("refl", mkDef Any reflTy reflDef),
("fst", mkDef Any fstTy fstDef),
("snd", mkDef Any sndTy sndDef)]
[("A", mkPostulate gzero $ TYPE 0),
("B", mkPostulate gzero $ TYPE 0),
("C", mkPostulate gzero $ TYPE 1),
("D", mkPostulate gzero $ TYPE 1),
("P", mkPostulate gzero $ Arr Any (FT "A") (TYPE 0)),
("a", mkPostulate gany $ FT "A"),
("a'", mkPostulate gany $ FT "A"),
("b", mkPostulate gany $ FT "B"),
("f", mkPostulate gany $ Arr One (FT "A") (FT "A")),
("g", mkPostulate gany $ Arr One (FT "A") (FT "B")),
("f2", mkPostulate gany $ Arr One (FT "A") $ Arr One (FT "A") (FT "B")),
("p", mkPostulate gany $ Pi_ One "x" (FT "A") $ E $ F "P" :@ BVT 0),
("q", mkPostulate gany $ Pi_ One "x" (FT "A") $ E $ F "P" :@ BVT 0),
("refl", mkDef gany reflTy reflDef),
("fst", mkDef gany fstTy fstDef),
("snd", mkDef gany sndTy sndDef)]
parameters (label : String) (act : Lazy (M ()))
{default defGlobals globals : Definitions Three}
{default defGlobals globals : Definitions}
testTC : Test
testTC = test label {e = Error', a = ()} $
extract $ runExcept $ runReader globals act
@ -98,36 +97,35 @@ parameters (label : String) (act : Lazy (M ()))
(extract $ runExcept $ runReader globals act) $> "()"
anys : {n : Nat} -> QContext Three n
anys : {n : Nat} -> QContext n
anys {n = 0} = [<]
anys {n = S n} = anys :< Any
ctx, ctx01 : {n : Nat} -> Context (\n => (BaseName, Term Three 0 n)) n ->
TyContext Three 0 n
ctx, ctx01 : {n : Nat} -> Context (\n => (BaseName, Term 0 n)) n ->
TyContext 0 n
ctx tel = let (ns, ts) = unzip tel in
MkTyContext new [<] ts ns anys
ctx01 tel = let (ns, ts) = unzip tel in
MkTyContext ZeroIsOne [<] ts ns anys
empty01 : TyContext Three 0 0
empty01 : TyContext 0 0
empty01 = eqDim (K Zero) (K One) empty
inferredTypeEq : TyContext Three d n -> (exp, got : Term Three d n) -> M ()
inferredTypeEq : TyContext d n -> (exp, got : Term d n) -> M ()
inferredTypeEq ctx exp got =
wrapErr (const $ WrongInfer exp got) $ inj $ equalType ctx exp got
qoutEq : (exp, got : QOutput Three n) -> M ()
qoutEq : (exp, got : QOutput n) -> M ()
qoutEq qout res = unless (qout == res) $ throw $ WrongQOut qout res
inferAs : TyContext Three d n -> (sg : SQty Three) ->
Elim Three d n -> Term Three d n -> M ()
inferAs : TyContext d n -> (sg : SQty) -> Elim d n -> Term d n -> M ()
inferAs ctx@(MkTyContext {dctx, _}) sg e ty = do
case !(inj $ infer ctx sg e) of
Just res => inferredTypeEq ctx ty res.type
Nothing => pure ()
inferAsQ : TyContext Three d n -> (sg : SQty Three) ->
Elim Three d n -> Term Three d n -> QOutput Three n -> M ()
inferAsQ : TyContext d n -> (sg : SQty) ->
Elim d n -> Term d n -> QOutput n -> M ()
inferAsQ ctx@(MkTyContext {dctx, _}) sg e ty qout = do
case !(inj $ infer ctx sg e) of
Just res => do
@ -135,30 +133,23 @@ inferAsQ ctx@(MkTyContext {dctx, _}) sg e ty qout = do
qoutEq qout res.qout
Nothing => pure ()
infer_ : TyContext Three d n -> (sg : SQty Three) -> Elim Three d n -> M ()
infer_ : TyContext d n -> (sg : SQty) -> Elim d n -> M ()
infer_ ctx sg e = ignore $ inj $ infer ctx sg e
checkQ : TyContext Three d n -> SQty Three ->
Term Three d n -> Term Three d n -> QOutput Three n -> M ()
checkQ : TyContext d n -> SQty ->
Term d n -> Term d n -> QOutput n -> M ()
checkQ ctx@(MkTyContext {dctx, _}) sg s ty qout = do
case !(inj $ check ctx sg s ty) of
Just res => qoutEq qout res
Nothing => pure ()
check_ : TyContext Three d n -> SQty Three ->
Term Three d n -> Term Three d n -> M ()
check_ : TyContext d n -> SQty -> Term d n -> Term d n -> M ()
check_ ctx sg s ty = ignore $ inj $ check ctx sg s ty
checkType_ : TyContext Three d n -> Term Three d n -> Maybe Universe -> M ()
checkType_ : TyContext d n -> Term d n -> Maybe Universe -> M ()
checkType_ ctx s u = inj $ checkType ctx s u
-- ω is not a subject qty
failing "Can't find an implementation"
sany : SQty Three
sany = Element Any %search
export
tests : Test
tests = "typechecker" :- [
@ -253,9 +244,9 @@ tests = "typechecker" :- [
"bound vars" :- [
testTC "x : A ⊢ 1 · x ⇒ A ⊳ 1·x" $
inferAsQ {n = 1} (ctx [< ("x", FT "A")]) sone
(BV 0) (FT "A") [< one],
(BV 0) (FT "A") [< One],
testTC "x : A ⊢ 1 · [x] ⇐ A ⊳ 1·x" $
checkQ {n = 1} (ctx [< ("x", FT "A")]) sone (BVT 0) (FT "A") [< one],
checkQ {n = 1} (ctx [< ("x", FT "A")]) sone (BVT 0) (FT "A") [< One],
note "f2 : A ⊸ A ⊸ B",
testTC "x : A ⊢ 1 · f2 [x] [x] ⇒ B ⊳ ω·x" $
inferAsQ {n = 1} (ctx [< ("x", FT "A")]) sone
@ -371,24 +362,30 @@ tests = "typechecker" :- [
],
"equality types" :- [
testTC "0 · = : ★₀ ⇐ ★₁" $
testTC "0 · : ★₀ ⇐ Type" $
checkType_ empty (Eq0 (TYPE 0) Nat Nat) Nothing,
testTC "0 · : ★₀ ⇐ ★₁" $
check_ empty szero (Eq0 (TYPE 0) Nat Nat) (TYPE 1),
testTC "0 · = : ★₀ ⇐ ★₂" $
testTCFail "1 · : ★₀ ⇍ ★₁" $
check_ empty sone (Eq0 (TYPE 0) Nat Nat) (TYPE 1),
testTC "0 · : ★₀ ⇐ ★₂" $
check_ empty szero (Eq0 (TYPE 0) Nat Nat) (TYPE 2),
testTC "0 · = : ★₁ ⇐ ★₂" $
testTC "0 · : ★₁ ⇐ ★₂" $
check_ empty szero (Eq0 (TYPE 1) Nat Nat) (TYPE 2),
testTCFail "0 · = : ★₁ ⇍ ★₁" $
testTCFail "0 · : ★₁ ⇍ ★₁" $
check_ empty szero (Eq0 (TYPE 1) Nat Nat) (TYPE 1),
testTC "ab : A ≡ B : ★₀, x : A, y : B ⊢ Eq [i ⇒ ab i] x y ⇐ ★₀" $
testTCFail "0 ≡ 'beep : {beep} ⇍ Type" $
checkType_ empty (Eq0 (enum ["beep"]) Zero (Tag "beep")) Nothing,
testTC "ab : A ≡ B : ★₀, x : A, y : B ⊢ 0 · Eq [i ⇒ ab i] x y ⇐ ★₀" $
check_ (ctx [< ("ab", Eq0 (TYPE 0) (FT "A") (FT "B")),
("x", FT "A"), ("y", FT "B")]) szero
(Eq (SY [< "i"] $ E $ BV 2 :% BV 0) (BVT 1) (BVT 0))
(TYPE 0),
testTCFail "ab : A ≡ B : ★₀, x : A, y : B ⊢ Eq [i ⇒ ab i] y x ⇍ ★₀" $
check_ (ctx [< ("ab", Eq0 (TYPE 0) (FT "A") (FT "B")),
("x", FT "A"), ("y", FT "B")]) szero
testTCFail "ab : A ≡ B : ★₀, x : A, y : B ⊢ Eq [i ⇒ ab i] y x ⇍ Type" $
checkType_ (ctx [< ("ab", Eq0 (TYPE 0) (FT "A") (FT "B")),
("x", FT "A"), ("y", FT "B")])
(Eq (SY [< "i"] $ E $ BV 2 :% BV 0) (BVT 0) (BVT 1))
(TYPE 0)
Nothing
],
"equalities" :- [

View file

@ -10,18 +10,9 @@ import Derive.Prelude
%runElab derive "Reduce.WhnfError" [Show]
export %hint
showTyContext : (IsQty q, PrettyHL q, Show q) => Show (TyContext q d n)
showTyContext = deriveShow
export %hint
showEqContext : (IsQty q, PrettyHL q, Show q) => Show (EqContext q n)
showEqContext = deriveShow
export %hint
showTypingError : (IsQty q, PrettyHL q, Show q) => Show (Error q)
showTypingError = deriveShow
%runElab deriveIndexed "TyContext" [Show]
%runElab deriveIndexed "EqContext" [Show]
%runElab derive "Error" [Show]
export
ToInfo WhnfError where
@ -31,5 +22,4 @@ ToInfo WhnfError where
("list", show ts)]
export
(IsQty q, PrettyHL q) => ToInfo (Error q) where
toInfo err = [("err", show $ prettyError True True err)]
ToInfo Error where toInfo err = [("err", show $ prettyError True True err)]