η for box

fixes #27
This commit is contained in:
rhiannon morris 2023-09-17 19:10:46 +02:00
parent e1257560b7
commit b85dcb5402
4 changed files with 86 additions and 21 deletions

View file

@ -5,3 +5,4 @@ load "maybe.quox"
load "nat.quox"
load "pair.quox"
load "list.quox"
load "eta.quox"

13
examples/eta.quox Normal file
View file

@ -0,0 +1,13 @@
namespace eta {
def0 Π : (A : ★) → (A → ★) → ★ = λ A B ⇒ (x : A) → B x
def0 function : (A : ★) → (B : A → Type) → (P : Π A B → ★) → (f : Π A B) →
P (λ x ⇒ f x) → P f =
λ A B P f p ⇒ p
def0 box : (A : ★) → (P : [ω.A] → ★) → (e : [ω.A]) →
P [case1 e return A of {[x] ⇒ x}] → P e =
λ A P e p ⇒ p
}

View file

@ -140,12 +140,6 @@ compareType : Definitions -> EqContext n -> (s, t : Term 0 n) ->
Eff EqualInner ()
||| converts an elim "Γ ⊢ e" to "Γ, x ⊢ e x", for comparing with
||| a lambda "Γ ⊢ λx ⇒ t" that has been converted to "Γ, x ⊢ t".
private %inline
toLamBody : Elim d n -> Term d (S n)
toLamBody e = E $ App (weakE 1 e) (BVT 0 e.loc) e.loc
namespace Term
private covering
compare0' : (defs : Definitions) -> EqContext n ->
@ -178,9 +172,12 @@ namespace Term
ctx' : EqContext (S n)
ctx' = extendTy qty res.name arg ctx
toLamBody : Elim d n -> Term d (S n)
toLamBody e = E $ App (weakE 1 e) (BVT 0 e.loc) e.loc
eta : Loc -> Elim 0 n -> ScopeTerm 0 n -> Eff EqualInner ()
eta _ e (S _ (Y b)) = compare0 defs ctx' res.term (toLamBody e) b
eta loc e (S _ (N _)) = clashT loc ctx ty s t
eta _ e (S _ (Y b)) = compare0 defs ctx' res.term (toLamBody e) b
compare0' defs ctx ty@(Sig {fst, snd, _}) s t = local_ Equal $
case (s, t) of
@ -251,18 +248,30 @@ namespace Term
(E _, t) => wrongType t.loc ctx nat t
(s, _) => wrongType s.loc ctx nat s
compare0' defs ctx ty@(BOX q ty' {}) s t = local_ Equal $
compare0' defs ctx bty@(BOX q ty {}) s t = local_ Equal $
case (s, t) of
-- Γ ⊢ s = t : A
-- -----------------------
-- Γ ⊢ [s] = [t] : [π.A]
(Box s' {}, Box t' {}) => compare0 defs ctx ty' s' t'
(Box s _, Box t _) => compare0 defs ctx ty s t
-- Γ ⊢ s = (case1 e return A of {[x] ⇒ x}) ⇐ A
-- -----------------------------------------------
-- Γ ⊢ [s] = e ⇐ [ρ.A]
(Box s loc, E f) => eta s f
(E e, Box t loc) => eta t e
(E e, E f) => ignore $ Elim.compare0 defs ctx e f
(Box {}, t) => wrongType t.loc ctx ty t
(E _, t) => wrongType t.loc ctx ty t
(s, _) => wrongType s.loc ctx ty s
(Box {}, _) => wrongType t.loc ctx bty t
(E _, _) => wrongType t.loc ctx bty t
_ => wrongType s.loc ctx bty s
where
eta : Term 0 n -> Elim 0 n -> Eff EqualInner ()
eta s e = do
nm <- mnb "inner" e.loc
let e = CaseBox One e (SN ty) (SY [< nm] (BVT 0 nm.loc)) e.loc
compare0 defs ctx ty s (E e)
compare0' defs ctx ty@(E _) s t = do
-- a neutral type can only be inhabited by neutral values

View file

@ -48,6 +48,7 @@ tests : Test
tests = "equality & subtyping" :- [
note #""s{t,…}" for term substs; "sp,…›" for dim substs"#,
note #""0=1𝒥" means that 𝒥 holds in an inconsistent dim context"#,
note "binds before ∥ are globals, after it are BVs",
"universes" :- [
testEq "★₀ = ★₀" $
@ -165,7 +166,6 @@ tests = "equality & subtyping" :- [
refl a x = ^Ann (^DLam (SN x)) (^Eq0 a x x)
in
[
note "binds before ∥ are globals, after it are BVs",
note #"refl A x is an abbreviation for "(δ i ⇒ x)(x ≡ x : A)""#,
testEq "refl A a = refl A a" $
equalE empty
@ -523,9 +523,51 @@ tests = "equality & subtyping" :- [
todo "enum",
todo "enum elim",
todo "box types",
todo "boxes",
todo "box elim",
"box types" :- [
testEq "[1.A] = [1.A] : ★" $
equalT empty
(^TYPE 0)
(^BOX One (^FT "A" 0))
(^BOX One (^FT "A" 0)),
testNeq "[1.A] ≠ [ω.A] : ★" $
equalT empty
(^TYPE 0)
(^BOX One (^FT "A" 0))
(^BOX Any (^FT "A" 0)),
testNeq "[1.A] ≠ [1.B] : ★" $
equalT empty
(^TYPE 0)
(^BOX One (^FT "A" 0))
(^BOX One (^FT "B" 0)),
testNeq "[1.A] ≠ A : ★" $
equalT empty
(^TYPE 0)
(^BOX One (^FT "A" 0))
(^FT "A" 0),
testEq "0=1 ⊢ [1.A] = [1.B] : ★" $
equalT empty01
(^TYPE 0)
(^BOX One (^FT "A" 0))
(^BOX One (^FT "B" 0))
],
"boxes" :- [
testEq "[a] = [a] : [ω.A]" $
equalT empty
(^BOX Any (^FT "A" 0))
(^Box (^FT "a" 0))
(^Box (^FT "a" 0)),
testNeq "[a] ≠ [a'] : [ω.A]" $
equalT empty
(^BOX Any (^FT "A" 0))
(^Box (^FT "a" 0))
(^Box (^FT "a'" 0)),
testEq "ω.x : [ω.A] ⊢ x = [case1 b return A of {[y] ⇒ y}] : [ω.A]" $
equalT (ctx [< ("x", ^BOX Any (^FT "A" 0))])
(^BOX Any (^FT "A" 0))
(^BVT 0)
(^Box (E $ ^CaseBox One (^BV 0) (SN $ ^FT "A" 0) (SY [< "y"] (^BVT 0))))
],
"elim closure" :- [
note "bold numbers for de bruijn indices",