parent
24ae5b85a2
commit
b67162bda1
3 changed files with 89 additions and 32 deletions
|
@ -134,6 +134,15 @@ public export %inline
|
|||
dweakT : (by : Nat) -> Term d n -> Term (by + d) n
|
||||
dweakT by t = t // shift by
|
||||
|
||||
public export %inline
|
||||
dweakS : (by : Nat) -> ScopeTermN s d n -> ScopeTermN s (by + d) n
|
||||
dweakS by t = t // shift by
|
||||
|
||||
public export %inline
|
||||
dweakDS : {s : Nat} -> (by : Nat) ->
|
||||
DScopeTermN s d n -> DScopeTermN s (by + d) n
|
||||
dweakDS by t = t // shift by
|
||||
|
||||
public export %inline
|
||||
dweakE : (by : Nat) -> Elim d n -> Elim (by + d) n
|
||||
dweakE by t = t // shift by
|
||||
|
@ -143,6 +152,15 @@ public export %inline
|
|||
weakT : (by : Nat) -> Term d n -> Term d (by + n)
|
||||
weakT by t = t // shift by
|
||||
|
||||
public export %inline
|
||||
weakS : {s : Nat} -> (by : Nat) -> ScopeTermN s d n -> ScopeTermN s d (by + n)
|
||||
weakS by t = t // shift by
|
||||
|
||||
public export %inline
|
||||
weakDS : {s : Nat} -> (by : Nat) ->
|
||||
DScopeTermN s d n -> DScopeTermN s d (by + n)
|
||||
weakDS by t = t // shift by
|
||||
|
||||
public export %inline
|
||||
weakE : (by : Nat) -> Elim d n -> Elim d (by + n)
|
||||
weakE by t = t // shift by
|
||||
|
|
|
@ -26,6 +26,14 @@ CanShift (LocalVar d) where
|
|||
l // by = {type $= (// by), term $= map (// by)} l
|
||||
|
||||
namespace LocalVar
|
||||
export %inline
|
||||
letVar : (type, term : Term d n) -> LocalVar d n
|
||||
letVar type term = MkLocal {type, term = Just term}
|
||||
|
||||
export %inline
|
||||
lamVar : (type : Term d n) -> LocalVar d n
|
||||
lamVar type = MkLocal {type, term = Nothing}
|
||||
|
||||
subD : DSubst d1 d2 -> LocalVar d1 n -> LocalVar d2 n
|
||||
subD th = {type $= (// th), term $= map (// th)}
|
||||
|
||||
|
@ -135,7 +143,7 @@ namespace TyContext
|
|||
|
||||
export %inline
|
||||
extendTyN : CtxExtension d n1 n2 -> TyContext d n1 -> TyContext d n2
|
||||
extendTyN = extendTyLetN . map (\(q, x, s) => (q, x, MkLocal s Nothing))
|
||||
extendTyN = extendTyLetN . map (\(q, x, s) => (q, x, lamVar s))
|
||||
|
||||
export %inline
|
||||
extendTyLetN0 : CtxExtensionLet0 d n1 n2 -> TyContext d n1 -> TyContext d n2
|
||||
|
@ -148,7 +156,7 @@ namespace TyContext
|
|||
export %inline
|
||||
extendTyLet : Qty -> BindName -> Term d n -> Term d n ->
|
||||
TyContext d n -> TyContext d (S n)
|
||||
extendTyLet q x s e = extendTyLetN [< (q, x, MkLocal s (Just e))]
|
||||
extendTyLet q x s e = extendTyLetN [< (q, x, letVar s e)]
|
||||
|
||||
export %inline
|
||||
extendTy : Qty -> BindName -> Term d n -> TyContext d n -> TyContext d (S n)
|
||||
|
@ -239,7 +247,7 @@ namespace EqContext
|
|||
|
||||
export %inline
|
||||
extendTyN : CtxExtension 0 n1 n2 -> EqContext n1 -> EqContext n2
|
||||
extendTyN = extendTyLetN . map (\(q, x, s) => (q, x, MkLocal s Nothing))
|
||||
extendTyN = extendTyLetN . map (\(q, x, s) => (q, x, lamVar s))
|
||||
|
||||
export %inline
|
||||
extendTyLetN0 : CtxExtensionLet0 0 n1 n2 -> EqContext n1 -> EqContext n2
|
||||
|
@ -252,7 +260,7 @@ namespace EqContext
|
|||
export %inline
|
||||
extendTyLet : Qty -> BindName -> Term 0 n -> Term 0 n ->
|
||||
EqContext n -> EqContext (S n)
|
||||
extendTyLet q x s e = extendTyLetN [< (q, x, MkLocal s (Just e))]
|
||||
extendTyLet q x s e = extendTyLetN [< (q, x, letVar s e)]
|
||||
|
||||
export %inline
|
||||
extendTy : Qty -> BindName -> Term 0 n -> EqContext n -> EqContext (S n)
|
||||
|
@ -293,6 +301,25 @@ namespace WhnfContext
|
|||
empty : WhnfContext 0 0
|
||||
empty = MkWhnfContext [<] [<] [<]
|
||||
|
||||
export
|
||||
extendTy' : BindName -> LocalVar d n -> WhnfContext d n -> WhnfContext d (S n)
|
||||
extendTy' x var (MkWhnfContext {termLen, dnames, tnames, tctx}) =
|
||||
MkWhnfContext {
|
||||
dnames,
|
||||
termLen = [|S termLen|],
|
||||
tnames = tnames :< x,
|
||||
tctx = tctx :< var
|
||||
}
|
||||
|
||||
export %inline
|
||||
extendTy : BindName -> Term d n -> WhnfContext d n -> WhnfContext d (S n)
|
||||
extendTy x ty ctx = extendTy' x (lamVar ty) ctx
|
||||
|
||||
export %inline
|
||||
extendTyLet : BindName -> (type, term : Term d n) ->
|
||||
WhnfContext d n -> WhnfContext d (S n)
|
||||
extendTyLet x type term ctx = extendTy' x (letVar {type, term}) ctx
|
||||
|
||||
export
|
||||
extendDimN : {s : Nat} -> BContext s -> WhnfContext d n ->
|
||||
WhnfContext (s + d) n
|
||||
|
|
|
@ -119,7 +119,7 @@ parameters {auto _ : CanWhnf Term Interface.isRedexT}
|
|||
eqCoe sty@(S [< j] ty) p q val r loc = do
|
||||
-- (coe [j ⇒ Eq [i ⇒ A] L R] @p @q eq) @r
|
||||
-- ⇝
|
||||
-- comp [j ⇒ A‹r/i›] @p @q (eq ∷ (Eq [i ⇒ A] L R)‹p/j›)
|
||||
-- comp [j ⇒ A‹r/i›] @p @q ((eq ∷ (Eq [i ⇒ A] L R)‹p/j›) @r)
|
||||
-- @r { 0 j ⇒ L; 1 j ⇒ R }
|
||||
let ctx1 = extendDim j ctx
|
||||
Element ty tynf <- whnf defs ctx1 SZero $ getTerm ty
|
||||
|
@ -147,6 +147,10 @@ parameters {auto _ : CanWhnf Term Interface.isRedexT}
|
|||
(ST body.names $ body.term // (a' ::: shift 1)) loc
|
||||
|
||||
|
||||
-- new params block to call the above functions at different `n`
|
||||
parameters {auto _ : CanWhnf Term Interface.isRedexT}
|
||||
{auto _ : CanWhnf Elim Interface.isRedexE}
|
||||
(defs : Definitions) (ctx : WhnfContext d n) (sg : SQty)
|
||||
||| pushes a coercion inside a whnf-ed term
|
||||
export covering
|
||||
pushCoe : BindName ->
|
||||
|
@ -163,17 +167,22 @@ parameters {auto _ : CanWhnf Term Interface.isRedexT}
|
|||
IOState tyLoc =>
|
||||
whnf defs ctx sg $ Ann s (IOState tyLoc) loc
|
||||
|
||||
-- η expand it so that whnf for App can deal with it
|
||||
-- η expand, then simplify the Coe/App in the body
|
||||
--
|
||||
-- (coe (𝑖 ⇒ π.(x : A) → B) @p @q s)
|
||||
-- ⇝
|
||||
-- (λ y ⇒ (coe (𝑖 ⇒ π.(x : A) → B) @p @q s) y) ∷ (π.(x : A) → B)‹q/𝑖›
|
||||
Pi {} =>
|
||||
let inner = Coe (SY [< i] ty) p q s loc in
|
||||
-- ⇝ ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾
|
||||
-- (λ y ⇒ ⋯) ∷ (π.(x : A) → B)‹q/𝑖› -- see `piCoe`
|
||||
--
|
||||
-- do the piCoe step here because otherwise equality checking keeps
|
||||
-- doing the η forever
|
||||
Pi {arg, res = S [< x] _, _} => do
|
||||
let ctx' = extendTy x (arg // one p) ctx
|
||||
body <- piCoe defs ctx' sg
|
||||
(weakDS 1 $ SY [< i] ty) p q (weakT 1 s) (BVT 0 loc) loc
|
||||
whnf defs ctx sg $
|
||||
Ann (LamY !(mnb "y" loc)
|
||||
(E $ App (weakE 1 inner) (BVT 0 loc) loc) loc)
|
||||
(ty // one q) loc
|
||||
Ann (LamY x (E body.fst) loc) (ty // one q) loc
|
||||
|
||||
-- no η!!!
|
||||
-- push into a pair constructor, otherwise still stuck
|
||||
|
@ -199,17 +208,23 @@ parameters {auto _ : CanWhnf Term Interface.isRedexT}
|
|||
Enum cases tyLoc =>
|
||||
whnf defs ctx sg $ Ann s (Enum cases tyLoc) loc
|
||||
|
||||
-- η expand, same as for Π
|
||||
-- η expand/simplify, same as for Π
|
||||
--
|
||||
-- (coe (𝑖 ⇒ Eq (𝑗 ⇒ A) l r) @p @q s)
|
||||
-- ⇝
|
||||
-- (δ 𝑘 ⇒ (coe (𝑖 ⇒ Eq (𝑗 ⇒ A) l r) @p @q s) @𝑘) ∷ (Eq (𝑗 ⇒ A) l r)‹q/𝑖›
|
||||
Eq {} =>
|
||||
let inner = Coe (SY [< i] ty) p q s loc in
|
||||
-- ⇝ ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾
|
||||
-- (δ 𝑘 ⇒ ⋯) ∷ (Eq (𝑗 ⇒ A) l r)‹q/𝑖› -- see `eqCoe`
|
||||
--
|
||||
-- do the eqCoe step here because otherwise equality checking keeps
|
||||
-- doing the η forever
|
||||
Eq {ty = S [< j] _, _} => do
|
||||
let ctx' = extendDim j ctx
|
||||
body <- eqCoe defs ctx' sg
|
||||
(dweakDS 1 $ S [< i] $ Y ty) (weakD 1 p) (weakD 1 q)
|
||||
(dweakT 1 s) (BV 0 loc) loc
|
||||
whnf defs ctx sg $
|
||||
Ann (DLamY !(mnb "k" loc)
|
||||
(E $ DApp (dweakE 1 inner) (BV 0 loc) loc) loc)
|
||||
(ty // one q) loc
|
||||
Ann (DLamY i (E body.fst) loc) (ty // one q) loc
|
||||
|
||||
-- (coe ℕ @_ @_ s) ⇝ (s ∷ ℕ)
|
||||
NAT tyLoc =>
|
||||
|
@ -219,22 +234,19 @@ parameters {auto _ : CanWhnf Term Interface.isRedexT}
|
|||
STRING tyLoc =>
|
||||
whnf defs ctx sg $ Ann s (STRING tyLoc) loc
|
||||
|
||||
-- η expand.... kinda
|
||||
-- η expand/simplify
|
||||
--
|
||||
-- (coe (𝑖 ⇒ [π. A]) @p @q s)
|
||||
-- (coe (𝑖 ⇒ [π.A]) @p @q s)
|
||||
-- ⇝
|
||||
-- [case1 s ∷ [π.A]‹p/𝑖› return A‹q/𝑖›
|
||||
-- of {[x] ⇒ coe (𝑖 ⇒ A) @p @q x}] ∷ [π.A]‹q/𝑖›
|
||||
-- [case coe (𝑖 ⇒ [π.A]) @p @q s return A‹q/𝑖› of {[x] ⇒ x}]
|
||||
-- ⇝
|
||||
-- [case1 s ∷ [π.A]‹p/𝑖› ⋯] ∷ [π.A]‹q/𝑖› -- see `boxCoe`
|
||||
--
|
||||
-- a literal η expansion of `e ⇝ [case e of {[x] ⇒ x}]` causes a loop in
|
||||
-- the equality checker because whnf of `case e ⋯` requires whnf of `e`
|
||||
-- do the eqCoe step here because otherwise equality checking keeps
|
||||
-- doing the η forever
|
||||
BOX qty inner tyLoc => do
|
||||
let inner = CaseBox {
|
||||
qty = One,
|
||||
box = Ann s (ty // one p) s.loc,
|
||||
ret = SN $ inner // one q,
|
||||
body = SY [< !(mnb "x" loc)] $ E $
|
||||
Coe (ST [< i] $ weakT 1 inner) p q (BVT 0 s.loc) s.loc,
|
||||
loc
|
||||
}
|
||||
whnf defs ctx sg $ Ann (Box (E inner) loc) (ty // one q) loc
|
||||
body <- boxCoe defs ctx sg qty
|
||||
(SY [< i] ty) p q s
|
||||
(SN $ inner // one q)
|
||||
(SY [< !(mnb "inner" loc)] (BVT 0 loc)) loc
|
||||
whnf defs ctx sg $ Ann (Box (E body.fst) loc) (ty // one q) loc
|
||||
|
|
Loading…
Reference in a new issue