renaming etc in closure stuff
This commit is contained in:
parent
eae97a7b9d
commit
a5b07672ae
1 changed files with 42 additions and 25 deletions
|
@ -259,13 +259,7 @@ comp' : DSubst dfrom dto -> TSubst dfrom from mid -> TSubst dto mid to ->
|
||||||
comp' th ps ph = map (/// th) ps . ph
|
comp' th ps ph = map (/// th) ps . ph
|
||||||
|
|
||||||
|
|
||||||
||| true if an elimination has a closure or dimension closure at the top level
|
mutual
|
||||||
public export %inline
|
|
||||||
topCloE : Elim d n -> Bool
|
|
||||||
topCloE (CloE _ _) = True
|
|
||||||
topCloE (DCloE _ _) = True
|
|
||||||
topCloE _ = False
|
|
||||||
|
|
||||||
||| true if a term has a closure or dimension closure at the top level,
|
||| true if a term has a closure or dimension closure at the top level,
|
||||||
||| or is `E` applied to such an elimination
|
||| or is `E` applied to such an elimination
|
||||||
public export %inline
|
public export %inline
|
||||||
|
@ -275,13 +269,36 @@ topCloT (DCloT _ _) = True
|
||||||
topCloT (E e) = topCloE e
|
topCloT (E e) = topCloE e
|
||||||
topCloT _ = False
|
topCloT _ = False
|
||||||
|
|
||||||
||| an elimination which is not a top level closure
|
||| true if an elimination has a closure or dimension closure at the top level
|
||||||
public export NotCloElim : Nat -> Nat -> Type
|
public export %inline
|
||||||
NotCloElim d n = Subset (Elim d n) $ So . not . topCloE
|
topCloE : Elim d n -> Bool
|
||||||
|
topCloE (CloE _ _) = True
|
||||||
|
topCloE (DCloE _ _) = True
|
||||||
|
topCloE _ = False
|
||||||
|
|
||||||
|
|
||||||
|
public export IsNotCloT : Term d n -> Type
|
||||||
|
IsNotCloT = So . not . topCloT
|
||||||
|
|
||||||
||| a term which is not a top level closure
|
||| a term which is not a top level closure
|
||||||
public export NotCloTerm : Nat -> Nat -> Type
|
public export NotCloTerm : Nat -> Nat -> Type
|
||||||
NotCloTerm d n = Subset (Term d n) $ So . not . topCloT
|
NotCloTerm d n = Subset (Term d n) IsNotCloT
|
||||||
|
|
||||||
|
public export IsNotCloE : Elim d n -> Type
|
||||||
|
IsNotCloE = So . not . topCloE
|
||||||
|
|
||||||
|
||| an elimination which is not a top level closure
|
||||||
|
public export NotCloElim : Nat -> Nat -> Type
|
||||||
|
NotCloElim d n = Subset (Elim d n) IsNotCloE
|
||||||
|
|
||||||
|
public export %inline
|
||||||
|
ncloT : (t : Term d n) -> (0 _ : IsNotCloT t) => NotCloTerm d n
|
||||||
|
ncloT t = Element t %search
|
||||||
|
|
||||||
|
public export %inline
|
||||||
|
ncloE : (t : Elim d n) -> (0 _ : IsNotCloE t) => NotCloElim d n
|
||||||
|
ncloE e = Element e %search
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
mutual
|
mutual
|
||||||
|
@ -301,13 +318,13 @@ mutual
|
||||||
pushSubstsT' : DSubst dfrom dto -> TSubst dto from to ->
|
pushSubstsT' : DSubst dfrom dto -> TSubst dto from to ->
|
||||||
Term dfrom from -> NotCloTerm dto to
|
Term dfrom from -> NotCloTerm dto to
|
||||||
pushSubstsT' th ph (TYPE l) =
|
pushSubstsT' th ph (TYPE l) =
|
||||||
Element (TYPE l) Oh
|
ncloT $ TYPE l
|
||||||
pushSubstsT' th ph (Pi qty qtm x a b) =
|
pushSubstsT' th ph (Pi qty qtm x a b) =
|
||||||
Element (Pi qty qtm x (subs a th ph) (subs b th (push ph))) Oh
|
ncloT $ Pi qty qtm x (subs a th ph) (subs b th (push ph))
|
||||||
pushSubstsT' th ph (Lam x t) =
|
pushSubstsT' th ph (Lam x t) =
|
||||||
Element (Lam x $ subs t th $ push ph) Oh
|
ncloT $ Lam x $ subs t th $ push ph
|
||||||
pushSubstsT' th ph (E e) =
|
pushSubstsT' th ph (E e) =
|
||||||
let Element e prf = pushSubstsE' th ph e in Element (E e) prf
|
let Element e _ = pushSubstsE' th ph e in ncloT $ E e
|
||||||
pushSubstsT' th ph (CloT s ps) =
|
pushSubstsT' th ph (CloT s ps) =
|
||||||
pushSubstsT' th (comp' th ps ph) s
|
pushSubstsT' th (comp' th ps ph) s
|
||||||
pushSubstsT' th ph (DCloT s ps) =
|
pushSubstsT' th ph (DCloT s ps) =
|
||||||
|
@ -317,13 +334,13 @@ mutual
|
||||||
pushSubstsE' : DSubst dfrom dto -> TSubst dto from to ->
|
pushSubstsE' : DSubst dfrom dto -> TSubst dto from to ->
|
||||||
Elim dfrom from -> NotCloElim dto to
|
Elim dfrom from -> NotCloElim dto to
|
||||||
pushSubstsE' th ph (F x) =
|
pushSubstsE' th ph (F x) =
|
||||||
Element (F x) Oh
|
ncloE $ F x
|
||||||
pushSubstsE' th ph (B i) =
|
pushSubstsE' th ph (B i) =
|
||||||
assert_total pushSubstsE $ ph !! i
|
assert_total pushSubstsE $ ph !! i
|
||||||
pushSubstsE' th ph (f :@ s) =
|
pushSubstsE' th ph (f :@ s) =
|
||||||
Element (subs f th ph :@ subs s th ph) Oh
|
ncloE $ subs f th ph :@ subs s th ph
|
||||||
pushSubstsE' th ph (s :# a) =
|
pushSubstsE' th ph (s :# a) =
|
||||||
Element (subs s th ph :# subs a th ph) Oh
|
ncloE $ subs s th ph :# subs a th ph
|
||||||
pushSubstsE' th ph (CloE e ps) =
|
pushSubstsE' th ph (CloE e ps) =
|
||||||
pushSubstsE' th (comp' th ps ph) e
|
pushSubstsE' th (comp' th ps ph) e
|
||||||
pushSubstsE' th ph (DCloE e ps) =
|
pushSubstsE' th ph (DCloE e ps) =
|
||||||
|
|
Loading…
Reference in a new issue