whnf actually reduces to whnf now (probably)

This commit is contained in:
rhiannon morris 2023-01-23 00:53:34 +01:00
parent f097e1c091
commit 92617a2e4a
11 changed files with 693 additions and 679 deletions

View file

@ -64,4 +64,4 @@ main : IO Unit
main = do
putStrLn $ banner defPrettyOpts
prettyTermDef tm
prettyTermDef $ pushSubstsT tm
prettyTermDef $ pushSubsts tm

View file

@ -1,5 +1,6 @@
module Quox.Definition
import public Quox.No
import public Quox.Syntax
import public Data.SortedMap
import public Control.Monad.Reader
@ -47,6 +48,11 @@ public export %inline
g.qtyP = Element g.qty g.qtyGlobal
public export %inline
toElim : Definition' q _ -> Maybe $ Elim q d n
toElim def = pure $ (!def.term).get :# def.type.get
public export
0 IsZero : IsQty q => Pred $ Definition q
IsZero g = IsZero g.qty
@ -72,3 +78,49 @@ HasDefs' q isGlobal = MonadReader (Definitions' q isGlobal)
public export
0 HasDefs : (q : Type) -> IsQty q => (Type -> Type) -> Type
HasDefs q = HasDefs' q IsGlobal
public export %inline
lookupElim : forall isGlobal.
Name -> Definitions' q isGlobal -> Maybe (Elim q d n)
lookupElim x defs = toElim !(lookup x defs)
parameters {0 isGlobal : _} (defs : Definitions' q isGlobal)
namespace Term
public export %inline
isRedex : Term q d n -> Bool
isRedex = isRedex $ \x => lookupElim x defs
public export
0 IsRedex, NotRedex : Pred $ Term q d n
IsRedex = So . isRedex
NotRedex = No . isRedex
namespace Elim
public export %inline
isRedex : Elim q d n -> Bool
isRedex = isRedex $ \x => lookupElim x defs
public export
0 IsRedex, NotRedex : Pred $ Elim q d n
IsRedex = So . isRedex
NotRedex = No . isRedex
public export
0 NonRedexElim, NonRedexTerm :
(q : Type) -> (d, n : Nat) -> {isGlobal : Pred q} ->
Definitions' q isGlobal -> Type
NonRedexElim q d n defs = Subset (Elim q d n) (NotRedex defs)
NonRedexTerm q d n defs = Subset (Term q d n) (NotRedex defs)
parameters {0 isGlobal : _} (defs : Definitions' q isGlobal)
namespace Term
export %inline
whnf : Term q d n -> NonRedexTerm q d n defs
whnf = whnf $ \x => lookupElim x defs
namespace Elim
export %inline
whnf : Elim q d n -> NonRedexElim q d n defs
whnf = whnf $ \x => lookupElim x defs

View file

@ -14,63 +14,40 @@ ClashE mode = ClashT mode `on` E
public export
record Env' q (isGlobal : q -> Type) where
record Env where
constructor MakeEnv
defs : Definitions' q isGlobal
mode : EqMode
public export
0 Env : (q : Type) -> IsQty q => Type
Env q = Env' q IsGlobal
public export
0 HasEnv' : (q : Type) -> (q -> Type) -> (Type -> Type) -> Type
HasEnv' q isGlobal = MonadReader (Env' q isGlobal)
0 HasEnv : (Type -> Type) -> Type
HasEnv = MonadReader Env
public export
0 HasEnv : (q : Type) -> IsQty q => (Type -> Type) -> Type
HasEnv q = HasEnv' q IsGlobal
public export
0 CanEqual' : (q : Type) -> (q -> Type) -> (Type -> Type) -> Type
CanEqual' q isGlobal m = (HasErr q m, HasEnv' q isGlobal m)
public export
0 CanEqual : (q : Type) -> IsQty q => (Type -> Type) -> Type
CanEqual q = CanEqual' q IsGlobal
0 CanEqual : (q : Type) -> (Type -> Type) -> Type
CanEqual q m = (HasErr q m, HasEnv m)
private %inline
mode : HasEnv' _ _ m => m EqMode
mode : HasEnv m => m EqMode
mode = asks mode
private %inline
clashT : CanEqual' q _ m => Term q d n -> Term q d n -> m a
clashT : CanEqual q m => Term q d n -> Term q d n -> m a
clashT s t = throwError $ ClashT !mode s t
private %inline
clashE : CanEqual' q _ m => Elim q d n -> Elim q d n -> m a
clashE : CanEqual q m => Elim q d n -> Elim q d n -> m a
clashE e f = throwError $ ClashE !mode e f
private %inline
defE : HasEnv' q _ m => Name -> m (Maybe (Elim q d n))
defE x = asks $ \env => do
g <- lookup x env.defs
pure $ (!g.term).get :# g.type.get
private %inline
defT : HasEnv' q _ m => Name -> m (Maybe (Term q d n))
defT x = map E <$> defE x
export %inline
compareU' : HasEnv' q _ m => Universe -> Universe -> m Bool
compareU' : HasEnv m => Universe -> Universe -> m Bool
compareU' i j = pure $
case !mode of Equal => i == j; Sub => i <= j
export %inline
compareU : CanEqual' q _ m => Universe -> Universe -> m ()
compareU : CanEqual q m => Universe -> Universe -> m ()
compareU k l = unless !(compareU' k l) $
throwError $ ClashU !mode k l
@ -79,185 +56,150 @@ compareD : HasErr q m => Dim d -> Dim d -> m ()
compareD p q = unless (p == q) $
throwError $ ClashD p q
parameters {0 isGlobal : _} (defs : Definitions' q isGlobal)
mutual
private covering
compareTN' : CanEqual' q _ m => Eq q =>
namespace Term
export covering
compareN' : CanEqual q m => Eq q =>
(s, t : Term q 0 n) ->
(0 _ : NotRedexT s) -> (0 _ : NotRedexT t) -> m ()
(0 _ : NotRedex defs s) -> (0 _ : NotRedex defs t) ->
m ()
compareTN' (E e) (E f) ps pt = compareE0 e f
-- if either term is a def, try to unfold it
compareTN' s@(E (F x)) t ps pt = do
Just s' <- defT x | Nothing => clashT s t
compareT0 s' t
compareTN' s t@(E (F y)) ps pt = do
Just t' <- defT y | Nothing => clashT s t
compareT0 s t'
compareTN' s@(E _) t _ _ = clashT s t
compareN' (TYPE k) (TYPE l) _ _ = compareU k l
compareN' s@(TYPE _) t _ _ = clashT s t
compareTN' (TYPE k) (TYPE l) _ _ = compareU k l
compareTN' s@(TYPE _) t _ _ = clashT s t
compareTN' (Pi qty1 _ arg1 res1) (Pi qty2 _ arg2 res2) _ _ = do
compareN' (Pi qty1 _ arg1 res1) (Pi qty2 _ arg2 res2) _ _ = do
unless (qty1 == qty2) $ throwError $ ClashQ qty1 qty2
compareT0 arg2 arg1 -- reversed for contravariant domain
compareST0 res1 res2
compareTN' s@(Pi {}) t _ _ = clashT s t
compare0 arg2 arg1 -- reversed for contravariant domain
compare0 res1 res2
compareN' s@(Pi {}) t _ _ = clashT s t
-- [todo] eta
compareTN' (Lam _ body1) (Lam _ body2) _ _ =
local {mode := Equal} $ compareST0 body1 body2
compareTN' s@(Lam {}) t _ _ = clashT s t
compareN' (Lam _ body1) (Lam _ body2) _ _ =
local {mode := Equal} $ compare0 body1 body2
compareN' s@(Lam {}) t _ _ = clashT s t
compareTN' (Eq _ ty1 l1 r1) (Eq _ ty2 l2 r2) _ _ = do
compareDST0 ty1 ty2
compareN' (Eq _ ty1 l1 r1) (Eq _ ty2 l2 r2) _ _ = do
compare0 ty1 ty2
local {mode := Equal} $ do
compareT0 l1 l2
compareT0 r1 r2
compareTN' s@(Eq {}) t _ _ = clashT s t
compare0 l1 l2
compare0 r1 r2
compareN' s@(Eq {}) t _ _ = clashT s t
compareTN' (DLam _ body1) (DLam _ body2) _ _ =
compareDST0 body1 body2
compareTN' s@(DLam {}) t _ _ = clashT s t
compareN' (DLam _ body1) (DLam _ body2) _ _ =
compare0 body1 body2
compareN' s@(DLam {}) t _ _ = clashT s t
compareTN' (CloT {}) _ ps _ = void $ ps IsCloT
compareTN' (DCloT {}) _ ps _ = void $ ps IsDCloT
compareN' (E e) (E f) ne nf = compareN' e f (noOr2 ne) (noOr2 nf)
compareN' s@(E e) t _ _ = clashT s t
private covering
compareEN' : CanEqual' q _ m => Eq q =>
namespace Elim
export covering
compareN' : CanEqual q m => Eq q =>
(e, f : Elim q 0 n) ->
(0 _ : NotRedexE e) -> (0 _ : NotRedexE f) -> m ()
(0 _ : NotRedex defs e) -> (0 _ : NotRedex defs f) ->
m ()
compareEN' e@(F x) f@(F y) _ _ =
if x == y then pure () else
case (!(defE x), !(defE y)) of
(Nothing, Nothing) => clashE e f
(s', t') => compareE0 (fromMaybe e s') (fromMaybe f t')
compareEN' e@(F x) f _ _ = do
Just e' <- defE x | Nothing => clashE e f
compareE0 e' f
compareEN' e f@(F y) _ _ = do
Just f' <- defE y | Nothing => clashE e f
compareE0 e f'
compareN' e@(F x) f@(F y) _ _ =
unless (x == y) $ clashE e f
compareN' e@(F _) f _ _ = clashE e f
compareEN' e@(B i) f@(B j) _ _ =
compareN' e@(B i) f@(B j) _ _ =
unless (i == j) $ clashE e f
compareEN' e@(B _) f _ _ = clashE e f
compareN' e@(B _) f _ _ = clashE e f
-- [todo] tracking variance of functions? maybe???
-- probably not
compareEN' (fun1 :@ arg1) (fun2 :@ arg2) _ _ =
compareN' (fun1 :@ arg1) (fun2 :@ arg2) _ _ =
local {mode := Equal} $ do
compareE0 fun1 fun2
compareT0 arg1 arg2
compareEN' e@(_ :@ _) f _ _ = clashE e f
compare0 fun1 fun2
compare0 arg1 arg2
compareN' e@(_ :@ _) f _ _ = clashE e f
compareEN' (fun1 :% dim1) (fun2 :% dim2) _ _ = do
compareE0 fun1 fun2
-- retain the mode unlike above because dimensions can't do
-- anything that would mess up variance
compareN' (fun1 :% dim1) (fun2 :% dim2) _ _ = do
compare0 fun1 fun2
compareD dim1 dim2
compareEN' e@(_ :% _) f _ _ = clashE e f
compareN' e@(_ :% _) f _ _ = clashE e f
-- [todo] is always checking the types are equal correct?
compareEN' (tm1 :# ty1) (tm2 :# ty2) _ _ = do
compareT0 tm1 tm2
local {mode := Equal} $ compareT0 ty1 ty2
compareEN' e@(_ :# _) f _ _ = clashE e f
compareEN' (CloE {}) _ pe _ = void $ pe IsCloE
compareEN' (DCloE {}) _ pe _ = void $ pe IsDCloE
-- using the same mode for the type allows, e.g.
-- A : ★₁ ≔ ★₀, B : ★₃ ≔ ★₂ ⊢ A <: B
-- which, since A : ★₁ implies A : ★₃, should be fine
compareN' (tm1 :# ty1) (tm2 :# ty2) _ _ = do
compare0 tm1 tm2
compare0 ty1 ty2
compareN' e@(_ :# _) f _ _ = clashE e f
private covering %inline
compareTN : CanEqual' q _ m => Eq q =>
NonRedexTerm q 0 n -> NonRedexTerm q 0 n -> m ()
compareTN s t = compareTN' s.fst t.fst s.snd t.snd
private covering %inline
compareEN : CanEqual' q _ m => Eq q =>
NonRedexElim q 0 n -> NonRedexElim q 0 n -> m ()
compareEN e f = compareEN' e.fst f.fst e.snd f.snd
namespace Term
export covering %inline
compareN : CanEqual q m => Eq q =>
NonRedexTerm q 0 n defs -> NonRedexTerm q 0 n defs -> m ()
compareN s t = compareN' s.fst t.fst s.snd t.snd
export covering %inline
compareT : CanEqual' q _ m => Eq q =>
compare : CanEqual q m => Eq q =>
DimEq d -> Term q d n -> Term q d n -> m ()
compareT eqs s t =
for_ (splits eqs) $ \th => compareT0 (s /// th) (t /// th)
compare eqs s t =
for_ (splits eqs) $ \th => compare0 (s /// th) (t /// th)
export covering %inline
compareE : CanEqual' q _ m => Eq q =>
compare0 : CanEqual q m => Eq q => Term q 0 n -> Term q 0 n -> m ()
compare0 s t = compareN (whnf defs s) (whnf defs t)
namespace Elim
covering %inline
compareN : CanEqual q m => Eq q =>
NonRedexElim q 0 n defs -> NonRedexElim q 0 n defs -> m ()
compareN e f = compareN' e.fst f.fst e.snd f.snd
export covering %inline
compare : CanEqual q m => Eq q =>
DimEq d -> Elim q d n -> Elim q d n -> m ()
compareE eqs e f =
for_ (splits eqs) $ \th => compareE0 (e /// th) (f /// th)
compare eqs e f =
for_ (splits eqs) $ \th => compare0 (e /// th) (f /// th)
export covering %inline
compareT0 : CanEqual' q _ m => Eq q => Term q 0 n -> Term q 0 n -> m ()
compareT0 s t = compareTN (whnfT s) (whnfT t)
compare0 : CanEqual q m => Eq q => Elim q 0 n -> Elim q 0 n -> m ()
compare0 e f = compareN (whnf defs e) (whnf defs f)
namespace ScopeTerm
export covering %inline
compareE0 : CanEqual' q _ m => Eq q => Elim q 0 n -> Elim q 0 n -> m ()
compareE0 e f = compareEN (whnfE e) (whnfE f)
export covering %inline
compareST0 : CanEqual' q _ m => Eq q =>
compare0 : CanEqual q m => Eq q =>
ScopeTerm q 0 n -> ScopeTerm q 0 n -> m ()
compareST0 (TUnused body0) (TUnused body1) = compareT0 body0 body1
compareST0 body0 body1 = compareT0 body0.term body1.term
compare0 (TUnused body0) (TUnused body1) = compare0 body0 body1
compare0 body0 body1 = compare0 body0.term body1.term
namespace DScopeTerm
export covering %inline
compareDST0 : CanEqual' q _ m => Eq q =>
compare0 : CanEqual q m => Eq q =>
DScopeTerm q 0 n -> DScopeTerm q 0 n -> m ()
compareDST0 (DUnused body0) (DUnused body1) = compareT0 body0 body1
compareDST0 body0 body1 = do
compareT0 body0.zero body1.zero
compareT0 body0.one body1.one
compare0 (DUnused body0) (DUnused body1) = compare0 body0 body1
compare0 body0 body1 = do
compare0 body0.zero body1.zero
compare0 body0.one body1.one
private %inline
into : HasErr q m => HasDefs' q isg m => Eq q =>
(forall n. HasErr q n => HasEnv' q isg n => d -> a -> a -> n ()) ->
EqMode -> d -> a -> a -> m ()
into f mode eqs a b =
runReaderT {m} (MakeEnv {mode, defs = !ask}) $ f eqs a b
namespace Term
export covering %inline
equalTWith : HasErr q m => HasDefs' q _ m => Eq q =>
equal : HasErr q m => Eq q =>
DimEq d -> Term q d n -> Term q d n -> m ()
equalTWith = into compareT Equal
equal eqs s t {m} = runReaderT {m} (MakeEnv Equal) $ compare eqs s t
export covering %inline
equalEWith : HasErr q m => HasDefs' q _ m => Eq q =>
DimEq d -> Elim q d n -> Elim q d n -> m ()
equalEWith = into compareE Equal
export covering %inline
subTWith : HasErr q m => HasDefs' q _ m => Eq q =>
sub : HasErr q m => HasDefs' q _ m => Eq q =>
DimEq d -> Term q d n -> Term q d n -> m ()
subTWith = into compareT Sub
sub eqs s t {m} = runReaderT {m} (MakeEnv Sub) $ compare eqs s t
namespace Elim
export covering %inline
subEWith : HasErr q m => HasDefs' q _ m => Eq q =>
equal : HasErr q m => Eq q =>
DimEq d -> Elim q d n -> Elim q d n -> m ()
subEWith = into compareE Sub
equal eqs e f {m} = runReaderT {m} (MakeEnv Equal) $ compare eqs e f
export covering %inline
equalT : HasErr q m => HasDefs' q _ m => Eq q =>
{d : Nat} -> Term q d n -> Term q d n -> m ()
equalT = equalTWith DimEq.new
export covering %inline
equalE : HasErr q m => HasDefs' q _ m => Eq q =>
{d : Nat} -> Elim q d n -> Elim q d n -> m ()
equalE = equalEWith DimEq.new
export covering %inline
subT : HasErr q m => HasDefs' q _ m => Eq q =>
{d : Nat} -> Term q d n -> Term q d n -> m ()
subT = subTWith DimEq.new
export covering %inline
subE : HasErr q m => HasDefs' q _ m => Eq q =>
{d : Nat} -> Elim q d n -> Elim q d n -> m ()
subE = subEWith DimEq.new
sub : HasErr q m => HasDefs' q _ m => Eq q =>
DimEq d -> Elim q d n -> Elim q d n -> m ()
sub eqs e f {m} = runReaderT {m} (MakeEnv Sub) $ compare eqs e f

54
lib/Quox/No.idr Normal file
View file

@ -0,0 +1,54 @@
||| like Data.So, but for False instead.
||| less messing about with `not` (and constantly rewriting everything)
||| or `Not` (unfriendly to proof search).
module Quox.No
import public Data.So
import public Quox.Decidable
import Data.Bool
public export
data No : Pred Bool where
Ah : No False
export Uninhabited (No True) where uninhabited _ impossible
export %inline
soNo : So b -> No b -> Void
soNo Oh Ah impossible
private
0 orFalse : (a, b : Bool) -> (a || b) = False -> (a = False, b = False)
orFalse a b eq1 with (a || b) proof eq2
orFalse False False Refl | False = (Refl, Refl)
orFalse False True Refl | False = absurd eq2
orFalse True False Refl | False = absurd eq2
orFalse True True Refl | False = absurd eq2
parameters {0 a, b : Bool}
export %inline
noOr : No (a || b) -> (No a, No b)
noOr n with 0 (a || b) proof eq
noOr Ah | False =
let 0 eqs = orFalse a b eq in
(rewrite fst eqs in Ah, rewrite snd eqs in Ah)
export %inline
noOr1 : No (a || b) -> No a
noOr1 = fst . noOr
export %inline
noOr2 : No (a || b) -> No b
noOr2 = snd . noOr
infixr 1 `orNo`
export %inline
orNo : No a -> No b -> No (a || b)
orNo Ah Ah = Ah
export %inline
nchoose : (b : Bool) -> Either (So b) (No b)
nchoose True = Left Oh
nchoose False = Right Ah

View file

@ -19,6 +19,11 @@ data DimConst = Zero | One
%runElab derive "DimConst" [Generic, Meta, Eq, Ord, DecEq, Show]
public export
pick : a -> a -> DimConst -> a
pick x y Zero = x
pick x y One = y
public export
data Dim : Nat -> Type where

View file

@ -22,18 +22,27 @@ import Data.Vect
%default total
public export
0 TermLike : Type
TermLike = Type -> Nat -> Nat -> Type
public export
0 TSubstLike : Type
TSubstLike = Type -> Nat -> Nat -> Nat -> Type
infixl 8 :#
infixl 9 :@, :%
mutual
public export
0 TSubst : Type -> Nat -> Nat -> Nat -> Type
0 TSubst : TSubstLike
TSubst q d = Subst $ Elim q d
||| first argument `q` is quantity type;
||| second argument `d` is dimension scope size;
||| third `n` is term scope size
public export
data Term : (q : Type) -> (d, n : Nat) -> Type where
data Term : TermLike where
||| type of types
TYPE : (l : Universe) -> Term q d n
@ -61,7 +70,7 @@ mutual
||| first argument `d` is dimension scope size, second `n` is term scope size
public export
data Elim : (q : Type) -> (d, n : Nat) -> Type where
data Elim : TermLike where
||| free variable
F : (x : Name) -> Elim q d n
||| bound variable
@ -85,7 +94,7 @@ mutual
||| a scope with one more bound variable
public export
data ScopeTerm : (q : Type) -> (d, n : Nat) -> Type where
data ScopeTerm : TermLike where
||| variable is used
TUsed : (body : Term q d (S n)) -> ScopeTerm q d n
||| variable is unused
@ -93,7 +102,7 @@ mutual
||| a scope with one more bound dimension variable
public export
data DScopeTerm : (q : Type) -> (d, n : Nat) -> Type where
data DScopeTerm : TermLike where
||| variable is used
DUsed : (body : Term q (S d) n) -> DScopeTerm q d n
||| variable is unused

View file

@ -1,136 +1,121 @@
module Quox.Syntax.Term.Reduce
import Quox.No
import Quox.Syntax.Term.Base
import Quox.Syntax.Term.Subst
import Data.Maybe
%default total
mutual
public export
data NotCloT : Term {} -> Type where
NCTYPE : NotCloT $ TYPE _
NCPi : NotCloT $ Pi {}
NCLam : NotCloT $ Lam {}
NCEq : NotCloT $ Eq {}
NCDLam : NotCloT $ DLam {}
NCE : NotCloE e -> NotCloT $ E e
namespace Elim
public export %inline
isClo : Elim {} -> Bool
isClo (CloE {}) = True
isClo (DCloE {}) = True
isClo _ = False
public export
data NotCloE : Elim {} -> Type where
NCF : NotCloE $ F _
NCB : NotCloE $ B _
NCApp : NotCloE $ _ :@ _
NCDApp : NotCloE $ _ :% _
NCAnn : NotCloE $ _ :# _
0 NotClo : Pred $ Elim {}
NotClo = No . isClo
mutual
export
notCloT : (t : Term {}) -> Dec (NotCloT t)
notCloT (TYPE _) = Yes NCTYPE
notCloT (Pi {}) = Yes NCPi
notCloT (Lam {}) = Yes NCLam
notCloT (Eq {}) = Yes NCEq
notCloT (DLam {}) = Yes NCDLam
notCloT (E e) = case notCloE e of
Yes nc => Yes $ NCE nc
No c => No $ \case NCE nc => c nc
notCloT (CloT {}) = No $ \case _ impossible
notCloT (DCloT {}) = No $ \case _ impossible
namespace Term
public export %inline
isClo : Term {} -> Bool
isClo (CloT {}) = True
isClo (DCloT {}) = True
isClo (E e) = isClo e
isClo _ = False
export
notCloE : (e : Elim {}) -> Dec (NotCloE e)
notCloE (F _) = Yes NCF
notCloE (B _) = Yes NCB
notCloE (_ :@ _) = Yes NCApp
notCloE (_ :% _) = Yes NCDApp
notCloE (_ :# _) = Yes NCAnn
notCloE (CloE {}) = No $ \case _ impossible
notCloE (DCloE {}) = No $ \case _ impossible
||| a term which is not a top level closure
public export
NonCloTerm : Type -> Nat -> Nat -> Type
NonCloTerm q d n = Subset (Term q d n) NotCloT
0 NotClo : Pred $ Term {}
NotClo = No . isClo
||| an elimination which is not a top level closure
public export
NonCloElim : Type -> Nat -> Nat -> Type
NonCloElim q d n = Subset (Elim q d n) NotCloE
0 NonCloElim : TermLike
NonCloElim q d n = Subset (Elim q d n) NotClo
public export
0 NonCloTerm : TermLike
NonCloTerm q d n = Subset (Term q d n) NotClo
public export %inline
ncloT : (t : Term q d n) -> (0 _ : NotCloT t) => NonCloTerm q d n
ncloT t @{p} = Element t p
ncloT : (t : Term q d n) -> (0 nc : NotClo t) => NonCloTerm q d n
ncloT t = Element t nc
public export %inline
ncloE : (e : Elim q d n) -> (0 _ : NotCloE e) => NonCloElim q d n
ncloE e @{p} = Element e p
ncloE : (e : Elim q d n) -> (0 nc : NotClo e) => NonCloElim q d n
ncloE e = Element e nc
mutual
namespace Term
||| if the input term has any top-level closures, push them under one layer of
||| syntax
export %inline
pushSubstsT : Term q d n -> NonCloTerm q d n
pushSubstsT s = pushSubstsTWith id id s
pushSubsts : Term q d n -> NonCloTerm q d n
pushSubsts s = pushSubstsWith id id s
export
pushSubstsWith : DSubst dfrom dto -> TSubst q dto from to ->
Term q dfrom from -> NonCloTerm q dto to
pushSubstsWith th ph (TYPE l) =
ncloT $ TYPE l
pushSubstsWith th ph (Pi qty x a body) =
ncloT $ Pi qty x (subs a th ph) (subs body th ph)
pushSubstsWith th ph (Lam x body) =
ncloT $ Lam x $ subs body th ph
pushSubstsWith th ph (Eq i ty l r) =
ncloT $ Eq i (subs ty th ph) (subs l th ph) (subs r th ph)
pushSubstsWith th ph (DLam i body) =
ncloT $ DLam i $ subs body th ph
pushSubstsWith th ph (E e) =
let Element e nc = pushSubstsWith th ph e in ncloT $ E e
pushSubstsWith th ph (CloT s ps) =
pushSubstsWith th (comp th ps ph) s
pushSubstsWith th ph (DCloT s ps) =
pushSubstsWith (ps . th) ph s
namespace Elim
||| if the input elimination has any top-level closures, push them under one
||| layer of syntax
export %inline
pushSubstsE : Elim q d n -> NonCloElim q d n
pushSubstsE e = pushSubstsEWith id id e
pushSubsts : Elim q d n -> NonCloElim q d n
pushSubsts e = pushSubstsWith id id e
export
pushSubstsTWith : DSubst dfrom dto -> TSubst q dto from to ->
Term q dfrom from -> NonCloTerm q dto to
pushSubstsTWith th ph (TYPE l) =
ncloT $ TYPE l
pushSubstsTWith th ph (Pi qty x a body) =
ncloT $ Pi qty x (subs a th ph) (subs body th ph)
pushSubstsTWith th ph (Lam x body) =
ncloT $ Lam x $ subs body th ph
pushSubstsTWith th ph (Eq i ty l r) =
ncloT $ Eq i (subs ty th ph) (subs l th ph) (subs r th ph)
pushSubstsTWith th ph (DLam i body) =
ncloT $ DLam i $ subs body th ph
pushSubstsTWith th ph (E e) =
let Element e nc = pushSubstsEWith th ph e in ncloT $ E e
pushSubstsTWith th ph (CloT s ps) =
pushSubstsTWith th (comp th ps ph) s
pushSubstsTWith th ph (DCloT s ps) =
pushSubstsTWith (ps . th) ph s
export
pushSubstsEWith : DSubst dfrom dto -> TSubst q dto from to ->
pushSubstsWith : DSubst dfrom dto -> TSubst q dto from to ->
Elim q dfrom from -> NonCloElim q dto to
pushSubstsEWith th ph (F x) =
pushSubstsWith th ph (F x) =
ncloE $ F x
pushSubstsEWith th ph (B i) =
pushSubstsWith th ph (B i) =
let res = ph !! i in
case notCloE res of
Yes _ => ncloE res
No _ => assert_total pushSubstsE res
pushSubstsEWith th ph (f :@ s) =
case nchoose $ isClo res of
Left yes => assert_total pushSubsts res
Right no => Element res no
pushSubstsWith th ph (f :@ s) =
ncloE $ subs f th ph :@ subs s th ph
pushSubstsEWith th ph (f :% d) =
pushSubstsWith th ph (f :% d) =
ncloE $ subs f th ph :% (d // th)
pushSubstsEWith th ph (s :# a) =
pushSubstsWith th ph (s :# a) =
ncloE $ subs s th ph :# subs a th ph
pushSubstsEWith th ph (CloE e ps) =
pushSubstsEWith th (comp th ps ph) e
pushSubstsEWith th ph (DCloE e ps) =
pushSubstsEWith (ps . th) ph e
pushSubstsWith th ph (CloE e ps) =
pushSubstsWith th (comp th ps ph) e
pushSubstsWith th ph (DCloE e ps) =
pushSubstsWith (ps . th) ph e
parameters (th : DSubst dfrom dto) (ph : TSubst q dto from to)
namespace Term
public export %inline
pushSubstsTWith' : Term q dfrom from -> Term q dto to
pushSubstsTWith' s = (pushSubstsTWith th ph s).fst
pushSubstsWith' : Term q dfrom from -> Term q dto to
pushSubstsWith' s = (pushSubstsWith th ph s).fst
namespace Elim
public export %inline
pushSubstsEWith' : Elim q dfrom from -> Elim q dto to
pushSubstsEWith' e = (pushSubstsEWith th ph e).fst
pushSubstsWith' : Elim q dfrom from -> Elim q dto to
pushSubstsWith' e = (pushSubstsWith th ph e).fst
public export %inline
@ -142,197 +127,126 @@ weakE : Elim q d n -> Elim q d (S n)
weakE t = t //. shift 1
public export 0
Lookup : TermLike
Lookup q d n = Name -> Maybe $ Elim q d n
public export %inline
isLamHead : Elim {} -> Bool
isLamHead (Lam {} :# Pi {}) = True
isLamHead _ = False
public export %inline
isDLamHead : Elim {} -> Bool
isDLamHead (DLam {} :# Eq {}) = True
isDLamHead _ = False
public export %inline
isE : Term {} -> Bool
isE (E _) = True
isE _ = False
public export %inline
isAnn : Elim {} -> Bool
isAnn (_ :# _) = True
isAnn _ = False
parameters (g : Lookup q d n)
mutual
namespace Elim
public export
data IsRedexT : Term q d n -> Type where
IsUpsilonT : IsRedexT $ E (_ :# _)
IsCloT : IsRedexT $ CloT {}
IsDCloT : IsRedexT $ DCloT {}
IsERedex : IsRedexE e -> IsRedexT $ E e
isRedex : Elim q d n -> Bool
isRedex (F x) = isJust $ g x
isRedex (B _) = False
isRedex (f :@ _) = isRedex f || isLamHead f
isRedex (f :% _) = isRedex f || isDLamHead f
isRedex (t :# a) = isE t || isRedex t || isRedex a
isRedex (CloE {}) = True
isRedex (DCloE {}) = True
namespace Term
public export
isRedex : Term q d n -> Bool
isRedex (CloT {}) = True
isRedex (DCloT {}) = True
isRedex (E e) = isAnn e || isRedex e
isRedex _ = False
namespace Elim
public export
0 IsRedex, NotRedex : Pred $ Elim q d n
IsRedex = So . isRedex
NotRedex = No . isRedex
namespace Term
public export
0 IsRedex, NotRedex : Pred $ Term q d n
IsRedex = So . isRedex
NotRedex = No . isRedex
public export
data IsRedexE : Elim q d n -> Type where
IsUpsilonE : IsRedexE $ E _ :# _
IsBetaLam : IsRedexE $ (Lam {} :# Pi {}) :@ _
IsBetaDLam : IsRedexE $ (DLam {} :# Eq {}) :% _
IsCloE : IsRedexE $ CloE {}
IsDCloE : IsRedexE $ DCloE {}
public export %inline
NotRedexT : Term q d n -> Type
NotRedexT = Not . IsRedexT
public export %inline
NotRedexE : Elim q d n -> Type
NotRedexE = Not . IsRedexE
0 NonRedexElim, NonRedexTerm : (q, d, n : _) -> Lookup q d n -> Type
NonRedexElim q d n g = Subset (Elim q d n) (NotRedex g)
NonRedexTerm q d n g = Subset (Term q d n) (NotRedex g)
parameters (g : Lookup q d n)
mutual
-- [todo] PLEASE replace these with macros omfg
export
isRedexT : (t : Term {}) -> Dec (IsRedexT t)
isRedexT (E (tm :# ty)) = Yes IsUpsilonT
isRedexT (CloT {}) = Yes IsCloT
isRedexT (DCloT {}) = Yes IsDCloT
isRedexT (E (CloE {})) = Yes $ IsERedex IsCloE
isRedexT (E (DCloE {})) = Yes $ IsERedex IsDCloE
isRedexT (E e@(_ :@ _)) with (isRedexE e)
_ | Yes yes = Yes $ IsERedex yes
_ | No no = No $ \case IsERedex p => no p
isRedexT (E e@(_ :% _)) with (isRedexE e)
_ | Yes yes = Yes $ IsERedex yes
_ | No no = No $ \case IsERedex p => no p
isRedexT (TYPE {}) = No $ \case _ impossible
isRedexT (Pi {}) = No $ \case _ impossible
isRedexT (Lam {}) = No $ \case _ impossible
isRedexT (Eq {}) = No $ \case _ impossible
isRedexT (DLam {}) = No $ \case _ impossible
isRedexT (E (F _)) = No $ \case IsERedex _ impossible
isRedexT (E (B _)) = No $ \case IsERedex _ impossible
export
isRedexE : (e : Elim {}) -> Dec (IsRedexE e)
isRedexE (E _ :# _) = Yes IsUpsilonE
isRedexE ((Lam {} :# Pi {}) :@ _) = Yes IsBetaLam
isRedexE ((DLam {} :# Eq {}) :% _) = Yes IsBetaDLam
isRedexE (CloE {}) = Yes IsCloE
isRedexE (DCloE {}) = Yes IsDCloE
isRedexE (F x) = No $ \case _ impossible
isRedexE (B i) = No $ \case _ impossible
isRedexE (F _ :@ _) = No $ \case _ impossible
isRedexE (B _ :@ _) = No $ \case _ impossible
isRedexE (_ :@ _ :@ _) = No $ \case _ impossible
isRedexE (_ :% _ :@ _) = No $ \case _ impossible
isRedexE (CloE {} :@ _) = No $ \case _ impossible
isRedexE (DCloE {} :@ _) = No $ \case _ impossible
isRedexE ((TYPE _ :# _) :@ _) = No $ \case _ impossible
isRedexE ((Pi {} :# _) :@ _) = No $ \case _ impossible
isRedexE ((Eq {} :# _) :@ _) = No $ \case _ impossible
isRedexE ((DLam {} :# _) :@ _) = No $ \case _ impossible
isRedexE ((Lam {} :# TYPE _) :@ _) = No $ \case _ impossible
isRedexE ((Lam {} :# Lam {}) :@ _) = No $ \case _ impossible
isRedexE ((Lam {} :# Eq {}) :@ _) = No $ \case _ impossible
isRedexE ((Lam {} :# DLam {}) :@ _) = No $ \case _ impossible
isRedexE ((Lam {} :# E _) :@ _) = No $ \case _ impossible
isRedexE ((Lam {} :# CloT {}) :@ _) = No $ \case _ impossible
isRedexE ((Lam {} :# DCloT {}) :@ _) = No $ \case _ impossible
isRedexE ((E _ :# _) :@ _) = No $ \case _ impossible
isRedexE ((CloT {} :# _) :@ _) = No $ \case _ impossible
isRedexE ((DCloT {} :# _) :@ _) = No $ \case _ impossible
isRedexE ((TYPE _ :# _) :% _) = No $ \case _ impossible
isRedexE ((Pi {} :# _) :% _) = No $ \case _ impossible
isRedexE ((Eq {} :# _) :% _) = No $ \case _ impossible
isRedexE ((Lam {} :# _) :% _) = No $ \case _ impossible
isRedexE ((DLam {} :# TYPE _) :% _) = No $ \case _ impossible
isRedexE ((DLam {} :# Pi {}) :% _) = No $ \case _ impossible
isRedexE ((DLam {} :# Lam {}) :% _) = No $ \case _ impossible
isRedexE ((DLam {} :# DLam {}) :% _) = No $ \case _ impossible
isRedexE ((DLam {} :# E _) :% _) = No $ \case _ impossible
isRedexE ((DLam {} :# CloT {}) :% _) = No $ \case _ impossible
isRedexE ((DLam {} :# DCloT {}) :% _) = No $ \case _ impossible
isRedexE ((E _ :# _) :% _) = No $ \case _ impossible
isRedexE ((CloT {} :# _) :% _) = No $ \case _ impossible
isRedexE ((DCloT {} :# _) :% _) = No $ \case _ impossible
isRedexE (F _ :% _) = No $ \case _ impossible
isRedexE (B _ :% _) = No $ \case _ impossible
isRedexE (_ :@ _ :% _) = No $ \case _ impossible
isRedexE (_ :% _ :% _) = No $ \case _ impossible
isRedexE (CloE {} :% _) = No $ \case _ impossible
isRedexE (DCloE {} :% _) = No $ \case _ impossible
isRedexE (TYPE _ :# _) = No $ \case _ impossible
isRedexE (Pi {} :# _) = No $ \case _ impossible
isRedexE (Lam {} :# _) = No $ \case _ impossible
isRedexE (Eq {} :# _) = No $ \case _ impossible
isRedexE (DLam {} :# _) = No $ \case _ impossible
isRedexE (CloT {} :# _) = No $ \case _ impossible
isRedexE (DCloT {} :# _) = No $ \case _ impossible
public export %inline
RedexTerm : Type -> Nat -> Nat -> Type
RedexTerm q d n = Subset (Term q d n) IsRedexT
public export %inline
NonRedexTerm : Type -> Nat -> Nat -> Type
NonRedexTerm q d n = Subset (Term q d n) NotRedexT
public export %inline
RedexElim : Type -> Nat -> Nat -> Type
RedexElim q d n = Subset (Elim q d n) IsRedexE
public export %inline
NonRedexElim : Type -> Nat -> Nat -> Type
NonRedexElim q d n = Subset (Elim q d n) NotRedexE
||| substitute a term with annotation for the bound variable of a `ScopeTerm`
export %inline
substScope : (arg, argTy : Term q d n) -> (body : ScopeTerm q d n) -> Term q d n
substScope arg argTy body = sub1 body (arg :# argTy)
mutual
export %inline
stepT' : (s : Term q d n) -> IsRedexT s -> Term q d n
stepT' (E (s :# _)) IsUpsilonT = s
stepT' (CloT s th) IsCloT = pushSubstsTWith' id th s
stepT' (DCloT s th) IsDCloT = pushSubstsTWith' th id s
stepT' (E e) (IsERedex p) = E $ stepE' e p
export %inline
stepE' : (e : Elim q d n) -> IsRedexE e -> Elim q d n
stepE' (E e :# _) IsUpsilonE = e
stepE' ((Lam {body, _} :# Pi {arg, res, _}) :@ s) IsBetaLam =
let s = s :# arg in sub1 body s :# sub1 res s
stepE' ((DLam {body, _} :# Eq {ty, l, r, _}) :% dim) IsBetaDLam =
case dim of
K Zero => l :# ty.zero
K One => r :# ty.one
B _ => dsub1 body dim :# dsub1 ty dim
stepE' (CloE e th) IsCloE = pushSubstsEWith' id th e
stepE' (DCloE e th) IsDCloE = pushSubstsEWith' th id e
export %inline
stepT : (s : Term q d n) -> Either (NotRedexT s) (Term q d n)
stepT s = case isRedexT s of Yes y => Right $ stepT' s y; No n => Left n
export %inline
stepE : (e : Elim q d n) -> Either (NotRedexE e) (Elim q d n)
stepE e = case isRedexE e of Yes y => Right $ stepE' e y; No n => Left n
namespace Elim
export covering
whnfT : Term q d n -> NonRedexTerm q d n
whnfT s = case stepT s of Right s' => whnfT s'; Left done => Element s done
whnf : Elim q d n -> NonRedexElim q d n g
whnf (F x) with (g x) proof eq
_ | Just y = whnf y
_ | Nothing = Element (F x) $ rewrite eq in Ah
whnf (B i) = Element (B i) Ah
whnf (f :@ s) =
let Element f fnf = whnf f in
case nchoose $ isLamHead f of
Left _ =>
let Lam {body, _} :# Pi {arg, res, _} = f
s = s :# arg
in
whnf $ sub1 body s :# sub1 res s
Right nlh => Element (f :@ s) $ fnf `orNo` nlh
whnf (f :% p) =
let Element f fnf = whnf f in
case nchoose $ isDLamHead f of
Left _ =>
let DLam {body, _} :# Eq {ty, l, r, _} = f
body = case p of K e => pick l r e; _ => dsub1 body p
in
whnf $ body :# dsub1 ty p
Right ndlh =>
Element (f :% p) $ fnf `orNo` ndlh
whnf (s :# a) =
let Element s snf = whnf s
Element a anf = whnf a
in
case nchoose $ isE s of
Left _ => let E e = s in Element e $ noOr2 snf
Right ne => Element (s :# a) $ ne `orNo` snf `orNo` anf
whnf (CloE el th) = whnf $ pushSubstsWith' id th el
whnf (DCloE el th) = whnf $ pushSubstsWith' th id el
namespace Term
export covering
whnfE : Elim q d n -> NonRedexElim q d n
whnfE e = case stepE e of Right e' => whnfE e'; Left done => Element e done
whnf : Term q d n -> NonRedexTerm q d n g
whnf (TYPE l) = Element (TYPE l) Ah
whnf (Pi qty x arg res) = Element (Pi qty x arg res) Ah
whnf (Lam x body) = Element (Lam x body) Ah
whnf (Eq i ty l r) = Element (Eq i ty l r) Ah
whnf (DLam i body) = Element (DLam i body) Ah
whnf (E e) =
let Element e enf = whnf e in
case nchoose $ isAnn e of
Left _ => let tm :# _ = e in Element tm $ noOr1 $ noOr2 enf
Right na => Element (E e) $ na `orNo` enf
export
notRedexNotCloE : (e : Elim {}) -> NotRedexE e -> NotCloE e
notRedexNotCloE (F x) f = NCF
notRedexNotCloE (B i) f = NCB
notRedexNotCloE (fun :@ arg) f = NCApp
notRedexNotCloE (fun :% arg) f = NCDApp
notRedexNotCloE (tm :# ty) f = NCAnn
notRedexNotCloE (CloE el th) f = absurd $ f IsCloE
notRedexNotCloE (DCloE el th) f = absurd $ f IsDCloE
export
notRedexNotCloT : (t : Term {}) -> NotRedexT t -> NotCloT t
notRedexNotCloT (TYPE _) _ = NCTYPE
notRedexNotCloT (Pi {}) _ = NCPi
notRedexNotCloT (Lam {}) _ = NCLam
notRedexNotCloT (Eq {}) _ = NCEq
notRedexNotCloT (DLam {}) _ = NCDLam
notRedexNotCloT (E e) f = NCE $ notRedexNotCloE e $ f . IsERedex
notRedexNotCloT (CloT {}) f = absurd $ f IsCloT
notRedexNotCloT (DCloT {}) f = absurd $ f IsDCloT
export
toNotCloE : NonRedexElim q d n -> NonCloElim q d n
toNotCloE (Element e prf) = Element e $ notRedexNotCloE e prf
export
toNotCloT : NonRedexTerm q d n -> NonCloTerm q d n
toNotCloT (Element t prf) = Element t $ notRedexNotCloT t prf
whnf (CloT tm th) = whnf $ pushSubstsWith' id th tm
whnf (DCloT tm th) = whnf $ pushSubstsWith' th id tm

View file

@ -19,25 +19,25 @@ CanTC q = CanTC' q IsGlobal
private covering %inline
expectTYPE : HasErr q m => Term q d n -> m Universe
expectTYPE : CanTC' q _ m => Term q d n -> m Universe
expectTYPE s =
case (whnfT s).fst of
TYPE l => pure l
case whnf !ask s of
Element (TYPE l) _ => pure l
_ => throwError $ ExpectedTYPE s
private covering %inline
expectPi : HasErr q m => Term q d n ->
expectPi : CanTC' q _ m => Term q d n ->
m (q, Term q d n, ScopeTerm q d n)
expectPi ty =
case whnfT ty of
case whnf !ask ty of
Element (Pi qty _ arg res) _ => pure (qty, arg, res)
_ => throwError $ ExpectedPi ty
private covering %inline
expectEq : HasErr q m => Term q d n ->
expectEq : CanTC' q _ m => Term q d n ->
m (DScopeTerm q d n, Term q d n, Term q d n)
expectEq ty =
case whnfT ty of
case whnf !ask ty of
Element (Eq _ ty l r) _ => pure (ty, l, r)
_ => throwError $ ExpectedEq ty
@ -102,7 +102,7 @@ parameters {auto _ : IsQty q} {auto _ : CanTC q m}
check : TyContext q d n -> SQty q -> Term q d n -> Term q d n ->
m (CheckResult q n)
check ctx sg subj ty =
let Element subj nc = pushSubstsT subj in
let Element subj nc = pushSubsts subj in
check' ctx sg subj nc ty
||| `infer ctx sg subj` infers the type of `subj` in the context `ctx`,
@ -110,13 +110,13 @@ parameters {auto _ : IsQty q} {auto _ : CanTC q m}
export covering %inline
infer : TyContext q d n -> SQty q -> Elim q d n -> m (InferResult q d n)
infer ctx sg subj =
let Element subj nc = pushSubstsE subj in
let Element subj nc = pushSubsts subj in
infer' ctx sg subj nc
export covering
check' : TyContext q d n -> SQty q ->
(subj : Term q d n) -> (0 nc : NotCloT subj) -> Term q d n ->
(subj : Term q d n) -> (0 nc : NotClo subj) -> Term q d n ->
m (CheckResult q n)
check' ctx sg (TYPE l) _ ty = do
@ -153,19 +153,19 @@ parameters {auto _ : IsQty q} {auto _ : CanTC q m}
(ty, l, r) <- expectEq ty
qout <- check (extendDim ctx) sg body.term ty.term
let eqs = makeDimEq ctx.dctx
equalTWith eqs body.zero l
equalTWith eqs body.one r
equal !ask eqs body.zero l
equal !ask eqs body.one r
pure qout
check' ctx sg (E e) _ ty = do
infres <- infer ctx sg e
ignore $ check ctx szero ty (TYPE UAny)
subTWith (makeDimEq ctx.dctx) infres.type ty
sub !ask (makeDimEq ctx.dctx) infres.type ty
pure infres.qout
export covering
infer' : TyContext q d n -> SQty q ->
(subj : Elim q d n) -> (0 nc : NotCloE subj) ->
(subj : Elim q d n) -> (0 nc : NotClo subj) ->
m (InferResult q d n)
infer' ctx sg (F x) _ = do

View file

@ -10,6 +10,7 @@ depends = base, contrib, elab-util, sop, snocvect
modules =
Quox.NatExtra,
Quox.Decidable,
Quox.No,
-- Quox.Unicode,
-- Quox.OPE,
Quox.Pretty,

View file

@ -55,26 +55,26 @@ parameters (label : String) (act : Lazy (M ()))
testNeq = testThrows label (const True) $ runReaderT globals act
subT : {default 0 d, n : Nat} -> Term Three d n -> Term Three d n -> M ()
subT = Lib.subT
%hide Lib.subT
parameters {default 0 d, n : Nat}
{default new eqs : DimEq d}
subT : Term Three d n -> Term Three d n -> M ()
subT s t = Term.sub !ask eqs s t
equalT : {default 0 d, n : Nat} -> Term Three d n -> Term Three d n -> M ()
equalT = Lib.equalT
%hide Lib.equalT
equalT : Term Three d n -> Term Three d n -> M ()
equalT s t = Term.equal !ask eqs s t
subE : {default 0 d, n : Nat} -> Elim Three d n -> Elim Three d n -> M ()
subE = Lib.subE
%hide Lib.subE
subE : Elim Three d n -> Elim Three d n -> M ()
subE e f = Elim.sub !ask eqs e f
equalE : {default 0 d, n : Nat} -> Elim Three d n -> Elim Three d n -> M ()
equalE = Lib.equalE
%hide Lib.equalE
equalE : Elim Three d n -> Elim Three d n -> M ()
equalE e f = Elim.equal !ask eqs e f
export
tests : Test
tests = "equality & subtyping" :- [
note #""0=1𝒥" means that 𝒥 holds in an inconsistent dim context"#,
"universes" :- [
testEq "★₀ ≡ ★₀" $
equalT (TYPE 0) (TYPE 0),
@ -91,14 +91,19 @@ tests = "equality & subtyping" :- [
],
"pi" :- [
-- ⊸ for →₁, ⇾ for →₀
note #""AB" for (1 _ : A) → B"#,
note #""AB" for (0 _ : A) → B"#,
testEq "A ⊸ B ≡ A ⊸ B" $
let tm = Arr One (FT "A") (FT "B") in
equalT tm tm,
testNeq "A ⇾ B ≢ A ⇾ B" $
testNeq "A ⇾ B ≢ A ⊸ B" $
let tm1 = Arr Zero (FT "A") (FT "B")
tm2 = Arr One (FT "A") (FT "B") in
equalT tm1 tm2,
testEq "0=1 ⊢ A ⇾ B ≢ A ⊸ B" $
let tm1 = Arr Zero (FT "A") (FT "B")
tm2 = Arr One (FT "A") (FT "B") in
equalT tm1 tm2 {eqs = ZeroIsOne},
testEq "A ⊸ B <: A ⊸ B" $
let tm = Arr One (FT "A") (FT "B") in
subT tm tm,
@ -166,16 +171,17 @@ tests = "equality & subtyping" :- [
],
"term closure" :- [
testEq "[x]{} ≡ [x]" $
note "𝑖, 𝑗 for bound variables pointing outside of the current expr",
testEq "[𝑖]{} ≡ [𝑖]" $
equalT (CloT (BVT 0) id) (BVT 0) {n = 1},
testEq "[x]{a/x} ≡ [a]" $
testEq "[𝑖]{a/𝑖} ≡ [a]" $
equalT (CloT (BVT 0) (F "a" ::: id)) (FT "a"),
testEq "[x]{a/x,b/y} ≡ [a]" $
testEq "[𝑖]{a/𝑖,b/𝑗} ≡ [a]" $
equalT (CloT (BVT 0) (F "a" ::: F "b" ::: id)) (FT "a"),
testEq "(λy. [x]){y/y, a/x} ≡ λy. [a] (TUnused)" $
testEq "(λy. [𝑖]){y/y, a/𝑖} ≡ λy. [a] (TUnused)" $
equalT (CloT (Lam "y" $ TUnused $ BVT 0) (F "a" ::: id))
(Lam "y" $ TUnused $ FT "a"),
testEq "(λy. [x]){y/y, a/x} ≡ λy. [a] (TUsed)" $
testEq "(λy. [𝑖]){y/y, a/𝑖} ≡ λy. [a] (TUsed)" $
equalT (CloT (Lam "y" $ TUsed $ BVT 1) (F "a" ::: id))
(Lam "y" $ TUsed $ FT "a")
],
@ -194,6 +200,10 @@ tests = "equality & subtyping" :- [
equalE (F "A") (F "A"),
testNeq "A ≢ B" $
equalE (F "A") (F "B"),
testEq "0=1 ⊢ A ≡ B" $
equalE {eqs = ZeroIsOne} (F "A") (F "B"),
testEq "A : ★₁ ≔ ★₀ ⊢ A ≡ (★₀ ∷ ★₁)" {globals = au_bu} $
equalE (F "A") (TYPE 0 :# TYPE 1),
testEq "A ≔ ★₀, B ≔ ★₀ ⊢ A ≡ B" {globals = au_bu} $
equalE (F "A") (F "B"),
testEq "A ≔ ★₀, B ≔ A ⊢ A ≡ B" {globals = au_ba} $
@ -201,14 +211,27 @@ tests = "equality & subtyping" :- [
testEq "A <: A" $
subE (F "A") (F "A"),
testNeq "A ≮: B" $
subE (F "A") (F "B")
subE (F "A") (F "B"),
testEq "A : ★₃ ≔ ★₀, B : ★₃ ≔ ★₂ ⊢ A <: B"
{globals = fromList [("A", mkDef Any (TYPE 3) (TYPE 0)),
("B", mkDef Any (TYPE 3) (TYPE 2))]} $
subE (F "A") (F "B"),
testEq "A : ★₁👈 ≔ ★₀, B : ★₃ ≔ ★₂ ⊢ A <: B"
{globals = fromList [("A", mkDef Any (TYPE 1) (TYPE 0)),
("B", mkDef Any (TYPE 3) (TYPE 2))]} $
subE (F "A") (F "B"),
testEq "0=1 ⊢ A <: B" $
subE (F "A") (F "B") {eqs = ZeroIsOne}
],
"bound var" :- [
testEq "#0 ≡ #0" $
note "𝑖, 𝑗 for distinct bound variables",
testEq "𝑖𝑖" $
equalE (BV 0) (BV 0) {n = 1},
testNeq "#0 ≢ #1" $
equalE (BV 0) (BV 1) {n = 2}
testNeq "𝑖𝑗" $
equalE (BV 0) (BV 1) {n = 2},
testEq "0=1 ⊢ 𝑖𝑗" $
equalE {n = 2, eqs = ZeroIsOne} (BV 0) (BV 1)
],
"application" :- [
@ -235,7 +258,12 @@ tests = "equality & subtyping" :- [
subE
((Lam "x" (TUsed (BVT 0)) :# (Arr One (FT "A") (FT "A")))
:@ FT "a")
(F "a")
(F "a"),
testEq "f : A ⊸ A ≔ λ x ⇒ [x] ⊢ f [x] ≡ x"
{globals = fromList
[("f", mkDef Any (Arr One (FT "A") (FT "A"))
(Lam "x" (TUsed (BVT 0))))]} $
equalE (F "f" :@ FT "x") (F "x")
],
todo "annotation",
@ -247,6 +275,8 @@ tests = "equality & subtyping" :- [
"clashes" :- [
testNeq "★₀ ≢ ★₀ ⇾ ★₀" $
equalT (TYPE 0) (Arr Zero (TYPE 0) (TYPE 0)),
testEq "0=1 ⊢ ★₀ ≡ ★₀ ⇾ ★₀" $
equalT (TYPE 0) (Arr Zero (TYPE 0) (TYPE 0)) {eqs = ZeroIsOne},
todo "others"
]
]

View file

@ -2,12 +2,12 @@ module Tests.Reduce
import Quox.Syntax as Lib
import Quox.Syntax.Qty.Three
import Quox.Equal
import TermImpls
import TAP
testWhnf : (Eq b, Show b) => (a -> (Subset b _)) ->
String -> a -> b -> Test
testWhnf : Eq b => Show b => (a -> (Subset b _)) -> String -> a -> b -> Test
testWhnf whnf label from to = test "\{label} (whnf)" $
let result = fst (whnf from) in
if result == to
@ -15,27 +15,28 @@ testWhnf whnf label from to = test "\{label} (whnf)" $
else with Prelude.(::)
Left [("expected", to), ("received", result)]
testNoStep : forall p. Show a => ((x : a) -> Either (p x) a) ->
String -> a -> Test
testNoStep step label e = test "\{label} (no step)" $
case step e of
Left _ => Right ()
Right e' => with Prelude.(::) Left [("reduced", e')]
testNoStep : Eq a => Show a => (a -> (Subset a _)) -> String -> a -> Test
testNoStep whnf label e = test "\{label} (no step)" $
let result = fst (whnf e) in
if result == e
then Right ()
else with Prelude.(::)
Left [("reduced", result)]
parameters {default 0 d, n : Nat}
parameters {default empty defs : Definitions Three} {default 0 d, n : Nat}
testWhnfT : String -> Term Three d n -> Term Three d n -> Test
testWhnfT = testWhnf whnfT
testWhnfT = testWhnf (whnf defs)
testWhnfE : String -> Elim Three d n -> Elim Three d n -> Test
testWhnfE = testWhnf whnfE
testWhnfE = testWhnf (whnf defs)
testNoStepE : String -> Elim Three d n -> Test
testNoStepE = testNoStep stepE
testNoStepE = testNoStep (whnf defs)
testNoStepT : String -> Term Three d n -> Test
testNoStepT = testNoStep stepT
testNoStepT = testNoStep (whnf defs)
tests = "whnf" :- [
@ -70,6 +71,12 @@ tests = "whnf" :- [
(F "a")
],
"definitions" :- [
testWhnfE "a (transparent)"
{defs = fromList [("a", mkDef Zero (TYPE 1) (TYPE 0))]}
(F "a") (TYPE 0 :# TYPE 1)
],
"elim closure" :- [
testWhnfE "x{}" {n = 1}
(CloE (BV 0) id)