whnf actually reduces to whnf now (probably)

This commit is contained in:
rhiannon morris 2023-01-23 00:53:34 +01:00
parent f097e1c091
commit 92617a2e4a
11 changed files with 693 additions and 679 deletions

View file

@ -19,6 +19,11 @@ data DimConst = Zero | One
%runElab derive "DimConst" [Generic, Meta, Eq, Ord, DecEq, Show]
public export
pick : a -> a -> DimConst -> a
pick x y Zero = x
pick x y One = y
public export
data Dim : Nat -> Type where

View file

@ -22,18 +22,27 @@ import Data.Vect
%default total
public export
0 TermLike : Type
TermLike = Type -> Nat -> Nat -> Type
public export
0 TSubstLike : Type
TSubstLike = Type -> Nat -> Nat -> Nat -> Type
infixl 8 :#
infixl 9 :@, :%
mutual
public export
0 TSubst : Type -> Nat -> Nat -> Nat -> Type
0 TSubst : TSubstLike
TSubst q d = Subst $ Elim q d
||| first argument `q` is quantity type;
||| second argument `d` is dimension scope size;
||| third `n` is term scope size
public export
data Term : (q : Type) -> (d, n : Nat) -> Type where
data Term : TermLike where
||| type of types
TYPE : (l : Universe) -> Term q d n
@ -61,7 +70,7 @@ mutual
||| first argument `d` is dimension scope size, second `n` is term scope size
public export
data Elim : (q : Type) -> (d, n : Nat) -> Type where
data Elim : TermLike where
||| free variable
F : (x : Name) -> Elim q d n
||| bound variable
@ -85,7 +94,7 @@ mutual
||| a scope with one more bound variable
public export
data ScopeTerm : (q : Type) -> (d, n : Nat) -> Type where
data ScopeTerm : TermLike where
||| variable is used
TUsed : (body : Term q d (S n)) -> ScopeTerm q d n
||| variable is unused
@ -93,7 +102,7 @@ mutual
||| a scope with one more bound dimension variable
public export
data DScopeTerm : (q : Type) -> (d, n : Nat) -> Type where
data DScopeTerm : TermLike where
||| variable is used
DUsed : (body : Term q (S d) n) -> DScopeTerm q d n
||| variable is unused

View file

@ -1,136 +1,121 @@
module Quox.Syntax.Term.Reduce
import Quox.No
import Quox.Syntax.Term.Base
import Quox.Syntax.Term.Subst
import Data.Maybe
%default total
mutual
public export
data NotCloT : Term {} -> Type where
NCTYPE : NotCloT $ TYPE _
NCPi : NotCloT $ Pi {}
NCLam : NotCloT $ Lam {}
NCEq : NotCloT $ Eq {}
NCDLam : NotCloT $ DLam {}
NCE : NotCloE e -> NotCloT $ E e
namespace Elim
public export %inline
isClo : Elim {} -> Bool
isClo (CloE {}) = True
isClo (DCloE {}) = True
isClo _ = False
public export
data NotCloE : Elim {} -> Type where
NCF : NotCloE $ F _
NCB : NotCloE $ B _
NCApp : NotCloE $ _ :@ _
NCDApp : NotCloE $ _ :% _
NCAnn : NotCloE $ _ :# _
0 NotClo : Pred $ Elim {}
NotClo = No . isClo
mutual
export
notCloT : (t : Term {}) -> Dec (NotCloT t)
notCloT (TYPE _) = Yes NCTYPE
notCloT (Pi {}) = Yes NCPi
notCloT (Lam {}) = Yes NCLam
notCloT (Eq {}) = Yes NCEq
notCloT (DLam {}) = Yes NCDLam
notCloT (E e) = case notCloE e of
Yes nc => Yes $ NCE nc
No c => No $ \case NCE nc => c nc
notCloT (CloT {}) = No $ \case _ impossible
notCloT (DCloT {}) = No $ \case _ impossible
namespace Term
public export %inline
isClo : Term {} -> Bool
isClo (CloT {}) = True
isClo (DCloT {}) = True
isClo (E e) = isClo e
isClo _ = False
export
notCloE : (e : Elim {}) -> Dec (NotCloE e)
notCloE (F _) = Yes NCF
notCloE (B _) = Yes NCB
notCloE (_ :@ _) = Yes NCApp
notCloE (_ :% _) = Yes NCDApp
notCloE (_ :# _) = Yes NCAnn
notCloE (CloE {}) = No $ \case _ impossible
notCloE (DCloE {}) = No $ \case _ impossible
public export
0 NotClo : Pred $ Term {}
NotClo = No . isClo
||| a term which is not a top level closure
public export
NonCloTerm : Type -> Nat -> Nat -> Type
NonCloTerm q d n = Subset (Term q d n) NotCloT
0 NonCloElim : TermLike
NonCloElim q d n = Subset (Elim q d n) NotClo
||| an elimination which is not a top level closure
public export
NonCloElim : Type -> Nat -> Nat -> Type
NonCloElim q d n = Subset (Elim q d n) NotCloE
0 NonCloTerm : TermLike
NonCloTerm q d n = Subset (Term q d n) NotClo
public export %inline
ncloT : (t : Term q d n) -> (0 _ : NotCloT t) => NonCloTerm q d n
ncloT t @{p} = Element t p
ncloT : (t : Term q d n) -> (0 nc : NotClo t) => NonCloTerm q d n
ncloT t = Element t nc
public export %inline
ncloE : (e : Elim q d n) -> (0 _ : NotCloE e) => NonCloElim q d n
ncloE e @{p} = Element e p
ncloE : (e : Elim q d n) -> (0 nc : NotClo e) => NonCloElim q d n
ncloE e = Element e nc
mutual
||| if the input term has any top-level closures, push them under one layer of
||| syntax
export %inline
pushSubstsT : Term q d n -> NonCloTerm q d n
pushSubstsT s = pushSubstsTWith id id s
namespace Term
||| if the input term has any top-level closures, push them under one layer of
||| syntax
export %inline
pushSubsts : Term q d n -> NonCloTerm q d n
pushSubsts s = pushSubstsWith id id s
||| if the input elimination has any top-level closures, push them under one
||| layer of syntax
export %inline
pushSubstsE : Elim q d n -> NonCloElim q d n
pushSubstsE e = pushSubstsEWith id id e
export
pushSubstsWith : DSubst dfrom dto -> TSubst q dto from to ->
Term q dfrom from -> NonCloTerm q dto to
pushSubstsWith th ph (TYPE l) =
ncloT $ TYPE l
pushSubstsWith th ph (Pi qty x a body) =
ncloT $ Pi qty x (subs a th ph) (subs body th ph)
pushSubstsWith th ph (Lam x body) =
ncloT $ Lam x $ subs body th ph
pushSubstsWith th ph (Eq i ty l r) =
ncloT $ Eq i (subs ty th ph) (subs l th ph) (subs r th ph)
pushSubstsWith th ph (DLam i body) =
ncloT $ DLam i $ subs body th ph
pushSubstsWith th ph (E e) =
let Element e nc = pushSubstsWith th ph e in ncloT $ E e
pushSubstsWith th ph (CloT s ps) =
pushSubstsWith th (comp th ps ph) s
pushSubstsWith th ph (DCloT s ps) =
pushSubstsWith (ps . th) ph s
export
pushSubstsTWith : DSubst dfrom dto -> TSubst q dto from to ->
Term q dfrom from -> NonCloTerm q dto to
pushSubstsTWith th ph (TYPE l) =
ncloT $ TYPE l
pushSubstsTWith th ph (Pi qty x a body) =
ncloT $ Pi qty x (subs a th ph) (subs body th ph)
pushSubstsTWith th ph (Lam x body) =
ncloT $ Lam x $ subs body th ph
pushSubstsTWith th ph (Eq i ty l r) =
ncloT $ Eq i (subs ty th ph) (subs l th ph) (subs r th ph)
pushSubstsTWith th ph (DLam i body) =
ncloT $ DLam i $ subs body th ph
pushSubstsTWith th ph (E e) =
let Element e nc = pushSubstsEWith th ph e in ncloT $ E e
pushSubstsTWith th ph (CloT s ps) =
pushSubstsTWith th (comp th ps ph) s
pushSubstsTWith th ph (DCloT s ps) =
pushSubstsTWith (ps . th) ph s
namespace Elim
||| if the input elimination has any top-level closures, push them under one
||| layer of syntax
export %inline
pushSubsts : Elim q d n -> NonCloElim q d n
pushSubsts e = pushSubstsWith id id e
export
pushSubstsEWith : DSubst dfrom dto -> TSubst q dto from to ->
Elim q dfrom from -> NonCloElim q dto to
pushSubstsEWith th ph (F x) =
ncloE $ F x
pushSubstsEWith th ph (B i) =
let res = ph !! i in
case notCloE res of
Yes _ => ncloE res
No _ => assert_total pushSubstsE res
pushSubstsEWith th ph (f :@ s) =
ncloE $ subs f th ph :@ subs s th ph
pushSubstsEWith th ph (f :% d) =
ncloE $ subs f th ph :% (d // th)
pushSubstsEWith th ph (s :# a) =
ncloE $ subs s th ph :# subs a th ph
pushSubstsEWith th ph (CloE e ps) =
pushSubstsEWith th (comp th ps ph) e
pushSubstsEWith th ph (DCloE e ps) =
pushSubstsEWith (ps . th) ph e
export
pushSubstsWith : DSubst dfrom dto -> TSubst q dto from to ->
Elim q dfrom from -> NonCloElim q dto to
pushSubstsWith th ph (F x) =
ncloE $ F x
pushSubstsWith th ph (B i) =
let res = ph !! i in
case nchoose $ isClo res of
Left yes => assert_total pushSubsts res
Right no => Element res no
pushSubstsWith th ph (f :@ s) =
ncloE $ subs f th ph :@ subs s th ph
pushSubstsWith th ph (f :% d) =
ncloE $ subs f th ph :% (d // th)
pushSubstsWith th ph (s :# a) =
ncloE $ subs s th ph :# subs a th ph
pushSubstsWith th ph (CloE e ps) =
pushSubstsWith th (comp th ps ph) e
pushSubstsWith th ph (DCloE e ps) =
pushSubstsWith (ps . th) ph e
parameters (th : DSubst dfrom dto) (ph : TSubst q dto from to)
public export %inline
pushSubstsTWith' : Term q dfrom from -> Term q dto to
pushSubstsTWith' s = (pushSubstsTWith th ph s).fst
namespace Term
public export %inline
pushSubstsWith' : Term q dfrom from -> Term q dto to
pushSubstsWith' s = (pushSubstsWith th ph s).fst
public export %inline
pushSubstsEWith' : Elim q dfrom from -> Elim q dto to
pushSubstsEWith' e = (pushSubstsEWith th ph e).fst
namespace Elim
public export %inline
pushSubstsWith' : Elim q dfrom from -> Elim q dto to
pushSubstsWith' e = (pushSubstsWith th ph e).fst
public export %inline
@ -142,197 +127,126 @@ weakE : Elim q d n -> Elim q d (S n)
weakE t = t //. shift 1
mutual
public export
data IsRedexT : Term q d n -> Type where
IsUpsilonT : IsRedexT $ E (_ :# _)
IsCloT : IsRedexT $ CloT {}
IsDCloT : IsRedexT $ DCloT {}
IsERedex : IsRedexE e -> IsRedexT $ E e
public export
data IsRedexE : Elim q d n -> Type where
IsUpsilonE : IsRedexE $ E _ :# _
IsBetaLam : IsRedexE $ (Lam {} :# Pi {}) :@ _
IsBetaDLam : IsRedexE $ (DLam {} :# Eq {}) :% _
IsCloE : IsRedexE $ CloE {}
IsDCloE : IsRedexE $ DCloE {}
public export 0
Lookup : TermLike
Lookup q d n = Name -> Maybe $ Elim q d n
public export %inline
NotRedexT : Term q d n -> Type
NotRedexT = Not . IsRedexT
isLamHead : Elim {} -> Bool
isLamHead (Lam {} :# Pi {}) = True
isLamHead _ = False
public export %inline
NotRedexE : Elim q d n -> Type
NotRedexE = Not . IsRedexE
mutual
-- [todo] PLEASE replace these with macros omfg
export
isRedexT : (t : Term {}) -> Dec (IsRedexT t)
isRedexT (E (tm :# ty)) = Yes IsUpsilonT
isRedexT (CloT {}) = Yes IsCloT
isRedexT (DCloT {}) = Yes IsDCloT
isRedexT (E (CloE {})) = Yes $ IsERedex IsCloE
isRedexT (E (DCloE {})) = Yes $ IsERedex IsDCloE
isRedexT (E e@(_ :@ _)) with (isRedexE e)
_ | Yes yes = Yes $ IsERedex yes
_ | No no = No $ \case IsERedex p => no p
isRedexT (E e@(_ :% _)) with (isRedexE e)
_ | Yes yes = Yes $ IsERedex yes
_ | No no = No $ \case IsERedex p => no p
isRedexT (TYPE {}) = No $ \case _ impossible
isRedexT (Pi {}) = No $ \case _ impossible
isRedexT (Lam {}) = No $ \case _ impossible
isRedexT (Eq {}) = No $ \case _ impossible
isRedexT (DLam {}) = No $ \case _ impossible
isRedexT (E (F _)) = No $ \case IsERedex _ impossible
isRedexT (E (B _)) = No $ \case IsERedex _ impossible
export
isRedexE : (e : Elim {}) -> Dec (IsRedexE e)
isRedexE (E _ :# _) = Yes IsUpsilonE
isRedexE ((Lam {} :# Pi {}) :@ _) = Yes IsBetaLam
isRedexE ((DLam {} :# Eq {}) :% _) = Yes IsBetaDLam
isRedexE (CloE {}) = Yes IsCloE
isRedexE (DCloE {}) = Yes IsDCloE
isRedexE (F x) = No $ \case _ impossible
isRedexE (B i) = No $ \case _ impossible
isRedexE (F _ :@ _) = No $ \case _ impossible
isRedexE (B _ :@ _) = No $ \case _ impossible
isRedexE (_ :@ _ :@ _) = No $ \case _ impossible
isRedexE (_ :% _ :@ _) = No $ \case _ impossible
isRedexE (CloE {} :@ _) = No $ \case _ impossible
isRedexE (DCloE {} :@ _) = No $ \case _ impossible
isRedexE ((TYPE _ :# _) :@ _) = No $ \case _ impossible
isRedexE ((Pi {} :# _) :@ _) = No $ \case _ impossible
isRedexE ((Eq {} :# _) :@ _) = No $ \case _ impossible
isRedexE ((DLam {} :# _) :@ _) = No $ \case _ impossible
isRedexE ((Lam {} :# TYPE _) :@ _) = No $ \case _ impossible
isRedexE ((Lam {} :# Lam {}) :@ _) = No $ \case _ impossible
isRedexE ((Lam {} :# Eq {}) :@ _) = No $ \case _ impossible
isRedexE ((Lam {} :# DLam {}) :@ _) = No $ \case _ impossible
isRedexE ((Lam {} :# E _) :@ _) = No $ \case _ impossible
isRedexE ((Lam {} :# CloT {}) :@ _) = No $ \case _ impossible
isRedexE ((Lam {} :# DCloT {}) :@ _) = No $ \case _ impossible
isRedexE ((E _ :# _) :@ _) = No $ \case _ impossible
isRedexE ((CloT {} :# _) :@ _) = No $ \case _ impossible
isRedexE ((DCloT {} :# _) :@ _) = No $ \case _ impossible
isRedexE ((TYPE _ :# _) :% _) = No $ \case _ impossible
isRedexE ((Pi {} :# _) :% _) = No $ \case _ impossible
isRedexE ((Eq {} :# _) :% _) = No $ \case _ impossible
isRedexE ((Lam {} :# _) :% _) = No $ \case _ impossible
isRedexE ((DLam {} :# TYPE _) :% _) = No $ \case _ impossible
isRedexE ((DLam {} :# Pi {}) :% _) = No $ \case _ impossible
isRedexE ((DLam {} :# Lam {}) :% _) = No $ \case _ impossible
isRedexE ((DLam {} :# DLam {}) :% _) = No $ \case _ impossible
isRedexE ((DLam {} :# E _) :% _) = No $ \case _ impossible
isRedexE ((DLam {} :# CloT {}) :% _) = No $ \case _ impossible
isRedexE ((DLam {} :# DCloT {}) :% _) = No $ \case _ impossible
isRedexE ((E _ :# _) :% _) = No $ \case _ impossible
isRedexE ((CloT {} :# _) :% _) = No $ \case _ impossible
isRedexE ((DCloT {} :# _) :% _) = No $ \case _ impossible
isRedexE (F _ :% _) = No $ \case _ impossible
isRedexE (B _ :% _) = No $ \case _ impossible
isRedexE (_ :@ _ :% _) = No $ \case _ impossible
isRedexE (_ :% _ :% _) = No $ \case _ impossible
isRedexE (CloE {} :% _) = No $ \case _ impossible
isRedexE (DCloE {} :% _) = No $ \case _ impossible
isRedexE (TYPE _ :# _) = No $ \case _ impossible
isRedexE (Pi {} :# _) = No $ \case _ impossible
isRedexE (Lam {} :# _) = No $ \case _ impossible
isRedexE (Eq {} :# _) = No $ \case _ impossible
isRedexE (DLam {} :# _) = No $ \case _ impossible
isRedexE (CloT {} :# _) = No $ \case _ impossible
isRedexE (DCloT {} :# _) = No $ \case _ impossible
isDLamHead : Elim {} -> Bool
isDLamHead (DLam {} :# Eq {}) = True
isDLamHead _ = False
public export %inline
RedexTerm : Type -> Nat -> Nat -> Type
RedexTerm q d n = Subset (Term q d n) IsRedexT
isE : Term {} -> Bool
isE (E _) = True
isE _ = False
public export %inline
NonRedexTerm : Type -> Nat -> Nat -> Type
NonRedexTerm q d n = Subset (Term q d n) NotRedexT
isAnn : Elim {} -> Bool
isAnn (_ :# _) = True
isAnn _ = False
public export %inline
RedexElim : Type -> Nat -> Nat -> Type
RedexElim q d n = Subset (Elim q d n) IsRedexE
parameters (g : Lookup q d n)
mutual
namespace Elim
public export
isRedex : Elim q d n -> Bool
isRedex (F x) = isJust $ g x
isRedex (B _) = False
isRedex (f :@ _) = isRedex f || isLamHead f
isRedex (f :% _) = isRedex f || isDLamHead f
isRedex (t :# a) = isE t || isRedex t || isRedex a
isRedex (CloE {}) = True
isRedex (DCloE {}) = True
public export %inline
NonRedexElim : Type -> Nat -> Nat -> Type
NonRedexElim q d n = Subset (Elim q d n) NotRedexE
namespace Term
public export
isRedex : Term q d n -> Bool
isRedex (CloT {}) = True
isRedex (DCloT {}) = True
isRedex (E e) = isAnn e || isRedex e
isRedex _ = False
namespace Elim
public export
0 IsRedex, NotRedex : Pred $ Elim q d n
IsRedex = So . isRedex
NotRedex = No . isRedex
namespace Term
public export
0 IsRedex, NotRedex : Pred $ Term q d n
IsRedex = So . isRedex
NotRedex = No . isRedex
public export
0 NonRedexElim, NonRedexTerm : (q, d, n : _) -> Lookup q d n -> Type
NonRedexElim q d n g = Subset (Elim q d n) (NotRedex g)
NonRedexTerm q d n g = Subset (Term q d n) (NotRedex g)
||| substitute a term with annotation for the bound variable of a `ScopeTerm`
export %inline
substScope : (arg, argTy : Term q d n) -> (body : ScopeTerm q d n) -> Term q d n
substScope arg argTy body = sub1 body (arg :# argTy)
parameters (g : Lookup q d n)
mutual
namespace Elim
export covering
whnf : Elim q d n -> NonRedexElim q d n g
whnf (F x) with (g x) proof eq
_ | Just y = whnf y
_ | Nothing = Element (F x) $ rewrite eq in Ah
mutual
export %inline
stepT' : (s : Term q d n) -> IsRedexT s -> Term q d n
stepT' (E (s :# _)) IsUpsilonT = s
stepT' (CloT s th) IsCloT = pushSubstsTWith' id th s
stepT' (DCloT s th) IsDCloT = pushSubstsTWith' th id s
stepT' (E e) (IsERedex p) = E $ stepE' e p
whnf (B i) = Element (B i) Ah
export %inline
stepE' : (e : Elim q d n) -> IsRedexE e -> Elim q d n
stepE' (E e :# _) IsUpsilonE = e
stepE' ((Lam {body, _} :# Pi {arg, res, _}) :@ s) IsBetaLam =
let s = s :# arg in sub1 body s :# sub1 res s
stepE' ((DLam {body, _} :# Eq {ty, l, r, _}) :% dim) IsBetaDLam =
case dim of
K Zero => l :# ty.zero
K One => r :# ty.one
B _ => dsub1 body dim :# dsub1 ty dim
stepE' (CloE e th) IsCloE = pushSubstsEWith' id th e
stepE' (DCloE e th) IsDCloE = pushSubstsEWith' th id e
whnf (f :@ s) =
let Element f fnf = whnf f in
case nchoose $ isLamHead f of
Left _ =>
let Lam {body, _} :# Pi {arg, res, _} = f
s = s :# arg
in
whnf $ sub1 body s :# sub1 res s
Right nlh => Element (f :@ s) $ fnf `orNo` nlh
export %inline
stepT : (s : Term q d n) -> Either (NotRedexT s) (Term q d n)
stepT s = case isRedexT s of Yes y => Right $ stepT' s y; No n => Left n
whnf (f :% p) =
let Element f fnf = whnf f in
case nchoose $ isDLamHead f of
Left _ =>
let DLam {body, _} :# Eq {ty, l, r, _} = f
body = case p of K e => pick l r e; _ => dsub1 body p
in
whnf $ body :# dsub1 ty p
Right ndlh =>
Element (f :% p) $ fnf `orNo` ndlh
export %inline
stepE : (e : Elim q d n) -> Either (NotRedexE e) (Elim q d n)
stepE e = case isRedexE e of Yes y => Right $ stepE' e y; No n => Left n
whnf (s :# a) =
let Element s snf = whnf s
Element a anf = whnf a
in
case nchoose $ isE s of
Left _ => let E e = s in Element e $ noOr2 snf
Right ne => Element (s :# a) $ ne `orNo` snf `orNo` anf
export covering
whnfT : Term q d n -> NonRedexTerm q d n
whnfT s = case stepT s of Right s' => whnfT s'; Left done => Element s done
whnf (CloE el th) = whnf $ pushSubstsWith' id th el
whnf (DCloE el th) = whnf $ pushSubstsWith' th id el
export covering
whnfE : Elim q d n -> NonRedexElim q d n
whnfE e = case stepE e of Right e' => whnfE e'; Left done => Element e done
namespace Term
export covering
whnf : Term q d n -> NonRedexTerm q d n g
whnf (TYPE l) = Element (TYPE l) Ah
whnf (Pi qty x arg res) = Element (Pi qty x arg res) Ah
whnf (Lam x body) = Element (Lam x body) Ah
whnf (Eq i ty l r) = Element (Eq i ty l r) Ah
whnf (DLam i body) = Element (DLam i body) Ah
whnf (E e) =
let Element e enf = whnf e in
case nchoose $ isAnn e of
Left _ => let tm :# _ = e in Element tm $ noOr1 $ noOr2 enf
Right na => Element (E e) $ na `orNo` enf
export
notRedexNotCloE : (e : Elim {}) -> NotRedexE e -> NotCloE e
notRedexNotCloE (F x) f = NCF
notRedexNotCloE (B i) f = NCB
notRedexNotCloE (fun :@ arg) f = NCApp
notRedexNotCloE (fun :% arg) f = NCDApp
notRedexNotCloE (tm :# ty) f = NCAnn
notRedexNotCloE (CloE el th) f = absurd $ f IsCloE
notRedexNotCloE (DCloE el th) f = absurd $ f IsDCloE
export
notRedexNotCloT : (t : Term {}) -> NotRedexT t -> NotCloT t
notRedexNotCloT (TYPE _) _ = NCTYPE
notRedexNotCloT (Pi {}) _ = NCPi
notRedexNotCloT (Lam {}) _ = NCLam
notRedexNotCloT (Eq {}) _ = NCEq
notRedexNotCloT (DLam {}) _ = NCDLam
notRedexNotCloT (E e) f = NCE $ notRedexNotCloE e $ f . IsERedex
notRedexNotCloT (CloT {}) f = absurd $ f IsCloT
notRedexNotCloT (DCloT {}) f = absurd $ f IsDCloT
export
toNotCloE : NonRedexElim q d n -> NonCloElim q d n
toNotCloE (Element e prf) = Element e $ notRedexNotCloE e prf
export
toNotCloT : NonRedexTerm q d n -> NonCloTerm q d n
toNotCloT (Element t prf) = Element t $ notRedexNotCloT t prf
whnf (CloT tm th) = whnf $ pushSubstsWith' id th tm
whnf (DCloT tm th) = whnf $ pushSubstsWith' th id tm