some equality tests
This commit is contained in:
parent
756bc5b9f3
commit
8a955eebb3
1 changed files with 110 additions and 34 deletions
|
@ -7,17 +7,17 @@ import TAP
|
|||
export
|
||||
ToInfo Equal.Error where
|
||||
toInfo (ClashT mode s t) =
|
||||
[("clash", "term"),
|
||||
("mode", show mode),
|
||||
[("clash", "term"),
|
||||
("mode", show mode),
|
||||
("left", prettyStr True s),
|
||||
("right", prettyStr True t)]
|
||||
toInfo (ClashU mode k l) =
|
||||
[("clash", "universe"),
|
||||
("mode", show mode),
|
||||
[("clash", "universe"),
|
||||
("mode", show mode),
|
||||
("left", prettyStr True k),
|
||||
("right", prettyStr True l)]
|
||||
toInfo (ClashQ pi rh) =
|
||||
[("clash", "quantity"),
|
||||
[("clash", "quantity"),
|
||||
("left", prettyStr True pi),
|
||||
("right", prettyStr True rh)]
|
||||
|
||||
|
@ -52,50 +52,126 @@ export
|
|||
tests : Test
|
||||
tests = "equality & subtyping" :- [
|
||||
"universes" :- [
|
||||
testEq "Type 0 == Type 0" $
|
||||
equalT (TYPE (U 0)) (TYPE (U 0)),
|
||||
testNeq "Type 0 =/= Type 1" $
|
||||
equalT (TYPE (U 0)) (TYPE (U 1)),
|
||||
testNeq "Type 1 =/= Type 0" $
|
||||
equalT (TYPE (U 1)) (TYPE (U 0)),
|
||||
testEq "Type 0 <: Type 0" $
|
||||
subT (TYPE (U 0)) (TYPE (U 0)),
|
||||
testEq "Type 0 <: Type 1" $
|
||||
subT (TYPE (U 0)) (TYPE (U 1)),
|
||||
testNeq "Type 1 </: Type 0" $
|
||||
subT (TYPE (U 1)) (TYPE (U 0))
|
||||
testEq "𝒰₀ ≡ 𝒰₀" $
|
||||
equalT (TYPE 0) (TYPE 0),
|
||||
testNeq "𝒰₀ ≢ 𝒰₁" $
|
||||
equalT (TYPE 0) (TYPE 1),
|
||||
testNeq "𝒰₁ ≢ 𝒰₀" $
|
||||
equalT (TYPE 1) (TYPE 0),
|
||||
testEq "𝒰₀ <: 𝒰₀" $
|
||||
subT (TYPE 0) (TYPE 0),
|
||||
testEq "𝒰₀ <: 𝒰₁" $
|
||||
subT (TYPE 0) (TYPE 1),
|
||||
testNeq "𝒰₁ ≮: 𝒰₀" $
|
||||
subT (TYPE 1) (TYPE 0)
|
||||
],
|
||||
todo "pi",
|
||||
todo "lambda",
|
||||
|
||||
"pi" :- [
|
||||
-- ⊸ for →₁, ⇾ for →₀
|
||||
testEq "A ⊸ B ≡ A ⊸ B" $
|
||||
let tm = Arr One (FT "A") (FT "B") in
|
||||
equalT tm tm,
|
||||
testNeq "A ⇾ B ≢ A ⇾ B" $
|
||||
let tm1 = Arr Zero (FT "A") (FT "B")
|
||||
tm2 = Arr One (FT "A") (FT "B") in
|
||||
equalT tm1 tm2,
|
||||
testEq "A ⊸ B <: A ⊸ B" $
|
||||
let tm = Arr One (FT "A") (FT "B") in
|
||||
subT tm tm,
|
||||
testNeq "A ⇾ B ≮: A ⊸ B" $
|
||||
let tm1 = Arr Zero (FT "A") (FT "B")
|
||||
tm2 = Arr One (FT "A") (FT "B") in
|
||||
subT tm1 tm2,
|
||||
testEq "𝒰₀ ⇾ 𝒰₀ ≡ 𝒰₀ ⇾ 𝒰₀" $
|
||||
let tm = Arr Zero (TYPE 0) (TYPE 0) in
|
||||
equalT tm tm,
|
||||
testEq "𝒰₀ ⇾ 𝒰₀ <: 𝒰₀ ⇾ 𝒰₀" $
|
||||
let tm = Arr Zero (TYPE 0) (TYPE 0) in
|
||||
subT tm tm,
|
||||
testNeq "𝒰₁ ⊸ 𝒰₀ ≢ 𝒰₀ ⇾ 𝒰₀" $
|
||||
let tm1 = Arr Zero (TYPE 1) (TYPE 0)
|
||||
tm2 = Arr Zero (TYPE 0) (TYPE 0) in
|
||||
equalT tm1 tm2,
|
||||
testEq "𝒰₁ ⊸ 𝒰₀ <: 𝒰₀ ⊸ 𝒰₀" $
|
||||
let tm1 = Arr One (TYPE 1) (TYPE 0)
|
||||
tm2 = Arr One (TYPE 0) (TYPE 0) in
|
||||
subT tm1 tm2,
|
||||
testNeq "𝒰₀ ⊸ 𝒰₀ ≢ 𝒰₀ ⇾ 𝒰₁" $
|
||||
let tm1 = Arr Zero (TYPE 0) (TYPE 0)
|
||||
tm2 = Arr Zero (TYPE 0) (TYPE 1) in
|
||||
equalT tm1 tm2,
|
||||
testEq "𝒰₀ ⊸ 𝒰₀ <: 𝒰₀ ⊸ 𝒰₁" $
|
||||
let tm1 = Arr One (TYPE 0) (TYPE 0)
|
||||
tm2 = Arr One (TYPE 0) (TYPE 1) in
|
||||
subT tm1 tm2,
|
||||
testEq "𝒰₀ ⊸ 𝒰₀ <: 𝒰₀ ⊸ 𝒰₁" $
|
||||
let tm1 = Arr One (TYPE 0) (TYPE 0)
|
||||
tm2 = Arr One (TYPE 0) (TYPE 1) in
|
||||
subT tm1 tm2
|
||||
],
|
||||
|
||||
"lambda" :- [
|
||||
testEq "λ x ⇒ [x] ≡ λ x ⇒ [x]" $
|
||||
equalT (Lam "x" (TUsed (BVT 0))) (Lam "x" (TUsed (BVT 0))),
|
||||
testEq "λ x ⇒ [x] <: λ x ⇒ [x]" $
|
||||
equalT (Lam "x" (TUsed (BVT 0))) (Lam "x" (TUsed (BVT 0))),
|
||||
testEq "λ x ⇒ [x] ≡ λ y ⇒ [y]" $
|
||||
equalT (Lam "x" (TUsed (BVT 0))) (Lam "y" (TUsed (BVT 0))),
|
||||
testEq "λ x ⇒ [x] <: λ y ⇒ [y]" $
|
||||
equalT (Lam "x" (TUsed (BVT 0))) (Lam "y" (TUsed (BVT 0))),
|
||||
testNeq "λ x y ⇒ [x] ≢ λ x y ⇒ [y]" $
|
||||
equalT (Lam "x" (TUsed (Lam "y" (TUsed (BVT 1)))))
|
||||
(Lam "x" (TUsed (Lam "y" (TUsed (BVT 0)))))
|
||||
],
|
||||
|
||||
todo "term closure",
|
||||
|
||||
todo "term d-closure",
|
||||
|
||||
"free var" :- [
|
||||
testEq "A == A" $
|
||||
testEq "A ≡ A" $
|
||||
equalE (F "A") (F "A"),
|
||||
testNeq "A =/= B" $
|
||||
testNeq "A ≢ B" $
|
||||
equalE (F "A") (F "B"),
|
||||
testEq "A <: A" $
|
||||
subE (F "A") (F "A"),
|
||||
testNeq "A </: B" $
|
||||
testNeq "A ≮: B" $
|
||||
subE (F "A") (F "B")
|
||||
],
|
||||
|
||||
todo "bound var",
|
||||
"application" :-
|
||||
let a = F "a"; a' = E a
|
||||
A = FT "A"
|
||||
λxx = Lam "x" (TUsed (BVT 0))
|
||||
A_A = Arr one A A
|
||||
λxx' = λxx :# A_A
|
||||
in [
|
||||
testEq "(λx. x : A -> A) a == ((a : A) : A) (β)" $
|
||||
equalE (λxx' :@ a') (E (a' :# A) :# A),
|
||||
testEq "(λx. x : _) a == a (βυ)" $
|
||||
equalE (λxx' :@ a') a
|
||||
|
||||
"application" :- [
|
||||
testEq "f [a] ≡ f [a]" $
|
||||
equalE (F "f" :@ FT "a") (F "f" :@ FT "a"),
|
||||
testEq "f [a] <: f [a]" $
|
||||
subE (F "f" :@ FT "a") (F "f" :@ FT "a"),
|
||||
testEq "(λ x ⇒ [x] ∷ A ⊸ A) a ≡ ([a ∷ A] ∷ A) (β)" $
|
||||
equalE
|
||||
((Lam "x" (TUsed (BVT 0)) :# (Arr One (FT "A") (FT "A")))
|
||||
:@ FT "a")
|
||||
(E (FT "a" :# FT "A") :# FT "A"),
|
||||
testEq "(λ x ⇒ [x] ∷ A ⊸ A) a ≡ a (βυ)" $
|
||||
equalE
|
||||
((Lam "x" (TUsed (BVT 0)) :# (Arr One (FT "A") (FT "A")))
|
||||
:@ FT "a")
|
||||
(F "a"),
|
||||
testEq "(λ x ⇒ [x] ∷ A ⊸ A) a <: a" $
|
||||
subE
|
||||
((Lam "x" (TUsed (BVT 0)) :# (Arr One (FT "A") (FT "A")))
|
||||
:@ FT "a")
|
||||
(F "a")
|
||||
],
|
||||
|
||||
todo "annotation",
|
||||
|
||||
todo "elim closure",
|
||||
|
||||
todo "elim d-closure",
|
||||
|
||||
todo "clashes"
|
||||
"clashes" :- [
|
||||
testNeq "𝒰₀ ≢ 𝒰₀ ⇾ 𝒰₀" $
|
||||
equalT (TYPE 0) (Arr Zero (TYPE 0) (TYPE 0)),
|
||||
todo "others"
|
||||
]
|
||||
]
|
||||
|
|
Loading…
Reference in a new issue