put names into contexts, and contexts into errors

This commit is contained in:
rhiannon morris 2023-03-14 03:22:26 +01:00
parent f4af1a5a78
commit 86d21caf24
13 changed files with 520 additions and 324 deletions

View file

@ -98,9 +98,12 @@ parameters (label : String) (act : Lazy (M ()))
testTCFail = testThrows label (const True) $ runReaderT globals act
ctx, ctx01 : TContext Three 0 n -> TyContext Three 0 n
ctx = MkTyContext new
ctx01 = MkTyContext ZeroIsOne
ctx, ctx01 : Context (\n => (BaseName, Term Three 0 n)) n -> TyContext Three 0 n
ctx tel = MkTyContext new [<] (map snd tel) (map fst tel)
ctx01 tel = MkTyContext ZeroIsOne [<] (map snd tel) (map fst tel)
empty01 : TyContext Three 0 0
empty01 = {dctx := ZeroIsOne} empty
inferredTypeEq : TyContext Three d n -> (exp, got : Term Three d n) -> M ()
inferredTypeEq ctx exp got =
@ -159,184 +162,184 @@ tests : Test
tests = "typechecker" :- [
"universes" :- [
testTC "0 · ★₀ ⇐ ★₁ # by checkType" $
checkType_ (ctx [<]) (TYPE 0) (Just 1),
checkType_ empty (TYPE 0) (Just 1),
testTC "0 · ★₀ ⇐ ★₁ # by check" $
check_ (ctx [<]) szero (TYPE 0) (TYPE 1),
check_ empty szero (TYPE 0) (TYPE 1),
testTC "0 · ★₀ ⇐ ★₂" $
checkType_ (ctx [<]) (TYPE 0) (Just 2),
checkType_ empty (TYPE 0) (Just 2),
testTC "0 · ★₀ ⇐ ★_" $
checkType_ (ctx [<]) (TYPE 0) Nothing,
checkType_ empty (TYPE 0) Nothing,
testTCFail "0 · ★₁ ⇍ ★₀" $
checkType_ (ctx [<]) (TYPE 1) (Just 0),
checkType_ empty (TYPE 1) (Just 0),
testTCFail "0 · ★₀ ⇍ ★₀" $
checkType_ (ctx [<]) (TYPE 0) (Just 0),
checkType_ empty (TYPE 0) (Just 0),
testTC "0=1 ⊢ 0 · ★₁ ⇐ ★₀" $
checkType_ (ctx01 [<]) (TYPE 1) (Just 0),
checkType_ empty01 (TYPE 1) (Just 0),
testTCFail "1 · ★₀ ⇍ ★₁ # by check" $
check_ (ctx [<]) sone (TYPE 0) (TYPE 1)
check_ empty sone (TYPE 0) (TYPE 1)
],
"function types" :- [
note "A, B : ★₀; C, D : ★₁; P : A ⇾ ★₀",
testTC "0 · A ⊸ B ⇐ ★₀" $
check_ (ctx [<]) szero (Arr One (FT "A") (FT "B")) (TYPE 0),
check_ empty szero (Arr One (FT "A") (FT "B")) (TYPE 0),
note "subtyping",
testTC "0 · A ⊸ B ⇐ ★₁" $
check_ (ctx [<]) szero (Arr One (FT "A") (FT "B")) (TYPE 1),
check_ empty szero (Arr One (FT "A") (FT "B")) (TYPE 1),
testTC "0 · C ⊸ D ⇐ ★₁" $
check_ (ctx [<]) szero (Arr One (FT "C") (FT "D")) (TYPE 1),
check_ empty szero (Arr One (FT "C") (FT "D")) (TYPE 1),
testTCFail "0 · C ⊸ D ⇍ ★₀" $
check_ (ctx [<]) szero (Arr One (FT "C") (FT "D")) (TYPE 0),
check_ empty szero (Arr One (FT "C") (FT "D")) (TYPE 0),
testTC "0 · (1·x : A) → P x ⇐ ★₀" $
check_ (ctx [<]) szero
check_ empty szero
(Pi_ One "x" (FT "A") $ E $ F "P" :@ BVT 0)
(TYPE 0),
testTCFail "0 · A ⊸ P ⇍ ★₀" $
check_ (ctx [<]) szero (Arr One (FT "A") $ FT "P") (TYPE 0),
check_ empty szero (Arr One (FT "A") $ FT "P") (TYPE 0),
testTC "0=1 ⊢ 0 · A ⊸ P ⇐ ★₀" $
check_ (ctx01 [<]) szero (Arr One (FT "A") $ FT "P") (TYPE 0)
check_ empty01 szero (Arr One (FT "A") $ FT "P") (TYPE 0)
],
"pair types" :- [
note #""A × B" for "(_ : A) × B""#,
testTC "0 · A × A ⇐ ★₀" $
check_ (ctx [<]) szero (FT "A" `And` FT "A") (TYPE 0),
check_ empty szero (FT "A" `And` FT "A") (TYPE 0),
testTCFail "0 · A × P ⇍ ★₀" $
check_ (ctx [<]) szero (FT "A" `And` FT "P") (TYPE 0),
check_ empty szero (FT "A" `And` FT "P") (TYPE 0),
testTC "0 · (x : A) × P x ⇐ ★₀" $
check_ (ctx [<]) szero
check_ empty szero
(Sig_ "x" (FT "A") $ E $ F "P" :@ BVT 0) (TYPE 0),
testTC "0 · (x : A) × P x ⇐ ★₁" $
check_ (ctx [<]) szero
check_ empty szero
(Sig_ "x" (FT "A") $ E $ F "P" :@ BVT 0) (TYPE 1),
testTC "0 · (A : ★₀) × A ⇐ ★₁" $
check_ (ctx [<]) szero (Sig_ "A" (TYPE 0) $ BVT 0) (TYPE 1),
check_ empty szero (Sig_ "A" (TYPE 0) $ BVT 0) (TYPE 1),
testTCFail "0 · (A : ★₀) × A ⇍ ★₀" $
check_ (ctx [<]) szero (Sig_ "A" (TYPE 0) $ BVT 0) (TYPE 0),
check_ empty szero (Sig_ "A" (TYPE 0) $ BVT 0) (TYPE 0),
testTCFail "1 · A × A ⇍ ★₀" $
check_ (ctx [<]) sone (FT "A" `And` FT "A") (TYPE 0)
check_ empty sone (FT "A" `And` FT "A") (TYPE 0)
],
"enum types" :- [
testTC "0 · {} ⇐ ★₀" $ check_ (ctx [<]) szero (enum []) (TYPE 0),
testTC "0 · {} ⇐ ★₃" $ check_ (ctx [<]) szero (enum []) (TYPE 3),
testTC "0 · {} ⇐ ★₀" $ check_ empty szero (enum []) (TYPE 0),
testTC "0 · {} ⇐ ★₃" $ check_ empty szero (enum []) (TYPE 3),
testTC "0 · {a,b,c} ⇐ ★₀" $
check_ (ctx [<]) szero (enum ["a", "b", "c"]) (TYPE 0),
check_ empty szero (enum ["a", "b", "c"]) (TYPE 0),
testTC "0 · {a,b,c} ⇐ ★₃" $
check_ (ctx [<]) szero (enum ["a", "b", "c"]) (TYPE 3),
testTCFail "1 · {} ⇍ ★₀" $ check_ (ctx [<]) sone (enum []) (TYPE 0),
testTC "0=1 ⊢ 1 · {} ⇐ ★₀" $ check_ (ctx01 [<]) sone (enum []) (TYPE 0)
check_ empty szero (enum ["a", "b", "c"]) (TYPE 3),
testTCFail "1 · {} ⇍ ★₀" $ check_ empty sone (enum []) (TYPE 0),
testTC "0=1 ⊢ 1 · {} ⇐ ★₀" $ check_ empty01 sone (enum []) (TYPE 0)
],
"free vars" :- [
note "A : ★₀",
testTC "0 · A ⇒ ★₀" $
inferAs (ctx [<]) szero (F "A") (TYPE 0),
inferAs empty szero (F "A") (TYPE 0),
testTC "0 · [A] ⇐ ★₀" $
check_ (ctx [<]) szero (FT "A") (TYPE 0),
check_ empty szero (FT "A") (TYPE 0),
note "subtyping",
testTC "0 · [A] ⇐ ★₁" $
check_ (ctx [<]) szero (FT "A") (TYPE 1),
check_ empty szero (FT "A") (TYPE 1),
note "(fail) runtime-relevant type",
testTCFail "1 · A ⇏ ★₀" $
infer_ (ctx [<]) sone (F "A"),
infer_ empty sone (F "A"),
note "refl : (0·A : ★₀) → (1·x : A) → (x ≡ x : A) ≔ (λ A x ⇒ δ _ ⇒ x)",
testTC "1 · refl ⇒ ⋯" $ inferAs (ctx [<]) sone (F "refl") reflTy,
testTC "1 · [refl] ⇐ ⋯" $ check_ (ctx [<]) sone (FT "refl") reflTy
testTC "1 · refl ⇒ ⋯" $ inferAs empty sone (F "refl") reflTy,
testTC "1 · [refl] ⇐ ⋯" $ check_ empty sone (FT "refl") reflTy
],
"bound vars" :- [
testTC "x : A ⊢ 1 · x ⇒ A ⊳ 1·x" $
inferAsQ {n = 1} (ctx [< FT "A"]) sone
inferAsQ {n = 1} (ctx [< ("x", FT "A")]) sone
(BV 0) (FT "A") [< one],
testTC "x : A ⊢ 1 · [x] ⇐ A ⊳ 1·x" $
checkQ {n = 1} (ctx [< FT "A"]) sone (BVT 0) (FT "A") [< one],
checkQ {n = 1} (ctx [< ("x", FT "A")]) sone (BVT 0) (FT "A") [< one],
note "f2 : A ⊸ A ⊸ B",
testTC "x : A ⊢ 1 · f2 [x] [x] ⇒ B ⊳ ω·x" $
inferAsQ {n = 1} (ctx [< FT "A"]) sone
inferAsQ {n = 1} (ctx [< ("x", FT "A")]) sone
(F "f2" :@@ [BVT 0, BVT 0]) (FT "B") [< Any]
],
"lambda" :- [
note "linear & unrestricted identity",
testTC "1 · (λ x ⇒ x) ⇐ A ⊸ A" $
check_ (ctx [<]) sone (["x"] :\\ BVT 0) (Arr One (FT "A") (FT "A")),
check_ empty sone (["x"] :\\ BVT 0) (Arr One (FT "A") (FT "A")),
testTC "1 · (λ x ⇒ x) ⇐ A → A" $
check_ (ctx [<]) sone (["x"] :\\ BVT 0) (Arr Any (FT "A") (FT "A")),
check_ empty sone (["x"] :\\ BVT 0) (Arr Any (FT "A") (FT "A")),
note "(fail) zero binding used relevantly",
testTCFail "1 · (λ x ⇒ x) ⇍ A ⇾ A" $
check_ (ctx [<]) sone (["x"] :\\ BVT 0) (Arr Zero (FT "A") (FT "A")),
check_ empty sone (["x"] :\\ BVT 0) (Arr Zero (FT "A") (FT "A")),
note "(but ok in overall erased context)",
testTC "0 · (λ x ⇒ x) ⇐ A ⇾ A" $
check_ (ctx [<]) szero (["x"] :\\ BVT 0) (Arr Zero (FT "A") (FT "A")),
check_ empty szero (["x"] :\\ BVT 0) (Arr Zero (FT "A") (FT "A")),
testTC "1 · (λ A x ⇒ refl A x) ⇐ ⋯ # (type of refl)" $
check_ (ctx [<]) sone
check_ empty sone
(["A", "x"] :\\ E (F "refl" :@@ [BVT 1, BVT 0]))
reflTy,
testTC "1 · (λ A x ⇒ δ i ⇒ x) ⇐ ⋯ # (def. and type of refl)" $
check_ (ctx [<]) sone reflDef reflTy
check_ empty sone reflDef reflTy
],
"pairs" :- [
testTC "1 · (a, a) ⇐ A × A" $
check_ (ctx [<]) sone (Pair (FT "a") (FT "a")) (FT "A" `And` FT "A"),
check_ empty sone (Pair (FT "a") (FT "a")) (FT "A" `And` FT "A"),
testTC "x : A ⊢ 1 · (x, x) ⇐ A × A ⊳ ω·x" $
checkQ (ctx [< FT "A"]) sone
checkQ (ctx [< ("x", FT "A")]) sone
(Pair (BVT 0) (BVT 0)) (FT "A" `And` FT "A") [< Any],
testTC "1 · (a, δ i ⇒ a) ⇐ (x : A) × (x ≡ a)" $
check_ (ctx [<]) sone
check_ empty sone
(Pair (FT "a") (["i"] :\\% FT "a"))
(Sig_ "x" (FT "A") $ Eq0 (FT "A") (BVT 0) (FT "a"))
],
"unpairing" :- [
testTC "x : A × A ⊢ 1 · (case1 x return B of (l,r) ⇒ f2 l r) ⇒ B ⊳ 1·x" $
inferAsQ (ctx [< FT "A" `And` FT "A"]) sone
inferAsQ (ctx [< ("x", FT "A" `And` FT "A")]) sone
(CasePair One (BV 0) (SN $ FT "B")
(SY ["l", "r"] $ E $ F "f2" :@@ [BVT 1, BVT 0]))
(FT "B") [< One],
testTC "x : A × A ⊢ 1 · (caseω x return B of (l,r) ⇒ f2 l r) ⇒ B ⊳ ω·x" $
inferAsQ (ctx [< FT "A" `And` FT "A"]) sone
inferAsQ (ctx [< ("x", FT "A" `And` FT "A")]) sone
(CasePair Any (BV 0) (SN $ FT "B")
(SY ["l", "r"] $ E $ F "f2" :@@ [BVT 1, BVT 0]))
(FT "B") [< Any],
testTC "x : A × A ⊢ 0 · (caseω x return B of (l,r) ⇒ f2 l r) ⇒ B ⊳ 0·x" $
inferAsQ (ctx [< FT "A" `And` FT "A"]) szero
inferAsQ (ctx [< ("x", FT "A" `And` FT "A")]) szero
(CasePair Any (BV 0) (SN $ FT "B")
(SY ["l", "r"] $ E $ F "f2" :@@ [BVT 1, BVT 0]))
(FT "B") [< Zero],
testTCFail "x : A × A ⊢ 1 · (case0 x return B of (l,r) ⇒ f2 l r) ⇏" $
infer_ (ctx [< FT "A" `And` FT "A"]) sone
infer_ (ctx [< ("x", FT "A" `And` FT "A")]) sone
(CasePair Zero (BV 0) (SN $ FT "B")
(SY ["l", "r"] $ E $ F "f2" :@@ [BVT 1, BVT 0])),
testTC "x : A × B ⊢ 1 · (caseω x return A of (l,r) ⇒ l) ⇒ A ⊳ ω·x" $
inferAsQ (ctx [< FT "A" `And` FT "B"]) sone
inferAsQ (ctx [< ("x", FT "A" `And` FT "B")]) sone
(CasePair Any (BV 0) (SN $ FT "A")
(SY ["l", "r"] $ BVT 1))
(FT "A") [< Any],
testTC "x : A × B ⊢ 0 · (case1 x return A of (l,r) ⇒ l) ⇒ A ⊳ 0·x" $
inferAsQ (ctx [< FT "A" `And` FT "B"]) szero
inferAsQ (ctx [< ("x", FT "A" `And` FT "B")]) szero
(CasePair One (BV 0) (SN $ FT "A")
(SY ["l", "r"] $ BVT 1))
(FT "A") [< Zero],
testTCFail "x : A × B ⊢ 1 · (case1 x return A of (l,r) ⇒ l) ⇏" $
infer_ (ctx [< FT "A" `And` FT "B"]) sone
infer_ (ctx [< ("x", FT "A" `And` FT "B")]) sone
(CasePair One (BV 0) (SN $ FT "A")
(SY ["l", "r"] $ BVT 1)),
note "fst : (0·A : ★₁) → (0·B : A ↠ ★₁) → ((x : A) × B x) ↠ A",
note " ≔ (λ A B p ⇒ caseω p return A of (x, y) ⇒ x)",
testTC "0 · type of fst ⇐ ★₂" $
check_ (ctx [<]) szero fstTy (TYPE 2),
check_ empty szero fstTy (TYPE 2),
testTC "1 · def of fsttype of fst" $
check_ (ctx [<]) sone fstDef fstTy,
check_ empty sone fstDef fstTy,
note "snd : (0·A : ★₁) → (0·B : A ↠ ★₁) → (ω·p : (x : A) × B x) → B (fst A B p)",
note " ≔ (λ A B p ⇒ caseω p return p ⇒ B (fst A B p) of (x, y) ⇒ y)",
testTC "0 · type of snd ⇐ ★₂" $
check_ (ctx [<]) szero sndTy (TYPE 2),
check_ empty szero sndTy (TYPE 2),
testTC "1 · def of sndtype of snd" $
check_ (ctx [<]) sone sndDef sndTy,
check_ empty sone sndDef sndTy,
testTC "0 · snd ★₀ (λ x ⇒ x) ⇒ (ω·p : (A : ★₀) × A) → fst ★₀ (λ x ⇒ x) p" $
inferAs (ctx [<]) szero
inferAs empty szero
(F "snd" :@@ [TYPE 0, ["x"] :\\ BVT 0])
(Pi_ Any "A" (Sig_ "A" (TYPE 0) $ BVT 0) $
(E $ F "fst" :@@ [TYPE 0, ["x"] :\\ BVT 0, BVT 0]))
@ -344,27 +347,27 @@ tests = "typechecker" :- [
"enums" :- [
testTC "1 · 'a ⇐ {a}" $
check_ (ctx [<]) sone (Tag "a") (enum ["a"]),
check_ empty sone (Tag "a") (enum ["a"]),
testTC "1 · 'a ⇐ {a, b, c}" $
check_ (ctx [<]) sone (Tag "a") (enum ["a", "b", "c"]),
check_ empty sone (Tag "a") (enum ["a", "b", "c"]),
testTCFail "1 · 'a ⇍ {b, c}" $
check_ (ctx [<]) sone (Tag "a") (enum ["b", "c"]),
check_ empty sone (Tag "a") (enum ["b", "c"]),
testTC "0=1 ⊢ 1 · 'a ⇐ {b, c}" $
check_ (ctx01 [<]) sone (Tag "a") (enum ["b", "c"])
check_ empty01 sone (Tag "a") (enum ["b", "c"])
],
"equalities" :- [
testTC "1 · (δ i ⇒ a) ⇐ a ≡ a" $
check_ (ctx [<]) sone (DLam $ SN $ FT "a")
check_ empty sone (DLam $ SN $ FT "a")
(Eq0 (FT "A") (FT "a") (FT "a")),
testTC "0 · (λ p q ⇒ δ i ⇒ p) ⇐ (ω·p q : a ≡ a') → p ≡ q" $
check_ (ctx [<]) szero
check_ empty szero
(["p","q"] :\\ ["i"] :\\% BVT 1)
(Pi_ Any "p" (Eq0 (FT "A") (FT "a") (FT "a")) $
Pi_ Any "q" (Eq0 (FT "A") (FT "a") (FT "a")) $
Eq0 (Eq0 (FT "A") (FT "a") (FT "a")) (BVT 1) (BVT 0)),
testTC "0 · (λ p q ⇒ δ i ⇒ q) ⇐ (ω·p q : a ≡ a') → p ≡ q" $
check_ (ctx [<]) szero
check_ empty szero
(["p","q"] :\\ ["i"] :\\% BVT 0)
(Pi_ Any "p" (Eq0 (FT "A") (FT "a") (FT "a")) $
Pi_ Any "q" (Eq0 (FT "A") (FT "a") (FT "a")) $
@ -377,7 +380,7 @@ tests = "typechecker" :- [
note "1 · λ x y xy ⇒ δ i ⇒ p (xy i)",
note " ⇐ (0·x y : A) → (1·xy : x ≡ y) → Eq [i ⇒ P (xy i)] (p x) (p y)",
testTC "cong" $
check_ (ctx [<]) sone
check_ empty sone
(["x", "y", "xy"] :\\ ["i"] :\\% E (F "p" :@ E (BV 0 :% BV 0)))
(Pi_ Zero "x" (FT "A") $
Pi_ Zero "y" (FT "A") $
@ -390,7 +393,7 @@ tests = "typechecker" :- [
note "1 · λ eq ⇒ δ i ⇒ λ x ⇒ eq x i",
note " ⇐ (1·eq : (1·x : A) → p x ≡ q x) → p ≡ q",
testTC "funext" $
check_ (ctx [<]) sone
check_ empty sone
(["eq"] :\\ ["i"] :\\% ["x"] :\\ E (BV 1 :@ BVT 0 :% BV 0))
(Pi_ One "eq"
(Pi_ One "x" (FT "A")