put names into contexts, and contexts into errors

This commit is contained in:
rhiannon morris 2023-03-14 03:22:26 +01:00
parent f4af1a5a78
commit 86d21caf24
13 changed files with 520 additions and 324 deletions

View file

@ -46,6 +46,8 @@ parameters (ctx : TyContext Three 0 n)
subE = subED 0 ctx
equalE = equalED 0 ctx
empty01 : TyContext q 0 0
empty01 = {dctx := ZeroIsOne} empty
export
@ -116,7 +118,7 @@ tests = "equality & subtyping" :- [
testEq "0=1 ⊢ A ⇾ B = A ⊸ B" $
let tm1 = Arr Zero (FT "A") (FT "B")
tm2 = Arr One (FT "A") (FT "B") in
equalT (MkTyContext ZeroIsOne [<]) (TYPE 0) tm1 tm2,
equalT empty01 (TYPE 0) tm1 tm2,
todo "dependent function types",
note "[todo] should π ≤ ρ ⊢ (ρ·A) → B <: (π·A) → B?"
],
@ -182,47 +184,54 @@ tests = "equality & subtyping" :- [
testEq "∥ x : (a ≡ a' : A), y : (a ≡ a' : A) ⊢ x = y (bound)" $
let ty : forall n. Term Three 0 n := Eq0 (FT "A") (FT "a") (FT "a'") in
equalE (MkTyContext new [< ty, ty]) (BV 0) (BV 1),
equalE (extendTyN [< ("x", ty), ("y", ty)] empty)
(BV 0) (BV 1),
testEq "∥ x : [(a ≡ a' : A) ∷ Type 0], y : [ditto] ⊢ x = y" $
let ty : forall n. Term Three 0 n :=
E (Eq0 (FT "A") (FT "a") (FT "a'") :# TYPE 0) in
equalE (MkTyContext new [< ty, ty]) (BV 0) (BV 1),
equalE (extendTyN [< ("x", ty), ("y", ty)] empty)
(BV 0) (BV 1),
testEq "E ≔ a ≡ a' : A, EE ≔ E ∥ x : EE, y : EE ⊢ x = y"
{globals = defGlobals `mergeLeft` fromList
[("E", mkDef zero (TYPE 0) (Eq0 (FT "A") (FT "a") (FT "a'"))),
("EE", mkDef zero (TYPE 0) (FT "E"))]} $
equalE (MkTyContext new [< FT "EE", FT "EE"]) (BV 0) (BV 1),
equalE (extendTyN [< ("x", FT "EE"), ("y", FT "EE")] empty)
(BV 0) (BV 1),
testEq "E ≔ a ≡ a' : A, EE ≔ E ∥ x : EE, y : E ⊢ x = y"
{globals = defGlobals `mergeLeft` fromList
[("E", mkDef zero (TYPE 0) (Eq0 (FT "A") (FT "a") (FT "a'"))),
("EE", mkDef zero (TYPE 0) (FT "E"))]} $
equalE (MkTyContext new [< FT "EE", FT "E"]) (BV 0) (BV 1),
equalE (extendTyN [< ("x", FT "EE"), ("y", FT "E")] empty)
(BV 0) (BV 1),
testEq "E ≔ a ≡ a' : A ∥ x : E, y : E ⊢ x = y"
{globals = defGlobals `mergeLeft` fromList
[("E", mkDef zero (TYPE 0) (Eq0 (FT "A") (FT "a") (FT "a'")))]} $
equalE (MkTyContext new [< FT "E", FT "E"]) (BV 0) (BV 1),
equalE (extendTyN [< ("x", FT "E"), ("y", FT "E")] empty) (BV 0) (BV 1),
testEq "E ≔ a ≡ a' : A ∥ x : (E×E), y : (E×E) ⊢ x = y"
{globals = defGlobals `mergeLeft` fromList
[("E", mkDef zero (TYPE 0) (Eq0 (FT "A") (FT "a") (FT "a'")))]} $
let ty : forall n. Term Three 0 n :=
Sig (FT "E") $ S ["_"] $ N $ FT "E" in
equalE (MkTyContext new [< ty, ty]) (BV 0) (BV 1),
equalE (extendTyN [< ("x", ty), ("y", ty)] empty) (BV 0) (BV 1),
testEq "E ≔ a ≡ a' : A, F ≔ E × E ∥ x : F, y : F ⊢ x = y"
testEq "E ≔ a ≡ a' : A, W ≔ E × E ∥ x : W, y : W ⊢ x = y"
{globals = defGlobals `mergeLeft` fromList
[("E", mkDef zero (TYPE 0) (Eq0 (FT "A") (FT "a") (FT "a'"))),
("W", mkDef zero (TYPE 0) (FT "E" `And` FT "E"))]} $
equalE (MkTyContext new [< FT "W", FT "W"]) (BV 0) (BV 1)
equalE
(extendTyN [< ("x", FT "W"), ("y", FT "W")] empty)
(BV 0) (BV 1)
],
"term closure" :- [
testEq "[#0]{} = [#0] : A" $
equalT (MkTyContext new [< FT "A"]) (FT "A")
equalT (extendTy "x" (FT "A") empty)
(FT "A")
(CloT (BVT 0) id)
(BVT 0),
testEq "[#0]{a} = [a] : A" $
@ -249,9 +258,12 @@ tests = "equality & subtyping" :- [
"term d-closure" :- [
testEq "★₀‹𝟎› = ★₀ : ★₁" $
equalTD 1 empty (TYPE 1) (DCloT (TYPE 0) (K Zero ::: id)) (TYPE 0),
equalTD 1
(extendDim "𝑗" empty)
(TYPE 1) (DCloT (TYPE 0) (K Zero ::: id)) (TYPE 0),
testEq "(δ i ⇒ a)𝟎 = (δ i ⇒ a) : (a ≡ a : A)" $
equalTD 1 empty
equalTD 1
(extendDim "𝑗" empty)
(Eq0 (FT "A") (FT "a") (FT "a"))
(DCloT (["i"] :\\% FT "a") (K Zero ::: id))
(["i"] :\\% FT "a"),
@ -271,7 +283,7 @@ tests = "equality & subtyping" :- [
testNeq "A ≠ B" $
equalE empty (F "A") (F "B"),
testEq "0=1 ⊢ A = B" $
equalE (MkTyContext ZeroIsOne [<]) (F "A") (F "B"),
equalE empty01 (F "A") (F "B"),
testEq "A : ★₁ ≔ ★₀ ⊢ A = (★₀ ∷ ★₁)" {globals = au_bu} $
equalE empty (F "A") (TYPE 0 :# TYPE 1),
testEq "A : ★₁ ≔ ★₀ ⊢ [A] = ★₀" {globals = au_bu} $
@ -294,20 +306,20 @@ tests = "equality & subtyping" :- [
("B", mkDef Any (TYPE 3) (TYPE 2))]} $
subE empty (F "A") (F "B"),
testEq "0=1 ⊢ A <: B" $
subE (MkTyContext ZeroIsOne [<]) (F "A") (F "B")
subE empty01 (F "A") (F "B")
],
"bound var" :- [
testEq "#0 = #0" $
equalE (MkTyContext new [< TYPE 0]) (BV 0) (BV 0),
equalE (extendTy "A" (TYPE 0) empty) (BV 0) (BV 0),
testEq "#0 <: #0" $
subE (MkTyContext new [< TYPE 0]) (BV 0) (BV 0),
subE (extendTy "A" (TYPE 0) empty) (BV 0) (BV 0),
testNeq "#0 ≠ #1" $
equalE (MkTyContext new [< TYPE 0, TYPE 0]) (BV 0) (BV 1),
equalE (extendTyN [< ("A", TYPE 0), ("B", TYPE 0)] empty) (BV 0) (BV 1),
testNeq "#0 ≮: #1" $
subE (MkTyContext new [< TYPE 0, TYPE 0]) (BV 0) (BV 1),
subE (extendTyN [< ("A", TYPE 0), ("B", TYPE 0)] empty) (BV 0) (BV 1),
testEq "0=1 ⊢ #0 = #1" $
equalE (MkTyContext ZeroIsOne [< TYPE 0, TYPE 0]) (BV 0) (BV 1)
equalE (extendTyN [< ("A", TYPE 0), ("B", TYPE 0)] empty01) (BV 0) (BV 1)
],
"application" :- [
@ -343,26 +355,37 @@ tests = "equality & subtyping" :- [
testNeq "eq-AB @0 ≠ eq-AB @1" $
equalE empty (F "eq-AB" :% K Zero) (F "eq-AB" :% K One),
testEq "𝑖 | ⊢ eq-AB @𝑖 = eq-AB @𝑖" $
equalED 1 empty (F "eq-AB" :% BV 0) (F "eq-AB" :% BV 0),
equalED 1
(extendDim "𝑖" empty)
(F "eq-AB" :% BV 0) (F "eq-AB" :% BV 0),
testNeq "𝑖 | ⊢ eq-AB @𝑖 ≠ eq-AB @0" $
equalED 1 empty (F "eq-AB" :% BV 0) (F "eq-AB" :% K Zero),
equalED 1
(extendDim "𝑖" empty)
(F "eq-AB" :% BV 0) (F "eq-AB" :% K Zero),
testEq "𝑖, 𝑖=0 | ⊢ eq-AB @𝑖 = eq-AB @0" $
let ctx = MkTyContext (set (BV 0) (K Zero) new) [<] in
equalED 1 ctx (F "eq-AB" :% BV 0) (F "eq-AB" :% K Zero),
equalED 1
(eqDim (BV 0) (K Zero) $ extendDim "𝑖" empty)
(F "eq-AB" :% BV 0) (F "eq-AB" :% K Zero),
testNeq "𝑖, 𝑖=1 | ⊢ eq-AB @𝑖 ≠ eq-AB @0" $
let ctx = MkTyContext (set (BV 0) (K One) new) [<] in
equalED 1 ctx (F "eq-AB" :% BV 0) (F "eq-AB" :% K Zero),
equalED 1
(eqDim (BV 0) (K One) $ extendDim "𝑖" empty)
(F "eq-AB" :% BV 0) (F "eq-AB" :% K Zero),
testNeq "𝑖, 𝑗 | ⊢ eq-AB @𝑖 ≠ eq-AB @𝑗" $
equalED 2 empty (F "eq-AB" :% BV 1) (F "eq-AB" :% BV 0),
equalED 2
(extendDim "𝑗" $ extendDim "𝑖" empty)
(F "eq-AB" :% BV 1) (F "eq-AB" :% BV 0),
testEq "𝑖, 𝑗, 𝑖=𝑗 | ⊢ eq-AB @𝑖 = eq-AB @𝑗" $
let ctx = MkTyContext (set (BV 0) (BV 1) new) [<] in
equalED 2 ctx (F "eq-AB" :% BV 1) (F "eq-AB" :% BV 0),
testNeq "𝑖, 𝑗, 𝑖=0, 𝑗=0 | ⊢ eq-AB @𝑖 ≠ eq-AB @𝑗" $
let ctx : TyContext Three 2 0 :=
MkTyContext (C [< Just $ K Zero, Just $ K Zero]) [<] in
equalED 2 empty (F "eq-AB" :% BV 1) (F "eq-AB" :% BV 0),
equalED 2
(eqDim (BV 0) (BV 1) $ extendDim "𝑗" $ extendDim "𝑖" empty)
(F "eq-AB" :% BV 1) (F "eq-AB" :% BV 0),
testEq "𝑖, 𝑗, 𝑖=0, 𝑗=0 | ⊢ eq-AB @𝑖 = eq-AB @𝑗" $
equalED 2
(eqDim (BV 0) (K Zero) $ eqDim (BV 1) (K Zero) $
extendDim "𝑗" $ extendDim "𝑖" empty)
(F "eq-AB" :% BV 1) (F "eq-AB" :% BV 0),
testEq "0=1 | ⊢ eq-AB @𝑖 = eq-AB @𝑗" $
equalED 2 (MkTyContext ZeroIsOne [<])
equalED 2
(extendDim "𝑗" $ extendDim "𝑖" empty01)
(F "eq-AB" :% BV 1) (F "eq-AB" :% BV 0),
testEq "eq-AB @0 = A" $ equalE empty (F "eq-AB" :% K Zero) (F "A"),
testEq "eq-AB @1 = B" $ equalE empty (F "eq-AB" :% K One) (F "B"),
@ -393,38 +416,48 @@ tests = "equality & subtyping" :- [
testEq "#0{a} = a" $
equalE empty (CloE (BV 0) (F "a" ::: id)) (F "a"),
testEq "#1{a} = #0" $
equalE (MkTyContext new [< FT "A"])
equalE (extendTy "x" (FT "A") empty)
(CloE (BV 1) (F "a" ::: id)) (BV 0)
],
"elim d-closure" :- [
note "0·eq-AB : (A ≡ B : ★₀)",
testEq "(eq-AB #0)𝟎 = eq-AB 𝟎" $
equalED 1 empty
equalED 1
(extendDim "𝑖" empty)
(DCloE (F "eq-AB" :% BV 0) (K Zero ::: id))
(F "eq-AB" :% K Zero),
testEq "(eq-AB #0)𝟎 = A" $
equalED 1 empty (DCloE (F "eq-AB" :% BV 0) (K Zero ::: id)) (F "A"),
equalED 1
(extendDim "𝑖" empty)
(DCloE (F "eq-AB" :% BV 0) (K Zero ::: id)) (F "A"),
testEq "(eq-AB #0)𝟏 = B" $
equalED 1 empty (DCloE (F "eq-AB" :% BV 0) (K One ::: id)) (F "B"),
equalED 1
(extendDim "𝑖" empty)
(DCloE (F "eq-AB" :% BV 0) (K One ::: id)) (F "B"),
testNeq "(eq-AB #0)𝟏 ≠ A" $
equalED 1 empty (DCloE (F "eq-AB" :% BV 0) (K One ::: id)) (F "A"),
equalED 1
(extendDim "𝑖" empty)
(DCloE (F "eq-AB" :% BV 0) (K One ::: id)) (F "A"),
testEq "(eq-AB #0)#0,𝟎 = (eq-AB #0)" $
equalED 2 empty
equalED 2
(extendDim "𝑗" $ extendDim "𝑖" empty)
(DCloE (F "eq-AB" :% BV 0) (BV 0 ::: K Zero ::: id))
(F "eq-AB" :% BV 0),
testNeq "(eq-AB #0)𝟎 ≠ (eq-AB 𝟎)" $
equalED 2 empty
equalED 2
(extendDim "𝑗" $ extendDim "𝑖" empty)
(DCloE (F "eq-AB" :% BV 0) (BV 0 ::: K Zero ::: id))
(F "eq-AB" :% K Zero),
testEq "#0𝟎 = #0 # term and dim vars distinct" $
equalED 1 (MkTyContext new [< FT "A"])
equalED 1
(extendTy "x" (FT "A") $ extendDim "𝑖" empty)
(DCloE (BV 0) (K Zero ::: id)) (BV 0),
testEq "a𝟎 = a" $
equalED 1 empty (DCloE (F "a") (K Zero ::: id)) (F "a"),
equalED 1 (extendDim "𝑖" empty) (DCloE (F "a") (K Zero ::: id)) (F "a"),
testEq "(f [a])𝟎 = f𝟎 [a]𝟎" $
let th = K Zero ::: id in
equalED 1 empty
equalED 1 (extendDim "𝑖" empty)
(DCloE (F "f" :@ FT "a") th)
(DCloE (F "f") th :@ DCloT (FT "a") th)
],
@ -433,8 +466,7 @@ tests = "equality & subtyping" :- [
testNeq "★₀ ≠ ★₀ ⇾ ★₀" $
equalT empty (TYPE 1) (TYPE 0) (Arr Zero (TYPE 0) (TYPE 0)),
testEq "0=1 ⊢ ★₀ = ★₀ ⇾ ★₀" $
equalT (MkTyContext ZeroIsOne [<])
(TYPE 1) (TYPE 0) (Arr Zero (TYPE 0) (TYPE 0)),
equalT empty01 (TYPE 1) (TYPE 0) (Arr Zero (TYPE 0) (TYPE 0)),
todo "others"
]
]

View file

@ -98,9 +98,12 @@ parameters (label : String) (act : Lazy (M ()))
testTCFail = testThrows label (const True) $ runReaderT globals act
ctx, ctx01 : TContext Three 0 n -> TyContext Three 0 n
ctx = MkTyContext new
ctx01 = MkTyContext ZeroIsOne
ctx, ctx01 : Context (\n => (BaseName, Term Three 0 n)) n -> TyContext Three 0 n
ctx tel = MkTyContext new [<] (map snd tel) (map fst tel)
ctx01 tel = MkTyContext ZeroIsOne [<] (map snd tel) (map fst tel)
empty01 : TyContext Three 0 0
empty01 = {dctx := ZeroIsOne} empty
inferredTypeEq : TyContext Three d n -> (exp, got : Term Three d n) -> M ()
inferredTypeEq ctx exp got =
@ -159,184 +162,184 @@ tests : Test
tests = "typechecker" :- [
"universes" :- [
testTC "0 · ★₀ ⇐ ★₁ # by checkType" $
checkType_ (ctx [<]) (TYPE 0) (Just 1),
checkType_ empty (TYPE 0) (Just 1),
testTC "0 · ★₀ ⇐ ★₁ # by check" $
check_ (ctx [<]) szero (TYPE 0) (TYPE 1),
check_ empty szero (TYPE 0) (TYPE 1),
testTC "0 · ★₀ ⇐ ★₂" $
checkType_ (ctx [<]) (TYPE 0) (Just 2),
checkType_ empty (TYPE 0) (Just 2),
testTC "0 · ★₀ ⇐ ★_" $
checkType_ (ctx [<]) (TYPE 0) Nothing,
checkType_ empty (TYPE 0) Nothing,
testTCFail "0 · ★₁ ⇍ ★₀" $
checkType_ (ctx [<]) (TYPE 1) (Just 0),
checkType_ empty (TYPE 1) (Just 0),
testTCFail "0 · ★₀ ⇍ ★₀" $
checkType_ (ctx [<]) (TYPE 0) (Just 0),
checkType_ empty (TYPE 0) (Just 0),
testTC "0=1 ⊢ 0 · ★₁ ⇐ ★₀" $
checkType_ (ctx01 [<]) (TYPE 1) (Just 0),
checkType_ empty01 (TYPE 1) (Just 0),
testTCFail "1 · ★₀ ⇍ ★₁ # by check" $
check_ (ctx [<]) sone (TYPE 0) (TYPE 1)
check_ empty sone (TYPE 0) (TYPE 1)
],
"function types" :- [
note "A, B : ★₀; C, D : ★₁; P : A ⇾ ★₀",
testTC "0 · A ⊸ B ⇐ ★₀" $
check_ (ctx [<]) szero (Arr One (FT "A") (FT "B")) (TYPE 0),
check_ empty szero (Arr One (FT "A") (FT "B")) (TYPE 0),
note "subtyping",
testTC "0 · A ⊸ B ⇐ ★₁" $
check_ (ctx [<]) szero (Arr One (FT "A") (FT "B")) (TYPE 1),
check_ empty szero (Arr One (FT "A") (FT "B")) (TYPE 1),
testTC "0 · C ⊸ D ⇐ ★₁" $
check_ (ctx [<]) szero (Arr One (FT "C") (FT "D")) (TYPE 1),
check_ empty szero (Arr One (FT "C") (FT "D")) (TYPE 1),
testTCFail "0 · C ⊸ D ⇍ ★₀" $
check_ (ctx [<]) szero (Arr One (FT "C") (FT "D")) (TYPE 0),
check_ empty szero (Arr One (FT "C") (FT "D")) (TYPE 0),
testTC "0 · (1·x : A) → P x ⇐ ★₀" $
check_ (ctx [<]) szero
check_ empty szero
(Pi_ One "x" (FT "A") $ E $ F "P" :@ BVT 0)
(TYPE 0),
testTCFail "0 · A ⊸ P ⇍ ★₀" $
check_ (ctx [<]) szero (Arr One (FT "A") $ FT "P") (TYPE 0),
check_ empty szero (Arr One (FT "A") $ FT "P") (TYPE 0),
testTC "0=1 ⊢ 0 · A ⊸ P ⇐ ★₀" $
check_ (ctx01 [<]) szero (Arr One (FT "A") $ FT "P") (TYPE 0)
check_ empty01 szero (Arr One (FT "A") $ FT "P") (TYPE 0)
],
"pair types" :- [
note #""A × B" for "(_ : A) × B""#,
testTC "0 · A × A ⇐ ★₀" $
check_ (ctx [<]) szero (FT "A" `And` FT "A") (TYPE 0),
check_ empty szero (FT "A" `And` FT "A") (TYPE 0),
testTCFail "0 · A × P ⇍ ★₀" $
check_ (ctx [<]) szero (FT "A" `And` FT "P") (TYPE 0),
check_ empty szero (FT "A" `And` FT "P") (TYPE 0),
testTC "0 · (x : A) × P x ⇐ ★₀" $
check_ (ctx [<]) szero
check_ empty szero
(Sig_ "x" (FT "A") $ E $ F "P" :@ BVT 0) (TYPE 0),
testTC "0 · (x : A) × P x ⇐ ★₁" $
check_ (ctx [<]) szero
check_ empty szero
(Sig_ "x" (FT "A") $ E $ F "P" :@ BVT 0) (TYPE 1),
testTC "0 · (A : ★₀) × A ⇐ ★₁" $
check_ (ctx [<]) szero (Sig_ "A" (TYPE 0) $ BVT 0) (TYPE 1),
check_ empty szero (Sig_ "A" (TYPE 0) $ BVT 0) (TYPE 1),
testTCFail "0 · (A : ★₀) × A ⇍ ★₀" $
check_ (ctx [<]) szero (Sig_ "A" (TYPE 0) $ BVT 0) (TYPE 0),
check_ empty szero (Sig_ "A" (TYPE 0) $ BVT 0) (TYPE 0),
testTCFail "1 · A × A ⇍ ★₀" $
check_ (ctx [<]) sone (FT "A" `And` FT "A") (TYPE 0)
check_ empty sone (FT "A" `And` FT "A") (TYPE 0)
],
"enum types" :- [
testTC "0 · {} ⇐ ★₀" $ check_ (ctx [<]) szero (enum []) (TYPE 0),
testTC "0 · {} ⇐ ★₃" $ check_ (ctx [<]) szero (enum []) (TYPE 3),
testTC "0 · {} ⇐ ★₀" $ check_ empty szero (enum []) (TYPE 0),
testTC "0 · {} ⇐ ★₃" $ check_ empty szero (enum []) (TYPE 3),
testTC "0 · {a,b,c} ⇐ ★₀" $
check_ (ctx [<]) szero (enum ["a", "b", "c"]) (TYPE 0),
check_ empty szero (enum ["a", "b", "c"]) (TYPE 0),
testTC "0 · {a,b,c} ⇐ ★₃" $
check_ (ctx [<]) szero (enum ["a", "b", "c"]) (TYPE 3),
testTCFail "1 · {} ⇍ ★₀" $ check_ (ctx [<]) sone (enum []) (TYPE 0),
testTC "0=1 ⊢ 1 · {} ⇐ ★₀" $ check_ (ctx01 [<]) sone (enum []) (TYPE 0)
check_ empty szero (enum ["a", "b", "c"]) (TYPE 3),
testTCFail "1 · {} ⇍ ★₀" $ check_ empty sone (enum []) (TYPE 0),
testTC "0=1 ⊢ 1 · {} ⇐ ★₀" $ check_ empty01 sone (enum []) (TYPE 0)
],
"free vars" :- [
note "A : ★₀",
testTC "0 · A ⇒ ★₀" $
inferAs (ctx [<]) szero (F "A") (TYPE 0),
inferAs empty szero (F "A") (TYPE 0),
testTC "0 · [A] ⇐ ★₀" $
check_ (ctx [<]) szero (FT "A") (TYPE 0),
check_ empty szero (FT "A") (TYPE 0),
note "subtyping",
testTC "0 · [A] ⇐ ★₁" $
check_ (ctx [<]) szero (FT "A") (TYPE 1),
check_ empty szero (FT "A") (TYPE 1),
note "(fail) runtime-relevant type",
testTCFail "1 · A ⇏ ★₀" $
infer_ (ctx [<]) sone (F "A"),
infer_ empty sone (F "A"),
note "refl : (0·A : ★₀) → (1·x : A) → (x ≡ x : A) ≔ (λ A x ⇒ δ _ ⇒ x)",
testTC "1 · refl ⇒ ⋯" $ inferAs (ctx [<]) sone (F "refl") reflTy,
testTC "1 · [refl] ⇐ ⋯" $ check_ (ctx [<]) sone (FT "refl") reflTy
testTC "1 · refl ⇒ ⋯" $ inferAs empty sone (F "refl") reflTy,
testTC "1 · [refl] ⇐ ⋯" $ check_ empty sone (FT "refl") reflTy
],
"bound vars" :- [
testTC "x : A ⊢ 1 · x ⇒ A ⊳ 1·x" $
inferAsQ {n = 1} (ctx [< FT "A"]) sone
inferAsQ {n = 1} (ctx [< ("x", FT "A")]) sone
(BV 0) (FT "A") [< one],
testTC "x : A ⊢ 1 · [x] ⇐ A ⊳ 1·x" $
checkQ {n = 1} (ctx [< FT "A"]) sone (BVT 0) (FT "A") [< one],
checkQ {n = 1} (ctx [< ("x", FT "A")]) sone (BVT 0) (FT "A") [< one],
note "f2 : A ⊸ A ⊸ B",
testTC "x : A ⊢ 1 · f2 [x] [x] ⇒ B ⊳ ω·x" $
inferAsQ {n = 1} (ctx [< FT "A"]) sone
inferAsQ {n = 1} (ctx [< ("x", FT "A")]) sone
(F "f2" :@@ [BVT 0, BVT 0]) (FT "B") [< Any]
],
"lambda" :- [
note "linear & unrestricted identity",
testTC "1 · (λ x ⇒ x) ⇐ A ⊸ A" $
check_ (ctx [<]) sone (["x"] :\\ BVT 0) (Arr One (FT "A") (FT "A")),
check_ empty sone (["x"] :\\ BVT 0) (Arr One (FT "A") (FT "A")),
testTC "1 · (λ x ⇒ x) ⇐ A → A" $
check_ (ctx [<]) sone (["x"] :\\ BVT 0) (Arr Any (FT "A") (FT "A")),
check_ empty sone (["x"] :\\ BVT 0) (Arr Any (FT "A") (FT "A")),
note "(fail) zero binding used relevantly",
testTCFail "1 · (λ x ⇒ x) ⇍ A ⇾ A" $
check_ (ctx [<]) sone (["x"] :\\ BVT 0) (Arr Zero (FT "A") (FT "A")),
check_ empty sone (["x"] :\\ BVT 0) (Arr Zero (FT "A") (FT "A")),
note "(but ok in overall erased context)",
testTC "0 · (λ x ⇒ x) ⇐ A ⇾ A" $
check_ (ctx [<]) szero (["x"] :\\ BVT 0) (Arr Zero (FT "A") (FT "A")),
check_ empty szero (["x"] :\\ BVT 0) (Arr Zero (FT "A") (FT "A")),
testTC "1 · (λ A x ⇒ refl A x) ⇐ ⋯ # (type of refl)" $
check_ (ctx [<]) sone
check_ empty sone
(["A", "x"] :\\ E (F "refl" :@@ [BVT 1, BVT 0]))
reflTy,
testTC "1 · (λ A x ⇒ δ i ⇒ x) ⇐ ⋯ # (def. and type of refl)" $
check_ (ctx [<]) sone reflDef reflTy
check_ empty sone reflDef reflTy
],
"pairs" :- [
testTC "1 · (a, a) ⇐ A × A" $
check_ (ctx [<]) sone (Pair (FT "a") (FT "a")) (FT "A" `And` FT "A"),
check_ empty sone (Pair (FT "a") (FT "a")) (FT "A" `And` FT "A"),
testTC "x : A ⊢ 1 · (x, x) ⇐ A × A ⊳ ω·x" $
checkQ (ctx [< FT "A"]) sone
checkQ (ctx [< ("x", FT "A")]) sone
(Pair (BVT 0) (BVT 0)) (FT "A" `And` FT "A") [< Any],
testTC "1 · (a, δ i ⇒ a) ⇐ (x : A) × (x ≡ a)" $
check_ (ctx [<]) sone
check_ empty sone
(Pair (FT "a") (["i"] :\\% FT "a"))
(Sig_ "x" (FT "A") $ Eq0 (FT "A") (BVT 0) (FT "a"))
],
"unpairing" :- [
testTC "x : A × A ⊢ 1 · (case1 x return B of (l,r) ⇒ f2 l r) ⇒ B ⊳ 1·x" $
inferAsQ (ctx [< FT "A" `And` FT "A"]) sone
inferAsQ (ctx [< ("x", FT "A" `And` FT "A")]) sone
(CasePair One (BV 0) (SN $ FT "B")
(SY ["l", "r"] $ E $ F "f2" :@@ [BVT 1, BVT 0]))
(FT "B") [< One],
testTC "x : A × A ⊢ 1 · (caseω x return B of (l,r) ⇒ f2 l r) ⇒ B ⊳ ω·x" $
inferAsQ (ctx [< FT "A" `And` FT "A"]) sone
inferAsQ (ctx [< ("x", FT "A" `And` FT "A")]) sone
(CasePair Any (BV 0) (SN $ FT "B")
(SY ["l", "r"] $ E $ F "f2" :@@ [BVT 1, BVT 0]))
(FT "B") [< Any],
testTC "x : A × A ⊢ 0 · (caseω x return B of (l,r) ⇒ f2 l r) ⇒ B ⊳ 0·x" $
inferAsQ (ctx [< FT "A" `And` FT "A"]) szero
inferAsQ (ctx [< ("x", FT "A" `And` FT "A")]) szero
(CasePair Any (BV 0) (SN $ FT "B")
(SY ["l", "r"] $ E $ F "f2" :@@ [BVT 1, BVT 0]))
(FT "B") [< Zero],
testTCFail "x : A × A ⊢ 1 · (case0 x return B of (l,r) ⇒ f2 l r) ⇏" $
infer_ (ctx [< FT "A" `And` FT "A"]) sone
infer_ (ctx [< ("x", FT "A" `And` FT "A")]) sone
(CasePair Zero (BV 0) (SN $ FT "B")
(SY ["l", "r"] $ E $ F "f2" :@@ [BVT 1, BVT 0])),
testTC "x : A × B ⊢ 1 · (caseω x return A of (l,r) ⇒ l) ⇒ A ⊳ ω·x" $
inferAsQ (ctx [< FT "A" `And` FT "B"]) sone
inferAsQ (ctx [< ("x", FT "A" `And` FT "B")]) sone
(CasePair Any (BV 0) (SN $ FT "A")
(SY ["l", "r"] $ BVT 1))
(FT "A") [< Any],
testTC "x : A × B ⊢ 0 · (case1 x return A of (l,r) ⇒ l) ⇒ A ⊳ 0·x" $
inferAsQ (ctx [< FT "A" `And` FT "B"]) szero
inferAsQ (ctx [< ("x", FT "A" `And` FT "B")]) szero
(CasePair One (BV 0) (SN $ FT "A")
(SY ["l", "r"] $ BVT 1))
(FT "A") [< Zero],
testTCFail "x : A × B ⊢ 1 · (case1 x return A of (l,r) ⇒ l) ⇏" $
infer_ (ctx [< FT "A" `And` FT "B"]) sone
infer_ (ctx [< ("x", FT "A" `And` FT "B")]) sone
(CasePair One (BV 0) (SN $ FT "A")
(SY ["l", "r"] $ BVT 1)),
note "fst : (0·A : ★₁) → (0·B : A ↠ ★₁) → ((x : A) × B x) ↠ A",
note " ≔ (λ A B p ⇒ caseω p return A of (x, y) ⇒ x)",
testTC "0 · type of fst ⇐ ★₂" $
check_ (ctx [<]) szero fstTy (TYPE 2),
check_ empty szero fstTy (TYPE 2),
testTC "1 · def of fsttype of fst" $
check_ (ctx [<]) sone fstDef fstTy,
check_ empty sone fstDef fstTy,
note "snd : (0·A : ★₁) → (0·B : A ↠ ★₁) → (ω·p : (x : A) × B x) → B (fst A B p)",
note " ≔ (λ A B p ⇒ caseω p return p ⇒ B (fst A B p) of (x, y) ⇒ y)",
testTC "0 · type of snd ⇐ ★₂" $
check_ (ctx [<]) szero sndTy (TYPE 2),
check_ empty szero sndTy (TYPE 2),
testTC "1 · def of sndtype of snd" $
check_ (ctx [<]) sone sndDef sndTy,
check_ empty sone sndDef sndTy,
testTC "0 · snd ★₀ (λ x ⇒ x) ⇒ (ω·p : (A : ★₀) × A) → fst ★₀ (λ x ⇒ x) p" $
inferAs (ctx [<]) szero
inferAs empty szero
(F "snd" :@@ [TYPE 0, ["x"] :\\ BVT 0])
(Pi_ Any "A" (Sig_ "A" (TYPE 0) $ BVT 0) $
(E $ F "fst" :@@ [TYPE 0, ["x"] :\\ BVT 0, BVT 0]))
@ -344,27 +347,27 @@ tests = "typechecker" :- [
"enums" :- [
testTC "1 · 'a ⇐ {a}" $
check_ (ctx [<]) sone (Tag "a") (enum ["a"]),
check_ empty sone (Tag "a") (enum ["a"]),
testTC "1 · 'a ⇐ {a, b, c}" $
check_ (ctx [<]) sone (Tag "a") (enum ["a", "b", "c"]),
check_ empty sone (Tag "a") (enum ["a", "b", "c"]),
testTCFail "1 · 'a ⇍ {b, c}" $
check_ (ctx [<]) sone (Tag "a") (enum ["b", "c"]),
check_ empty sone (Tag "a") (enum ["b", "c"]),
testTC "0=1 ⊢ 1 · 'a ⇐ {b, c}" $
check_ (ctx01 [<]) sone (Tag "a") (enum ["b", "c"])
check_ empty01 sone (Tag "a") (enum ["b", "c"])
],
"equalities" :- [
testTC "1 · (δ i ⇒ a) ⇐ a ≡ a" $
check_ (ctx [<]) sone (DLam $ SN $ FT "a")
check_ empty sone (DLam $ SN $ FT "a")
(Eq0 (FT "A") (FT "a") (FT "a")),
testTC "0 · (λ p q ⇒ δ i ⇒ p) ⇐ (ω·p q : a ≡ a') → p ≡ q" $
check_ (ctx [<]) szero
check_ empty szero
(["p","q"] :\\ ["i"] :\\% BVT 1)
(Pi_ Any "p" (Eq0 (FT "A") (FT "a") (FT "a")) $
Pi_ Any "q" (Eq0 (FT "A") (FT "a") (FT "a")) $
Eq0 (Eq0 (FT "A") (FT "a") (FT "a")) (BVT 1) (BVT 0)),
testTC "0 · (λ p q ⇒ δ i ⇒ q) ⇐ (ω·p q : a ≡ a') → p ≡ q" $
check_ (ctx [<]) szero
check_ empty szero
(["p","q"] :\\ ["i"] :\\% BVT 0)
(Pi_ Any "p" (Eq0 (FT "A") (FT "a") (FT "a")) $
Pi_ Any "q" (Eq0 (FT "A") (FT "a") (FT "a")) $
@ -377,7 +380,7 @@ tests = "typechecker" :- [
note "1 · λ x y xy ⇒ δ i ⇒ p (xy i)",
note " ⇐ (0·x y : A) → (1·xy : x ≡ y) → Eq [i ⇒ P (xy i)] (p x) (p y)",
testTC "cong" $
check_ (ctx [<]) sone
check_ empty sone
(["x", "y", "xy"] :\\ ["i"] :\\% E (F "p" :@ E (BV 0 :% BV 0)))
(Pi_ Zero "x" (FT "A") $
Pi_ Zero "y" (FT "A") $
@ -390,7 +393,7 @@ tests = "typechecker" :- [
note "1 · λ eq ⇒ δ i ⇒ λ x ⇒ eq x i",
note " ⇐ (1·eq : (1·x : A) → p x ≡ q x) → p ≡ q",
testTC "funext" $
check_ (ctx [<]) sone
check_ empty sone
(["eq"] :\\ ["i"] :\\% ["x"] :\\ E (BV 1 :@ BVT 0 :% BV 0))
(Pi_ One "eq"
(Pi_ One "x" (FT "A")