more typed equality, uip, etc
This commit is contained in:
parent
7fd7a31635
commit
7d2c3b5a8e
8 changed files with 381 additions and 217 deletions
|
@ -43,17 +43,31 @@ clashE e f = throwError $ ClashE !mode e f
|
||||||
|
|
||||||
|
|
||||||
public export %inline
|
public export %inline
|
||||||
isType : (t : Term {}) -> Bool
|
isTyCon : (t : Term {}) -> Bool
|
||||||
isType (TYPE {}) = True
|
isTyCon (TYPE {}) = True
|
||||||
isType (Pi {}) = True
|
isTyCon (Pi {}) = True
|
||||||
isType (Lam {}) = False
|
isTyCon (Lam {}) = False
|
||||||
isType (Sig {}) = True
|
isTyCon (Sig {}) = True
|
||||||
isType (Pair {}) = False
|
isTyCon (Pair {}) = False
|
||||||
isType (Eq {}) = True
|
isTyCon (Eq {}) = True
|
||||||
isType (DLam {}) = False
|
isTyCon (DLam {}) = False
|
||||||
isType (E {}) = True
|
isTyCon (E {}) = True
|
||||||
isType (CloT {}) = False
|
isTyCon (CloT {}) = False
|
||||||
isType (DCloT {}) = False
|
isTyCon (DCloT {}) = False
|
||||||
|
|
||||||
|
private
|
||||||
|
isSubSing : Term {} -> Bool
|
||||||
|
isSubSing ty =
|
||||||
|
let Element ty _ = pushSubsts ty in
|
||||||
|
case ty of
|
||||||
|
TYPE _ => False
|
||||||
|
Pi {res, _} => isSubSing res.term
|
||||||
|
Lam {} => False
|
||||||
|
Sig {fst, snd, _} => isSubSing fst && isSubSing snd.term
|
||||||
|
Pair {} => False
|
||||||
|
Eq {} => True
|
||||||
|
DLam {} => False
|
||||||
|
E e => False
|
||||||
|
|
||||||
|
|
||||||
parameters {auto _ : HasErr q m}
|
parameters {auto _ : HasErr q m}
|
||||||
|
@ -64,8 +78,8 @@ parameters {auto _ : HasErr q m}
|
||||||
Right n => throwError $ e t
|
Right n => throwError $ e t
|
||||||
|
|
||||||
export %inline
|
export %inline
|
||||||
ensureType : (t : Term q d n) -> m (So (isType t))
|
ensureType : (t : Term q d n) -> m (So (isTyCon t))
|
||||||
ensureType = ensure NotType isType
|
ensureType = ensure NotType isTyCon
|
||||||
|
|
||||||
parameters (defs : Definitions' q _) {auto _ : (CanEqual q m, Eq q)}
|
parameters (defs : Definitions' q _) {auto _ : (CanEqual q m, Eq q)}
|
||||||
mutual
|
mutual
|
||||||
|
@ -88,7 +102,7 @@ parameters (defs : Definitions' q _) {auto _ : (CanEqual q m, Eq q)}
|
||||||
private covering
|
private covering
|
||||||
compare0' : TContext q 0 n ->
|
compare0' : TContext q 0 n ->
|
||||||
(ty, s, t : Term q 0 n) ->
|
(ty, s, t : Term q 0 n) ->
|
||||||
(0 nty : NotRedex defs ty) => (0 tty : So (isType ty)) =>
|
(0 nty : NotRedex defs ty) => (0 tty : So (isTyCon ty)) =>
|
||||||
(0 ns : NotRedex defs s) => (0 nt : NotRedex defs t) =>
|
(0 ns : NotRedex defs s) => (0 nt : NotRedex defs t) =>
|
||||||
m ()
|
m ()
|
||||||
compare0' ctx (TYPE _) s t = compareType ctx s t
|
compare0' ctx (TYPE _) s t = compareType ctx s t
|
||||||
|
@ -103,7 +117,7 @@ parameters (defs : Definitions' q _) {auto _ : (CanEqual q m, Eq q)}
|
||||||
(Lam _ b1, Lam _ b2) => compare0 ctx' res.term b1.term b2.term
|
(Lam _ b1, Lam _ b2) => compare0 ctx' res.term b1.term b2.term
|
||||||
(E e, Lam _ b) => eta e b
|
(E e, Lam _ b) => eta e b
|
||||||
(Lam _ b, E e) => eta e b
|
(Lam _ b, E e) => eta e b
|
||||||
(E e, E f) => ignore $ compare0 ctx e f
|
(E e, E f) => compare0 ctx e f
|
||||||
_ => throwError $ WrongType ty s t
|
_ => throwError $ WrongType ty s t
|
||||||
|
|
||||||
compare0' ctx ty@(Sig {fst, snd, _}) s t = local {mode := Equal} $
|
compare0' ctx ty@(Sig {fst, snd, _}) s t = local {mode := Equal} $
|
||||||
|
@ -123,7 +137,7 @@ parameters (defs : Definitions' q _) {auto _ : (CanEqual q m, Eq q)}
|
||||||
-- e.g. an abstract value in an abstract type, bound variables, …
|
-- e.g. an abstract value in an abstract type, bound variables, …
|
||||||
E e <- pure s | _ => throwError $ WrongType ty s t
|
E e <- pure s | _ => throwError $ WrongType ty s t
|
||||||
E f <- pure t | _ => throwError $ WrongType ty s t
|
E f <- pure t | _ => throwError $ WrongType ty s t
|
||||||
ignore $ compare0 ctx e f
|
compare0 ctx e f
|
||||||
|
|
||||||
export covering
|
export covering
|
||||||
compareType : TContext q 0 n -> (s, t : Term q 0 n) -> m ()
|
compareType : TContext q 0 n -> (s, t : Term q 0 n) -> m ()
|
||||||
|
@ -136,8 +150,8 @@ parameters (defs : Definitions' q _) {auto _ : (CanEqual q m, Eq q)}
|
||||||
|
|
||||||
private covering
|
private covering
|
||||||
compareType' : TContext q 0 n -> (s, t : Term q 0 n) ->
|
compareType' : TContext q 0 n -> (s, t : Term q 0 n) ->
|
||||||
(0 ns : NotRedex defs s) => (0 ts : So (isType s)) =>
|
(0 ns : NotRedex defs s) => (0 ts : So (isTyCon s)) =>
|
||||||
(0 nt : NotRedex defs t) => (0 tt : So (isType t)) =>
|
(0 nt : NotRedex defs t) => (0 tt : So (isTyCon t)) =>
|
||||||
m ()
|
m ()
|
||||||
compareType' ctx s t = do
|
compareType' ctx s t = do
|
||||||
let err : m () = clashT (TYPE UAny) s t
|
let err : m () = clashT (TYPE UAny) s t
|
||||||
|
@ -170,80 +184,90 @@ parameters (defs : Definitions' q _) {auto _ : (CanEqual q m, Eq q)}
|
||||||
E f <- pure t | _ => err
|
E f <- pure t | _ => err
|
||||||
-- no fanciness needed here cos anything other than a neutral
|
-- no fanciness needed here cos anything other than a neutral
|
||||||
-- has been inlined by whnfD
|
-- has been inlined by whnfD
|
||||||
ignore $ compare0 ctx e f
|
compare0 ctx e f
|
||||||
|
|
||||||
|
||| assumes the elim is already typechecked! only does the work necessary
|
||||||
|
||| to calculate the overall type
|
||||||
|
private covering
|
||||||
|
computeElimType : TContext q 0 n -> (e : Elim q 0 n) ->
|
||||||
|
(0 ne : NotRedex defs e) =>
|
||||||
|
m (Term q 0 n)
|
||||||
|
computeElimType ctx (F x) = do
|
||||||
|
defs <- lookupFree' defs x
|
||||||
|
pure $ defs.type.get
|
||||||
|
computeElimType ctx (B i) = do
|
||||||
|
pure $ ctx !! i
|
||||||
|
computeElimType ctx (f :@ s) {ne} = do
|
||||||
|
(_, arg, res) <- computeElimType ctx f {ne = noOr1 ne} >>= expectPi defs
|
||||||
|
pure $ sub1 res (s :# arg)
|
||||||
|
computeElimType ctx (CasePair {pair, ret, _}) = do
|
||||||
|
pure $ sub1 ret pair
|
||||||
|
computeElimType ctx (f :% p) {ne} = do
|
||||||
|
(ty, _, _) <- computeElimType ctx f {ne = noOr1 ne} >>= expectEq defs
|
||||||
|
pure $ dsub1 ty p
|
||||||
|
computeElimType ctx (_ :# ty) = do
|
||||||
|
pure ty
|
||||||
|
|
||||||
|
private covering
|
||||||
|
replaceEnd : TContext q 0 n ->
|
||||||
|
(e : Elim q 0 n) -> DimConst -> (0 ne : NotRedex defs e) ->
|
||||||
|
m (Elim q 0 n)
|
||||||
|
replaceEnd ctx e p ne = do
|
||||||
|
(ty, l, r) <- computeElimType ctx e >>= expectEq defs
|
||||||
|
pure $ ends l r p :# dsub1 ty (K p)
|
||||||
|
|
||||||
namespace Elim
|
namespace Elim
|
||||||
|
-- [fixme] the following code ends up repeating a lot of work in the
|
||||||
|
-- computeElimType calls. the results should be shared better
|
||||||
|
|
||||||
export covering %inline
|
export covering %inline
|
||||||
compare0 : TContext q 0 n -> (e, f : Elim q 0 n) -> m (Term q 0 n)
|
compare0 : TContext q 0 n -> (e, f : Elim q 0 n) -> m ()
|
||||||
compare0 ctx e f =
|
compare0 ctx e f =
|
||||||
let Element e ne = whnfD defs e
|
let Element e ne = whnfD defs e
|
||||||
Element f nf = whnfD defs f
|
Element f nf = whnfD defs f
|
||||||
in
|
in
|
||||||
compare0' ctx e f
|
-- [fixme] there is a better way to do this "isSubSing" stuff for sure
|
||||||
|
unless (isSubSing !(computeElimType ctx e)) $ compare0' ctx e f
|
||||||
private
|
|
||||||
isSubSing : Term {} -> Bool
|
|
||||||
isSubSing (TYPE _) = False
|
|
||||||
isSubSing (Pi {res, _}) = isSubSing res.term
|
|
||||||
isSubSing (Lam {}) = False
|
|
||||||
isSubSing (Sig {fst, snd, _}) = isSubSing fst && isSubSing snd.term
|
|
||||||
isSubSing (Pair {}) = False
|
|
||||||
isSubSing (Eq {}) = True
|
|
||||||
isSubSing (DLam {}) = False
|
|
||||||
isSubSing (E e) = False
|
|
||||||
isSubSing (CloT tm th) = False
|
|
||||||
isSubSing (DCloT tm th) = False
|
|
||||||
|
|
||||||
private covering
|
private covering
|
||||||
compare0' : TContext q 0 n ->
|
compare0' : TContext q 0 n ->
|
||||||
(e, f : Elim q 0 n) ->
|
(e, f : Elim q 0 n) ->
|
||||||
(0 ne : NotRedex defs e) => (0 nf : NotRedex defs f) =>
|
(0 ne : NotRedex defs e) => (0 nf : NotRedex defs f) =>
|
||||||
m (Term q 0 n)
|
m ()
|
||||||
compare0' _ e@(F x) f@(F y) = do
|
-- replace applied equalities with the appropriate end first
|
||||||
d <- lookupFree' defs x
|
-- e.g. e : Eq [i ⇒ A] s t ⊢ e 0 = s : A‹0/i›
|
||||||
let ty = d.type
|
compare0' ctx (e :% K p) f {ne} =
|
||||||
-- [fixme] there is a better way to do this for sure
|
compare0 ctx !(replaceEnd ctx e p $ noOr1 ne) f
|
||||||
unless (isSubSing ty.get0 || x == y) $ clashE e f
|
compare0' ctx e (f :% K q) {nf} =
|
||||||
pure ty.get
|
compare0 ctx e !(replaceEnd ctx f q $ noOr1 nf)
|
||||||
|
|
||||||
|
compare0' _ e@(F x) f@(F y) = unless (x == y) $ clashE e f
|
||||||
compare0' _ e@(F _) f = clashE e f
|
compare0' _ e@(F _) f = clashE e f
|
||||||
|
|
||||||
compare0' ctx e@(B i) f@(B j) = do
|
compare0' ctx e@(B i) f@(B j) = unless (i == j) $ clashE e f
|
||||||
let ty = ctx !! i
|
|
||||||
-- [fixme] there is a better way to do this for sure
|
|
||||||
unless (isSubSing ty || i == j) $ clashE e f
|
|
||||||
pure ty
|
|
||||||
compare0' _ e@(B _) f = clashE e f
|
compare0' _ e@(B _) f = clashE e f
|
||||||
|
|
||||||
compare0' ctx (e :@ s) (f :@ t) = local {mode := Equal} $ do
|
compare0' ctx (e :@ s) (f :@ t) {ne} = local {mode := Equal} $ do
|
||||||
Pi {arg, res, _} <- compare0 ctx e f
|
compare0 ctx e f
|
||||||
| ty => throwError $ ExpectedPi ty
|
(_, arg, _) <- computeElimType ctx e {ne = noOr1 ne} >>= expectPi defs
|
||||||
compare0 ctx arg s t
|
compare0 ctx arg s t
|
||||||
pure $ sub1 res (s :# arg)
|
|
||||||
compare0' _ e@(_ :@ _) f = clashE e f
|
compare0' _ e@(_ :@ _) f = clashE e f
|
||||||
|
|
||||||
compare0' ctx (CasePair epi e _ eret _ _ ebody)
|
compare0' ctx (CasePair epi e _ eret _ _ ebody)
|
||||||
(CasePair fpi f _ fret _ _ fbody) =
|
(CasePair fpi f _ fret _ _ fbody) {ne} =
|
||||||
local {mode := Equal} $ do
|
local {mode := Equal} $ do
|
||||||
ty@(Sig {fst, snd, _}) <- compare0 ctx e f
|
compare0 ctx e f
|
||||||
| ty => throwError $ ExpectedSig ty
|
ety <- computeElimType ctx e {ne = noOr1 ne}
|
||||||
unless (epi == fpi) $ throwError $ ClashQ epi fpi
|
compareType (ctx :< ety) eret.term fret.term
|
||||||
compareType (ctx :< ty) eret.term fret.term
|
(fst, snd) <- expectSig defs ety
|
||||||
compare0 (ctx :< fst :< snd.term) (substCasePairRet ty eret)
|
compare0 (ctx :< fst :< snd.term) (substCasePairRet ety eret)
|
||||||
ebody.term fbody.term
|
ebody.term fbody.term
|
||||||
pure $ sub1 eret e
|
unless (epi == fpi) $ throwError $ ClashQ epi fpi
|
||||||
compare0' _ e@(CasePair {}) f = clashE e f
|
compare0' _ e@(CasePair {}) f = clashE e f
|
||||||
|
|
||||||
compare0' ctx (e :% p) (f :% q) = local {mode := Equal} $ do
|
|
||||||
Eq {ty, _} <- compare0 ctx e f
|
|
||||||
| ty => throwError $ ExpectedEq ty
|
|
||||||
unless (p == q) $ throwError $ ClashD p q
|
|
||||||
pure $ dsub1 ty p
|
|
||||||
compare0' _ e@(_ :% _) f = clashE e f
|
|
||||||
|
|
||||||
compare0' ctx (s :# a) (t :# b) = do
|
compare0' ctx (s :# a) (t :# b) = do
|
||||||
compareType ctx a b
|
compareType ctx a b
|
||||||
compare0 ctx a s t
|
compare0 ctx a s t
|
||||||
pure b
|
|
||||||
compare0' _ e@(_ :# _) f = clashE e f
|
compare0' _ e@(_ :# _) f = clashE e f
|
||||||
|
|
||||||
|
|
||||||
|
@ -268,14 +292,15 @@ parameters {auto _ : (HasDefs' q _ m, HasErr q m, Eq q)}
|
||||||
compareType defs (map (/// th) ctx) (s /// th) (t /// th)
|
compareType defs (map (/// th) ctx) (s /// th) (t /// th)
|
||||||
|
|
||||||
namespace Elim
|
namespace Elim
|
||||||
-- can't return the type since it might be different in each dsubst ☹
|
||| you don't have to pass the type in but the arguments must still be
|
||||||
|
||| of the same type!!
|
||||||
export covering %inline
|
export covering %inline
|
||||||
compare : (e, f : Elim q d n) -> m ()
|
compare : (e, f : Elim q d n) -> m ()
|
||||||
compare e f = do
|
compare e f = do
|
||||||
defs <- ask
|
defs <- ask
|
||||||
runReaderT {m} (MakeEnv {mode}) $
|
runReaderT {m} (MakeEnv {mode}) $
|
||||||
for_ (splits eq) $ \th =>
|
for_ (splits eq) $ \th =>
|
||||||
ignore $ compare0 defs (map (/// th) ctx) (e /// th) (f /// th)
|
compare0 defs (map (/// th) ctx) (e /// th) (f /// th)
|
||||||
|
|
||||||
namespace Term
|
namespace Term
|
||||||
export covering %inline
|
export covering %inline
|
||||||
|
|
|
@ -19,37 +19,6 @@ public export
|
||||||
CanTC q = CanTC' q IsGlobal
|
CanTC q = CanTC' q IsGlobal
|
||||||
|
|
||||||
|
|
||||||
private covering %inline
|
|
||||||
expectTYPE : CanTC' q _ m => Term q d n -> m Universe
|
|
||||||
expectTYPE s =
|
|
||||||
case whnfD !ask s of
|
|
||||||
Element (TYPE l) _ => pure l
|
|
||||||
_ => throwError $ ExpectedTYPE s
|
|
||||||
|
|
||||||
private covering %inline
|
|
||||||
expectPi : CanTC' q _ m => Term q d n ->
|
|
||||||
m (q, Term q d n, ScopeTerm q d n)
|
|
||||||
expectPi ty =
|
|
||||||
case whnfD !ask ty of
|
|
||||||
Element (Pi qty _ arg res) _ => pure (qty, arg, res)
|
|
||||||
_ => throwError $ ExpectedPi ty
|
|
||||||
|
|
||||||
private covering %inline
|
|
||||||
expectSig : CanTC' q _ m => Term q d n ->
|
|
||||||
m (Term q d n, ScopeTerm q d n)
|
|
||||||
expectSig ty =
|
|
||||||
case whnfD !ask ty of
|
|
||||||
Element (Sig _ arg res) _ => pure (arg, res)
|
|
||||||
_ => throwError $ ExpectedSig ty
|
|
||||||
|
|
||||||
private covering %inline
|
|
||||||
expectEq : CanTC' q _ m => Term q d n ->
|
|
||||||
m (DScopeTerm q d n, Term q d n, Term q d n)
|
|
||||||
expectEq ty =
|
|
||||||
case whnfD !ask ty of
|
|
||||||
Element (Eq _ ty l r) _ => pure (ty, l, r)
|
|
||||||
_ => throwError $ ExpectedEq ty
|
|
||||||
|
|
||||||
|
|
||||||
private
|
private
|
||||||
popQs : HasErr q m => IsQty q =>
|
popQs : HasErr q m => IsQty q =>
|
||||||
|
@ -133,13 +102,13 @@ parameters {auto _ : IsQty q} {auto _ : CanTC q m}
|
||||||
|
|
||||||
check' ctx sg (TYPE l) _ ty = do
|
check' ctx sg (TYPE l) _ ty = do
|
||||||
-- if ℓ < ℓ' then Ψ | Γ ⊢ Type ℓ · 0 ⇐ Type ℓ' ⊳ 𝟎
|
-- if ℓ < ℓ' then Ψ | Γ ⊢ Type ℓ · 0 ⇐ Type ℓ' ⊳ 𝟎
|
||||||
l' <- expectTYPE ty
|
l' <- expectTYPE !ask ty
|
||||||
expectEqualQ zero sg.fst
|
expectEqualQ zero sg.fst
|
||||||
unless (l < l') $ throwError $ BadUniverse l l'
|
unless (l < l') $ throwError $ BadUniverse l l'
|
||||||
pure $ zeroFor ctx
|
pure $ zeroFor ctx
|
||||||
|
|
||||||
check' ctx sg (Pi qty _ arg res) _ ty = do
|
check' ctx sg (Pi qty _ arg res) _ ty = do
|
||||||
l <- expectTYPE ty
|
l <- expectTYPE !ask ty
|
||||||
expectEqualQ zero sg.fst
|
expectEqualQ zero sg.fst
|
||||||
-- if Ψ | Γ ⊢ A · 0 ⇐ Type ℓ ⊳ 𝟎
|
-- if Ψ | Γ ⊢ A · 0 ⇐ Type ℓ ⊳ 𝟎
|
||||||
ignore $ check0 ctx arg (TYPE l)
|
ignore $ check0 ctx arg (TYPE l)
|
||||||
|
@ -151,14 +120,14 @@ parameters {auto _ : IsQty q} {auto _ : CanTC q m}
|
||||||
pure $ zeroFor ctx
|
pure $ zeroFor ctx
|
||||||
|
|
||||||
check' ctx sg (Lam _ body) _ ty = do
|
check' ctx sg (Lam _ body) _ ty = do
|
||||||
(qty, arg, res) <- expectPi ty
|
(qty, arg, res) <- expectPi !ask ty
|
||||||
-- if Ψ | Γ, x · πσ : A ⊢ t · σ ⇐ B ⊳ Σ, x · σπ
|
-- if Ψ | Γ, x · πσ : A ⊢ t · σ ⇐ B ⊳ Σ, x · σπ
|
||||||
qout <- check (extendTy arg (sg.fst * qty) ctx) sg body.term res.term
|
qout <- check (extendTy arg (sg.fst * qty) ctx) sg body.term res.term
|
||||||
-- then Ψ | Γ ⊢ λx. t · σ ⇐ (x · π : A) → B ⊳ Σ
|
-- then Ψ | Γ ⊢ λx. t · σ ⇐ (x · π : A) → B ⊳ Σ
|
||||||
popQ (sg.fst * qty) qout
|
popQ (sg.fst * qty) qout
|
||||||
|
|
||||||
check' ctx sg (Sig _ fst snd) _ ty = do
|
check' ctx sg (Sig _ fst snd) _ ty = do
|
||||||
l <- expectTYPE ty
|
l <- expectTYPE !ask ty
|
||||||
expectEqualQ zero sg.fst
|
expectEqualQ zero sg.fst
|
||||||
-- if Ψ | Γ ⊢ A · 0 ⇐ Type ℓ ⊳ 𝟎
|
-- if Ψ | Γ ⊢ A · 0 ⇐ Type ℓ ⊳ 𝟎
|
||||||
ignore $ check0 ctx fst (TYPE l)
|
ignore $ check0 ctx fst (TYPE l)
|
||||||
|
@ -170,7 +139,7 @@ parameters {auto _ : IsQty q} {auto _ : CanTC q m}
|
||||||
pure $ zeroFor ctx
|
pure $ zeroFor ctx
|
||||||
|
|
||||||
check' ctx sg (Pair fst snd) _ ty = do
|
check' ctx sg (Pair fst snd) _ ty = do
|
||||||
(tfst, tsnd) <- expectSig ty
|
(tfst, tsnd) <- expectSig !ask ty
|
||||||
-- if Ψ | Γ ⊢ s · σ ⇐ A ⊳ Σ₁
|
-- if Ψ | Γ ⊢ s · σ ⇐ A ⊳ Σ₁
|
||||||
qfst <- check ctx sg fst tfst
|
qfst <- check ctx sg fst tfst
|
||||||
let tsnd = sub1 tsnd (fst :# tfst)
|
let tsnd = sub1 tsnd (fst :# tfst)
|
||||||
|
@ -180,7 +149,7 @@ parameters {auto _ : IsQty q} {auto _ : CanTC q m}
|
||||||
pure $ qfst + qsnd
|
pure $ qfst + qsnd
|
||||||
|
|
||||||
check' ctx sg (Eq i t l r) _ ty = do
|
check' ctx sg (Eq i t l r) _ ty = do
|
||||||
u <- expectTYPE ty
|
u <- expectTYPE !ask ty
|
||||||
expectEqualQ zero sg.fst
|
expectEqualQ zero sg.fst
|
||||||
-- if Ψ, i | Γ ⊢ A · 0 ⇐ Type ℓ ⊳ 𝟎
|
-- if Ψ, i | Γ ⊢ A · 0 ⇐ Type ℓ ⊳ 𝟎
|
||||||
case t of
|
case t of
|
||||||
|
@ -194,7 +163,7 @@ parameters {auto _ : IsQty q} {auto _ : CanTC q m}
|
||||||
pure $ zeroFor ctx
|
pure $ zeroFor ctx
|
||||||
|
|
||||||
check' ctx sg (DLam i body) _ ty = do
|
check' ctx sg (DLam i body) _ ty = do
|
||||||
(ty, l, r) <- expectEq ty
|
(ty, l, r) <- expectEq !ask ty
|
||||||
-- if Ψ, i | Γ ⊢ t · σ ⇐ A ⊳ Σ
|
-- if Ψ, i | Γ ⊢ t · σ ⇐ A ⊳ Σ
|
||||||
qout <- check (extendDim ctx) sg body.term ty.term
|
qout <- check (extendDim ctx) sg body.term ty.term
|
||||||
let eqs = makeDimEq ctx.dctx
|
let eqs = makeDimEq ctx.dctx
|
||||||
|
@ -234,7 +203,7 @@ parameters {auto _ : IsQty q} {auto _ : CanTC q m}
|
||||||
infer' ctx sg (fun :@ arg) _ = do
|
infer' ctx sg (fun :@ arg) _ = do
|
||||||
-- if Ψ | Γ ⊢ f · σ ⇒ (x · π : A) → B ⊳ Σ₁
|
-- if Ψ | Γ ⊢ f · σ ⇒ (x · π : A) → B ⊳ Σ₁
|
||||||
funres <- infer ctx sg fun
|
funres <- infer ctx sg fun
|
||||||
(qty, argty, res) <- expectPi funres.type
|
(qty, argty, res) <- expectPi !ask funres.type
|
||||||
-- if Ψ | Γ ⊢ s · σ∧π ⇐ A ⊳ Σ₂
|
-- if Ψ | Γ ⊢ s · σ∧π ⇐ A ⊳ Σ₂
|
||||||
-- (0∧π = σ∧0 = 0; σ∧π = σ otherwise)
|
-- (0∧π = σ∧0 = 0; σ∧π = σ otherwise)
|
||||||
argout <- check ctx (subjMult sg qty) arg argty
|
argout <- check ctx (subjMult sg qty) arg argty
|
||||||
|
@ -250,7 +219,7 @@ parameters {auto _ : IsQty q} {auto _ : CanTC q m}
|
||||||
-- if Ψ | Γ ⊢ pair · 1 ⇒ (x : A) × B ⊳ Σ₁
|
-- if Ψ | Γ ⊢ pair · 1 ⇒ (x : A) × B ⊳ Σ₁
|
||||||
pairres <- infer ctx sone pair
|
pairres <- infer ctx sone pair
|
||||||
ignore $ check0 (extendTy pairres.type zero ctx) ret.term (TYPE UAny)
|
ignore $ check0 (extendTy pairres.type zero ctx) ret.term (TYPE UAny)
|
||||||
(tfst, tsnd) <- expectSig pairres.type
|
(tfst, tsnd) <- expectSig !ask pairres.type
|
||||||
-- if Ψ | Γ, x · π : A, y · π : B ⊢ σ body ⇐ ret[(x, y)]
|
-- if Ψ | Γ, x · π : A, y · π : B ⊢ σ body ⇐ ret[(x, y)]
|
||||||
-- ⊳ Σ₂, x · π₁, y · π₂
|
-- ⊳ Σ₂, x · π₁, y · π₂
|
||||||
-- if π₁, π₂ ≤ π
|
-- if π₁, π₂ ≤ π
|
||||||
|
@ -263,11 +232,10 @@ parameters {auto _ : IsQty q} {auto _ : CanTC q m}
|
||||||
qout = pi * pairres.qout + bodyout
|
qout = pi * pairres.qout + bodyout
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
infer' ctx sg (fun :% dim) _ = do
|
infer' ctx sg (fun :% dim) _ = do
|
||||||
-- if Ψ | Γ ⊢ f · σ ⇒ Eq [i ⇒ A] l r ⊳ Σ
|
-- if Ψ | Γ ⊢ f · σ ⇒ Eq [i ⇒ A] l r ⊳ Σ
|
||||||
InfRes {type, qout} <- infer ctx sg fun
|
InfRes {type, qout} <- infer ctx sg fun
|
||||||
(ty, _, _) <- expectEq type
|
(ty, _, _) <- expectEq !ask type
|
||||||
-- then Ψ | Γ ⊢ f p · σ ⇒ A‹p› ⊳ Σ
|
-- then Ψ | Γ ⊢ f p · σ ⇒ A‹p› ⊳ Σ
|
||||||
pure $ InfRes {type = dsub1 ty dim, qout}
|
pure $ InfRes {type = dsub1 ty dim, qout}
|
||||||
|
|
||||||
|
|
|
@ -177,3 +177,33 @@ substCasePairRet : Term q d n -> ScopeTerm q d n -> Term q d (2 + n)
|
||||||
substCasePairRet dty retty =
|
substCasePairRet dty retty =
|
||||||
let arg = Pair (BVT 0) (BVT 1) :# (dty // fromNat 2) in
|
let arg = Pair (BVT 0) (BVT 1) :# (dty // fromNat 2) in
|
||||||
retty.term // (arg ::: shift 2)
|
retty.term // (arg ::: shift 2)
|
||||||
|
|
||||||
|
|
||||||
|
parameters {auto _ : HasErr q m} (defs : Definitions' q _)
|
||||||
|
export covering %inline
|
||||||
|
expectTYPE : Term q d n -> m Universe
|
||||||
|
expectTYPE s =
|
||||||
|
case fst $ whnfD defs s of
|
||||||
|
TYPE l => pure l
|
||||||
|
_ => throwError $ ExpectedTYPE s
|
||||||
|
|
||||||
|
export covering %inline
|
||||||
|
expectPi : Term q d n -> m (q, Term q d n, ScopeTerm q d n)
|
||||||
|
expectPi s =
|
||||||
|
case fst $ whnfD defs s of
|
||||||
|
Pi {qty, arg, res, _} => pure (qty, arg, res)
|
||||||
|
_ => throwError $ ExpectedPi s
|
||||||
|
|
||||||
|
export covering %inline
|
||||||
|
expectSig : Term q d n -> m (Term q d n, ScopeTerm q d n)
|
||||||
|
expectSig s =
|
||||||
|
case fst $ whnfD defs s of
|
||||||
|
Sig {fst, snd, _} => pure (fst, snd)
|
||||||
|
_ => throwError $ ExpectedSig s
|
||||||
|
|
||||||
|
export covering %inline
|
||||||
|
expectEq : Term q d n -> m (DScopeTerm q d n, Term q d n, Term q d n)
|
||||||
|
expectEq s =
|
||||||
|
case fst $ whnfD defs s of
|
||||||
|
Eq {ty, l, r, _} => pure (ty, l, r)
|
||||||
|
_ => throwError $ ExpectedEq s
|
||||||
|
|
|
@ -1,20 +1,17 @@
|
||||||
module Tests
|
module Tests
|
||||||
|
|
||||||
import TAP
|
import TAP
|
||||||
-- import Tests.Unicode
|
|
||||||
-- import Tests.Lexer
|
|
||||||
-- import Tests.Parser
|
|
||||||
import Tests.Reduce
|
import Tests.Reduce
|
||||||
import Tests.Equal
|
import Tests.Equal
|
||||||
|
import Tests.Typechecker
|
||||||
import System
|
import System
|
||||||
|
|
||||||
|
|
||||||
|
allTests : List Test
|
||||||
allTests = [
|
allTests = [
|
||||||
-- Unicode.tests,
|
|
||||||
-- Lexer.tests,
|
|
||||||
-- Parser.tests,
|
|
||||||
Reduce.tests,
|
Reduce.tests,
|
||||||
Equal.tests
|
Equal.tests,
|
||||||
|
Typechecker.tests
|
||||||
]
|
]
|
||||||
|
|
||||||
main = TAP.main !getTestOpts allTests
|
main = TAP.main !getTestOpts allTests
|
||||||
|
|
|
@ -1,65 +1,10 @@
|
||||||
module Tests.Equal
|
module Tests.Equal
|
||||||
|
|
||||||
import Quox.Equal as Lib
|
import Quox.Equal
|
||||||
import Quox.Pretty
|
|
||||||
import Quox.Syntax.Qty.Three
|
import Quox.Syntax.Qty.Three
|
||||||
|
import public TypingImpls
|
||||||
import TAP
|
import TAP
|
||||||
|
|
||||||
export
|
|
||||||
ToInfo (Error Three) where
|
|
||||||
toInfo (NotInScope x) =
|
|
||||||
[("type", "NotInScope"),
|
|
||||||
("name", show x)]
|
|
||||||
toInfo (ExpectedTYPE t) =
|
|
||||||
[("type", "ExpectedTYPE"),
|
|
||||||
("got", prettyStr True t)]
|
|
||||||
toInfo (ExpectedPi t) =
|
|
||||||
[("type", "ExpectedPi"),
|
|
||||||
("got", prettyStr True t)]
|
|
||||||
toInfo (ExpectedSig t) =
|
|
||||||
[("type", "ExpectedSig"),
|
|
||||||
("got", prettyStr True t)]
|
|
||||||
toInfo (ExpectedEq t) =
|
|
||||||
[("type", "ExpectedEq"),
|
|
||||||
("got", prettyStr True t)]
|
|
||||||
toInfo (BadUniverse k l) =
|
|
||||||
[("type", "BadUniverse"),
|
|
||||||
("low", show k),
|
|
||||||
("high", show l)]
|
|
||||||
toInfo (ClashT mode ty s t) =
|
|
||||||
[("type", "ClashT"),
|
|
||||||
("mode", show mode),
|
|
||||||
("ty", prettyStr True ty),
|
|
||||||
("left", prettyStr True s),
|
|
||||||
("right", prettyStr True t)]
|
|
||||||
toInfo (ClashE mode e f) =
|
|
||||||
[("type", "ClashE"),
|
|
||||||
("mode", show mode),
|
|
||||||
("left", prettyStr True e),
|
|
||||||
("right", prettyStr True f)]
|
|
||||||
toInfo (ClashU mode k l) =
|
|
||||||
[("type", "ClashU"),
|
|
||||||
("mode", show mode),
|
|
||||||
("left", prettyStr True k),
|
|
||||||
("right", prettyStr True l)]
|
|
||||||
toInfo (ClashQ pi rh) =
|
|
||||||
[("type", "ClashQ"),
|
|
||||||
("left", prettyStr True pi),
|
|
||||||
("right", prettyStr True rh)]
|
|
||||||
toInfo (ClashD p q) =
|
|
||||||
[("type", "ClashD"),
|
|
||||||
("left", prettyStr True p),
|
|
||||||
("right", prettyStr True q)]
|
|
||||||
toInfo (NotType ty) =
|
|
||||||
[("type", "NotType"),
|
|
||||||
("actual", prettyStr True ty)]
|
|
||||||
toInfo (WrongType ty s t) =
|
|
||||||
[("type", "WrongType"),
|
|
||||||
("ty", prettyStr True ty),
|
|
||||||
("left", prettyStr True s),
|
|
||||||
("right", prettyStr True t)]
|
|
||||||
|
|
||||||
|
|
||||||
0 M : Type -> Type
|
0 M : Type -> Type
|
||||||
M = ReaderT (Definitions Three) (Either (Error Three))
|
M = ReaderT (Definitions Three) (Either (Error Three))
|
||||||
|
|
||||||
|
@ -68,6 +13,7 @@ defGlobals = fromList
|
||||||
[("A", mkAbstract Zero $ TYPE 0),
|
[("A", mkAbstract Zero $ TYPE 0),
|
||||||
("B", mkAbstract Zero $ TYPE 0),
|
("B", mkAbstract Zero $ TYPE 0),
|
||||||
("a", mkAbstract Any $ FT "A"),
|
("a", mkAbstract Any $ FT "A"),
|
||||||
|
("a'", mkAbstract Any $ FT "A"),
|
||||||
("b", mkAbstract Any $ FT "B"),
|
("b", mkAbstract Any $ FT "B"),
|
||||||
("f", mkAbstract Any $ Arr One (FT "A") (FT "A"))]
|
("f", mkAbstract Any $ Arr One (FT "A") (FT "A"))]
|
||||||
|
|
||||||
|
@ -100,6 +46,7 @@ export
|
||||||
tests : Test
|
tests : Test
|
||||||
tests = "equality & subtyping" :- [
|
tests = "equality & subtyping" :- [
|
||||||
note #""0=1 ⊢ 𝒥" means that 𝒥 holds in an inconsistent dim context"#,
|
note #""0=1 ⊢ 𝒥" means that 𝒥 holds in an inconsistent dim context"#,
|
||||||
|
note #""s{…}" for term substs; "s‹…›" for dim substs"#,
|
||||||
|
|
||||||
"universes" :- [
|
"universes" :- [
|
||||||
testEq "★₀ ≡ ★₀" $
|
testEq "★₀ ≡ ★₀" $
|
||||||
|
@ -117,8 +64,8 @@ tests = "equality & subtyping" :- [
|
||||||
],
|
],
|
||||||
|
|
||||||
"pi" :- [
|
"pi" :- [
|
||||||
note #""A ⊸ B" for (1 _ : A) → B"#,
|
note #""A ⊸ B" for (1·A) → B"#,
|
||||||
note #""A ⇾ B" for (0 _ : A) → B"#,
|
note #""A ⇾ B" for (0·A) → B"#,
|
||||||
testEq "A ⊸ B ≡ A ⊸ B" $
|
testEq "A ⊸ B ≡ A ⊸ B" $
|
||||||
let tm = Arr One (FT "A") (FT "B") in
|
let tm = Arr One (FT "A") (FT "B") in
|
||||||
equalT [<] (TYPE 0) tm tm,
|
equalT [<] (TYPE 0) tm tm,
|
||||||
|
@ -168,32 +115,31 @@ tests = "equality & subtyping" :- [
|
||||||
"lambda" :- [
|
"lambda" :- [
|
||||||
testEq "λ x ⇒ [x] ≡ λ x ⇒ [x]" $
|
testEq "λ x ⇒ [x] ≡ λ x ⇒ [x]" $
|
||||||
equalT [<] (Arr One (FT "A") (FT "A"))
|
equalT [<] (Arr One (FT "A") (FT "A"))
|
||||||
(Lam "x" $ TUsed $ BVT 0)
|
(["x"] :\\ BVT 0)
|
||||||
(Lam "x" $ TUsed $ BVT 0),
|
(["x"] :\\ BVT 0),
|
||||||
testEq "λ x ⇒ [x] <: λ x ⇒ [x]" $
|
testEq "λ x ⇒ [x] <: λ x ⇒ [x]" $
|
||||||
subT [<] (Arr One (FT "A") (FT "A"))
|
subT [<] (Arr One (FT "A") (FT "A"))
|
||||||
(Lam "x" $ TUsed $ BVT 0)
|
(["x"] :\\ BVT 0)
|
||||||
(Lam "x" $ TUsed $ BVT 0),
|
(["x"] :\\ BVT 0),
|
||||||
testEq "λ x ⇒ [x] ≡ λ y ⇒ [y]" $
|
testEq "λ x ⇒ [x] ≡ λ y ⇒ [y]" $
|
||||||
equalT [<] (Arr One (FT "A") (FT "A"))
|
equalT [<] (Arr One (FT "A") (FT "A"))
|
||||||
(Lam "x" $ TUsed $ BVT 0)
|
(["x"] :\\ BVT 0)
|
||||||
(Lam "y" $ TUsed $ BVT 0),
|
(["y"] :\\ BVT 0),
|
||||||
testEq "λ x ⇒ [x] <: λ y ⇒ [y]" $
|
testEq "λ x ⇒ [x] <: λ y ⇒ [y]" $
|
||||||
equalT [<] (Arr One (FT "A") (FT "A"))
|
equalT [<] (Arr One (FT "A") (FT "A"))
|
||||||
(Lam "x" $ TUsed $ BVT 0)
|
(["x"] :\\ BVT 0)
|
||||||
(Lam "y" $ TUsed $ BVT 0),
|
(["y"] :\\ BVT 0),
|
||||||
testNeq "λ x y ⇒ [x] ≢ λ x y ⇒ [y]" $
|
testNeq "λ x y ⇒ [x] ≢ λ x y ⇒ [y]" $
|
||||||
equalT [<] (Arr One (FT "A") $ Arr One (FT "A") (FT "A"))
|
equalT [<] (Arr One (FT "A") $ Arr One (FT "A") (FT "A"))
|
||||||
(Lam "x" $ TUsed $ Lam "y" $ TUsed $ BVT 1)
|
(["x", "y"] :\\ BVT 1)
|
||||||
(Lam "x" $ TUsed $ Lam "y" $ TUsed $ BVT 0),
|
(["x", "y"] :\\ BVT 0),
|
||||||
testEq "λ x ⇒ [a] ≡ λ x ⇒ [a] (TUsed vs TUnused)" $
|
testEq "λ x ⇒ [a] ≡ λ x ⇒ [a] (TUsed vs TUnused)" $
|
||||||
equalT [<] (Arr Zero (FT "B") (FT "A"))
|
equalT [<] (Arr Zero (FT "B") (FT "A"))
|
||||||
(Lam "x" $ TUsed $ FT "a")
|
(Lam "x" $ TUsed $ FT "a")
|
||||||
(Lam "x" $ TUnused $ FT "a"),
|
(Lam "x" $ TUnused $ FT "a"),
|
||||||
skipWith "(no η yet)" $
|
|
||||||
testEq "λ x ⇒ [f [x]] ≡ [f] (η)" $
|
testEq "λ x ⇒ [f [x]] ≡ [f] (η)" $
|
||||||
equalT [<] (Arr One (FT "A") (FT "A"))
|
equalT [<] (Arr One (FT "A") (FT "A"))
|
||||||
(Lam "x" $ TUsed $ E $ F "f" :@ BVT 0)
|
(["x"] :\\ E (F "f" :@ BVT 0))
|
||||||
(FT "f")
|
(FT "f")
|
||||||
],
|
],
|
||||||
|
|
||||||
|
@ -208,7 +154,23 @@ tests = "equality & subtyping" :- [
|
||||||
(Eq0 (FT "A") (TYPE 0) (TYPE 0))
|
(Eq0 (FT "A") (TYPE 0) (TYPE 0))
|
||||||
],
|
],
|
||||||
|
|
||||||
todo "dim lambda",
|
"equalities" :-
|
||||||
|
let refl : Term q d n -> Term q d n -> Elim q d n
|
||||||
|
refl a x = (DLam "_" $ DUnused x) :# (Eq0 a x x)
|
||||||
|
in
|
||||||
|
[
|
||||||
|
note #""refl [A] x" is an abbreviation for "(λᴰi ⇒ x) ∷ (x ≡ x : A)""#,
|
||||||
|
testEq "refl [A] a ≡ refl [A] a" $
|
||||||
|
equalE [<] (refl (FT "A") (FT "a")) (refl (FT "A") (FT "a")),
|
||||||
|
testEq "p : (a ≡ a' : A), q : (a ≡ a' : A) ⊢ p ≡ q (free)"
|
||||||
|
{globals =
|
||||||
|
let def = mkAbstract Zero $ Eq0 (FT "A") (FT "a") (FT "a'") in
|
||||||
|
defGlobals `mergeLeft` fromList [("p", def), ("q", def)]} $
|
||||||
|
equalE [<] (F "p") (F "q"),
|
||||||
|
testEq "x : (a ≡ a' : A), y : (a ≡ a' : A) ⊢ x ≡ y (bound)" $
|
||||||
|
let ty : forall n. Term Three 0 n := Eq0 (FT "A") (FT "a") (FT "a'") in
|
||||||
|
equalE [< ty, ty] (BV 0) (BV 1) {n = 2}
|
||||||
|
],
|
||||||
|
|
||||||
"term closure" :- [
|
"term closure" :- [
|
||||||
note "𝑖, 𝑗 for bound variables pointing outside of the current expr",
|
note "𝑖, 𝑗 for bound variables pointing outside of the current expr",
|
||||||
|
@ -230,8 +192,8 @@ tests = "equality & subtyping" :- [
|
||||||
(Lam "y" $ TUnused $ FT "a"),
|
(Lam "y" $ TUnused $ FT "a"),
|
||||||
testEq "(λy. [𝑖]){y/y, a/𝑖} ≡ λy. [a] (TUsed)" $
|
testEq "(λy. [𝑖]){y/y, a/𝑖} ≡ λy. [a] (TUsed)" $
|
||||||
equalT [<] (Arr Zero (FT "B") (FT "A"))
|
equalT [<] (Arr Zero (FT "B") (FT "A"))
|
||||||
(CloT (Lam "y" $ TUsed $ BVT 1) (F "a" ::: id))
|
(CloT (["y"] :\\ BVT 1) (F "a" ::: id))
|
||||||
(Lam "y" $ TUsed $ FT "a")
|
(["y"] :\\ FT "a")
|
||||||
],
|
],
|
||||||
|
|
||||||
todo "term d-closure",
|
todo "term d-closure",
|
||||||
|
@ -290,48 +252,29 @@ tests = "equality & subtyping" :- [
|
||||||
subE [<] (F "f" :@ FT "a") (F "f" :@ FT "a"),
|
subE [<] (F "f" :@ FT "a") (F "f" :@ FT "a"),
|
||||||
testEq "(λ x ⇒ [x] ∷ A ⊸ A) a ≡ ([a ∷ A] ∷ A) (β)" $
|
testEq "(λ x ⇒ [x] ∷ A ⊸ A) a ≡ ([a ∷ A] ∷ A) (β)" $
|
||||||
equalE [<]
|
equalE [<]
|
||||||
((Lam "x" (TUsed (BVT 0)) :# (Arr One (FT "A") (FT "A")))
|
(((["x"] :\\ BVT 0) :# Arr One (FT "A") (FT "A")) :@ FT "a")
|
||||||
:@ FT "a")
|
|
||||||
(E (FT "a" :# FT "A") :# FT "A"),
|
(E (FT "a" :# FT "A") :# FT "A"),
|
||||||
testEq "(λ x ⇒ [x] ∷ A ⊸ A) a ≡ a (βυ)" $
|
testEq "(λ x ⇒ [x] ∷ A ⊸ A) a ≡ a (βυ)" $
|
||||||
equalE [<]
|
equalE [<]
|
||||||
((Lam "x" (TUsed (BVT 0)) :# (Arr One (FT "A") (FT "A")))
|
(((["x"] :\\ BVT 0) :# Arr One (FT "A") (FT "A")) :@ FT "a")
|
||||||
:@ FT "a")
|
|
||||||
(F "a"),
|
(F "a"),
|
||||||
testEq "(λ g ⇒ [g [a]] ∷ ⋯)) [f] ≡ (λ y ⇒ [f [y]] ∷ ⋯) [a] (β↘↙)" $
|
testEq "(λ g ⇒ [g [a]] ∷ ⋯)) [f] ≡ (λ y ⇒ [f [y]] ∷ ⋯) [a] (β↘↙)" $
|
||||||
let a = FT "A"; a2a = (Arr One a a) in
|
let a = FT "A"; a2a = (Arr One a a) in
|
||||||
equalE [<]
|
equalE [<]
|
||||||
((Lam "g" (TUsed (E (BV 0 :@ FT "a"))) :# Arr One a2a a) :@ FT "f")
|
(((["g"] :\\ E (BV 0 :@ FT "a")) :# Arr One a2a a) :@ FT "f")
|
||||||
((Lam "y" (TUsed (E (F "f" :@ BVT 0))) :# a2a) :@ FT "a"),
|
(((["y"] :\\ E (F "f" :@ BVT 0)) :# a2a) :@ FT "a"),
|
||||||
testEq "(λ x ⇒ [x] ∷ A ⊸ A) a <: a" $
|
testEq "(λ x ⇒ [x] ∷ A ⊸ A) a <: a" $
|
||||||
subE [<]
|
subE [<]
|
||||||
((Lam "x" (TUsed (BVT 0)) :# (Arr One (FT "A") (FT "A")))
|
(((["x"] :\\ BVT 0) :# (Arr One (FT "A") (FT "A"))) :@ FT "a")
|
||||||
:@ FT "a")
|
|
||||||
(F "a"),
|
(F "a"),
|
||||||
testEq "id : A ⊸ A ≔ λ x ⇒ [x] ⊢ id [a] ≡ a"
|
testEq "id : A ⊸ A ≔ λ x ⇒ [x] ⊢ id [a] ≡ a"
|
||||||
{globals = defGlobals `mergeLeft` fromList
|
{globals = defGlobals `mergeLeft` fromList
|
||||||
[("id", mkDef Any (Arr One (FT "A") (FT "A"))
|
[("id", mkDef Any (Arr One (FT "A") (FT "A"))
|
||||||
(Lam "x" (TUsed (BVT 0))))]} $
|
(["x"] :\\ BVT 0))]} $
|
||||||
equalE [<] (F "id" :@ FT "a") (F "a")
|
equalE [<] (F "id" :@ FT "a") (F "a")
|
||||||
],
|
],
|
||||||
|
|
||||||
"dim application" :-
|
todo "dim application",
|
||||||
let refl : Term q d n -> Term q d n -> Elim q d n
|
|
||||||
refl a x = (DLam "_" $ DUnused x) :# (Eq0 a x x)
|
|
||||||
in
|
|
||||||
[
|
|
||||||
note #""refl [A] x" is an abbreviation for "(λᴰi ⇒ x) ∷ (x ≡ x : A)""#,
|
|
||||||
testEq "refl [A] a ≡ refl [A] a" $
|
|
||||||
equalE [<] (refl (FT "A") (FT "a")) (refl (FT "A") (FT "a")),
|
|
||||||
testEq "p : (a ≡ b : A), q : (a ≡ b : A) ⊢ p ≡ q"
|
|
||||||
{globals =
|
|
||||||
let def = mkAbstract Zero $ Eq0 (FT "A") (FT "a") (FT "b") in
|
|
||||||
fromList [("A", mkAbstract Zero $ TYPE 0),
|
|
||||||
("a", mkAbstract Any $ FT "A"),
|
|
||||||
("b", mkAbstract Any $ FT "A"),
|
|
||||||
("p", def), ("q", def)]} $
|
|
||||||
equalE [<] (F "p") (F "q")
|
|
||||||
],
|
|
||||||
|
|
||||||
todo "annotation",
|
todo "annotation",
|
||||||
|
|
||||||
|
|
138
tests/Tests/Typechecker.idr
Normal file
138
tests/Tests/Typechecker.idr
Normal file
|
@ -0,0 +1,138 @@
|
||||||
|
module Tests.Typechecker
|
||||||
|
|
||||||
|
import Quox.Syntax
|
||||||
|
import Quox.Syntax.Qty.Three
|
||||||
|
import Quox.Typechecker as Lib
|
||||||
|
import public TypingImpls
|
||||||
|
import TAP
|
||||||
|
|
||||||
|
|
||||||
|
0 M : Type -> Type
|
||||||
|
M = ReaderT (Definitions Three) $ Either (Error Three)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
reflTy : IsQty q => Term q d n
|
||||||
|
reflTy =
|
||||||
|
Pi zero "A" (TYPE 0) $ TUsed $
|
||||||
|
Pi zero "x" (BVT 0) $ TUsed $
|
||||||
|
Eq0 (BVT 1) (BVT 0) (BVT 0)
|
||||||
|
|
||||||
|
reflDef : IsQty q => Term q d n
|
||||||
|
reflDef = ["A","x"] :\\ ["i"] :\\% BVT 0
|
||||||
|
|
||||||
|
defGlobals : Definitions Three
|
||||||
|
defGlobals = fromList
|
||||||
|
[("A", mkAbstract Zero $ TYPE 0),
|
||||||
|
("B", mkAbstract Zero $ TYPE 0),
|
||||||
|
("C", mkAbstract Zero $ TYPE 1),
|
||||||
|
("D", mkAbstract Zero $ TYPE 1),
|
||||||
|
("a", mkAbstract Any $ FT "A"),
|
||||||
|
("b", mkAbstract Any $ FT "B"),
|
||||||
|
("f", mkAbstract Any $ Arr One (FT "A") (FT "A")),
|
||||||
|
("refl", mkDef Any reflTy reflDef)]
|
||||||
|
|
||||||
|
parameters (label : String) (act : Lazy (M ()))
|
||||||
|
{default defGlobals globals : Definitions Three}
|
||||||
|
testTC : Test
|
||||||
|
testTC = test label $ runReaderT globals act
|
||||||
|
|
||||||
|
testTCFail : Test
|
||||||
|
testTCFail = testThrows label (const True) $ runReaderT globals act
|
||||||
|
|
||||||
|
|
||||||
|
ctxWith : DContext d -> Context (\i => (Term Three d i, Three)) n ->
|
||||||
|
TyContext Three d n
|
||||||
|
ctxWith dctx tqctx =
|
||||||
|
let (tctx, qctx) = unzip tqctx in MkTyContext {dctx, tctx, qctx}
|
||||||
|
|
||||||
|
ctx : Context (\i => (Term Three 0 i, Three)) n -> TyContext Three 0 n
|
||||||
|
ctx = ctxWith DNil
|
||||||
|
|
||||||
|
inferAs : TyContext Three d n -> (sg : SQty Three) ->
|
||||||
|
Elim Three d n -> Term Three d n -> M ()
|
||||||
|
inferAs ctx sg e ty = do
|
||||||
|
ty' <- infer ctx sg e
|
||||||
|
catchError
|
||||||
|
(equalType (makeDimEq ctx.dctx) ctx.tctx ty ty'.type)
|
||||||
|
(\_ : Error Three => throwError $ ClashT Equal (TYPE UAny) ty ty'.type)
|
||||||
|
|
||||||
|
infer_ : TyContext Three d n -> (sg : SQty Three) -> Elim Three d n -> M ()
|
||||||
|
infer_ ctx sg e = ignore $ infer ctx sg e
|
||||||
|
|
||||||
|
check_ : TyContext Three d n -> SQty Three ->
|
||||||
|
Term Three d n -> Term Three d n -> M ()
|
||||||
|
check_ ctx sg s ty = ignore $ check ctx sg s ty
|
||||||
|
|
||||||
|
export
|
||||||
|
tests : Test
|
||||||
|
tests = "typechecker" :- [
|
||||||
|
"universes" :- [
|
||||||
|
testTC "0 · ★₀ ⇐ ★₁" $ check_ (ctx [<]) szero (TYPE 0) (TYPE 1),
|
||||||
|
testTC "0 · ★₀ ⇐ ★₂" $ check_ (ctx [<]) szero (TYPE 0) (TYPE 2),
|
||||||
|
testTC "0 · ★₀ ⇐ ★_" $ check_ (ctx [<]) szero (TYPE 0) (TYPE UAny),
|
||||||
|
testTCFail "0 · ★₁ ⇍ ★₀" $ check_ (ctx [<]) szero (TYPE 1) (TYPE 0),
|
||||||
|
testTCFail "0 · ★₀ ⇍ ★₀" $ check_ (ctx [<]) szero (TYPE 0) (TYPE 0),
|
||||||
|
testTCFail "0 · ★_ ⇍ ★_" $ check_ (ctx [<]) szero (TYPE UAny) (TYPE UAny),
|
||||||
|
testTCFail "1 · ★₀ ⇍ ★₁" $ check_ (ctx [<]) sone (TYPE 0) (TYPE 1)
|
||||||
|
],
|
||||||
|
|
||||||
|
"function types" :- [
|
||||||
|
note "A, B : ★₀; C, D : ★₁",
|
||||||
|
testTC "0 · (1·A) → B ⇐ ★₀" $
|
||||||
|
check_ (ctx [<]) szero (Arr One (FT "A") (FT "B")) (TYPE 0),
|
||||||
|
testTC "0 · (1·A) → B ⇐ ★₁👈" $
|
||||||
|
check_ (ctx [<]) szero (Arr One (FT "A") (FT "B")) (TYPE 1),
|
||||||
|
testTC "0 · (1·C) → D ⇐ ★₁" $
|
||||||
|
check_ (ctx [<]) szero (Arr One (FT "C") (FT "D")) (TYPE 1),
|
||||||
|
testTCFail "0 · (1·C) → D ⇍ ★₀" $
|
||||||
|
check_ (ctx [<]) szero (Arr One (FT "C") (FT "D")) (TYPE 0)
|
||||||
|
],
|
||||||
|
|
||||||
|
"free vars" :- [
|
||||||
|
testTC "0 · A ⇒ ★₀" $
|
||||||
|
inferAs (ctx [<]) szero (F "A") (TYPE 0),
|
||||||
|
testTC "0 · A ⇐👈 ★₀" $
|
||||||
|
check_ (ctx [<]) szero (FT "A") (TYPE 0),
|
||||||
|
testTC "0 · A ⇐ ★₁👈" $
|
||||||
|
check_ (ctx [<]) szero (FT "A") (TYPE 1),
|
||||||
|
testTCFail "1👈 · A ⇏ ★₀" $
|
||||||
|
infer_ (ctx [<]) sone (F "A"),
|
||||||
|
note "refl : (0·A : ★₀) → (0·x : A) → (x ≡ x : A) ≔ (λ A x ⇒ λᴰ _ ⇒ x)",
|
||||||
|
testTC "1 · refl ⇒ {type of refl}" $
|
||||||
|
inferAs (ctx [<]) sone (F "refl") reflTy,
|
||||||
|
testTC "1 · refl ⇐ {type of refl}" $
|
||||||
|
check_ (ctx [<]) sone (FT "refl") reflTy
|
||||||
|
],
|
||||||
|
|
||||||
|
"lambda" :- [
|
||||||
|
testTC #"1 · (λ A x ⇒ refl A x) ⇐ {type of refl, see "free vars"}"# $
|
||||||
|
check_ (ctx [<]) sone
|
||||||
|
(["A", "x"] :\\ E (F "refl" :@@ [BVT 1, BVT 0]))
|
||||||
|
reflTy
|
||||||
|
],
|
||||||
|
|
||||||
|
"misc" :- [
|
||||||
|
testTC "funext"
|
||||||
|
{globals = fromList
|
||||||
|
[("A", mkAbstract Zero $ TYPE 0),
|
||||||
|
("B", mkAbstract Zero $ Arr Any (FT "A") (TYPE 0)),
|
||||||
|
("f", mkAbstract Any $
|
||||||
|
Pi Any "x" (FT "A") $ TUsed $ E $ F "B" :@ BVT 0),
|
||||||
|
("g", mkAbstract Any $
|
||||||
|
Pi Any "x" (FT "A") $ TUsed $ E $ F "B" :@ BVT 0)]} $
|
||||||
|
-- 0·A : Type, 0·B : ω·A → Type,
|
||||||
|
-- ω·f, g : (ω·x : A) → B x
|
||||||
|
-- ⊢
|
||||||
|
-- 0·funext : (ω·eq : (0·x : A) → f x ≡ g x) → f ≡ g
|
||||||
|
-- = λ eq ⇒ λᴰ i ⇒ λ x ⇒ eq x i
|
||||||
|
check_ (ctx [<]) szero
|
||||||
|
(["eq"] :\\ ["i"] :\\% ["x"] :\\ E (BV 1 :@ BVT 0 :% BV 0))
|
||||||
|
(Pi Any "eq"
|
||||||
|
(Pi Zero "x" (FT "A") $ TUsed $
|
||||||
|
Eq0 (E $ F "B" :@ BVT 0)
|
||||||
|
(E $ F "f" :@ BVT 0) (E $ F "g" :@ BVT 0)) $ TUsed $
|
||||||
|
Eq0 (Pi Any "x" (FT "A") $ TUsed $ E $ F "B" :@ BVT 0)
|
||||||
|
(FT "f") (FT "g"))
|
||||||
|
]
|
||||||
|
]
|
61
tests/TypingImpls.idr
Normal file
61
tests/TypingImpls.idr
Normal file
|
@ -0,0 +1,61 @@
|
||||||
|
module TypingImpls
|
||||||
|
|
||||||
|
import TAP
|
||||||
|
import public Quox.Typing
|
||||||
|
import public Quox.Pretty
|
||||||
|
|
||||||
|
export
|
||||||
|
PrettyHL q => ToInfo (Error q) where
|
||||||
|
toInfo (NotInScope x) =
|
||||||
|
[("type", "NotInScope"),
|
||||||
|
("name", show x)]
|
||||||
|
toInfo (ExpectedTYPE t) =
|
||||||
|
[("type", "ExpectedTYPE"),
|
||||||
|
("got", prettyStr True t)]
|
||||||
|
toInfo (ExpectedPi t) =
|
||||||
|
[("type", "ExpectedPi"),
|
||||||
|
("got", prettyStr True t)]
|
||||||
|
toInfo (ExpectedSig t) =
|
||||||
|
[("type", "ExpectedSig"),
|
||||||
|
("got", prettyStr True t)]
|
||||||
|
toInfo (ExpectedEq t) =
|
||||||
|
[("type", "ExpectedEq"),
|
||||||
|
("got", prettyStr True t)]
|
||||||
|
toInfo (BadUniverse k l) =
|
||||||
|
[("type", "BadUniverse"),
|
||||||
|
("low", show k),
|
||||||
|
("high", show l)]
|
||||||
|
toInfo (ClashT mode ty s t) =
|
||||||
|
[("type", "ClashT"),
|
||||||
|
("mode", show mode),
|
||||||
|
("ty", prettyStr True ty),
|
||||||
|
("left", prettyStr True s),
|
||||||
|
("right", prettyStr True t)]
|
||||||
|
toInfo (ClashE mode e f) =
|
||||||
|
[("type", "ClashE"),
|
||||||
|
("mode", show mode),
|
||||||
|
("left", prettyStr True e),
|
||||||
|
("right", prettyStr True f)]
|
||||||
|
toInfo (ClashU mode k l) =
|
||||||
|
[("type", "ClashU"),
|
||||||
|
("mode", show mode),
|
||||||
|
("left", prettyStr True k),
|
||||||
|
("right", prettyStr True l)]
|
||||||
|
toInfo (ClashQ pi rh) =
|
||||||
|
[("type", "ClashQ"),
|
||||||
|
("left", prettyStr True pi),
|
||||||
|
("right", prettyStr True rh)]
|
||||||
|
toInfo (ClashD p q) =
|
||||||
|
[("type", "ClashD"),
|
||||||
|
("left", prettyStr True p),
|
||||||
|
("right", prettyStr True q)]
|
||||||
|
toInfo (NotType ty) =
|
||||||
|
[("type", "NotType"),
|
||||||
|
("actual", prettyStr True ty)]
|
||||||
|
toInfo (WrongType ty s t) =
|
||||||
|
[("type", "WrongType"),
|
||||||
|
("ty", prettyStr True ty),
|
||||||
|
("left", prettyStr True s),
|
||||||
|
("right", prettyStr True t)]
|
||||||
|
|
||||||
|
|
|
@ -6,5 +6,7 @@ executable = quox-tests
|
||||||
main = Tests
|
main = Tests
|
||||||
modules =
|
modules =
|
||||||
TermImpls,
|
TermImpls,
|
||||||
|
TypingImpls,
|
||||||
Tests.Reduce,
|
Tests.Reduce,
|
||||||
Tests.Equal
|
Tests.Equal,
|
||||||
|
Tests.Typechecker
|
||||||
|
|
Loading…
Reference in a new issue