more typed equality, uip, etc

This commit is contained in:
rhiannon morris 2023-02-11 18:15:50 +01:00
parent 7fd7a31635
commit 7d2c3b5a8e
8 changed files with 381 additions and 217 deletions

View file

@ -1,65 +1,10 @@
module Tests.Equal
import Quox.Equal as Lib
import Quox.Pretty
import Quox.Equal
import Quox.Syntax.Qty.Three
import public TypingImpls
import TAP
export
ToInfo (Error Three) where
toInfo (NotInScope x) =
[("type", "NotInScope"),
("name", show x)]
toInfo (ExpectedTYPE t) =
[("type", "ExpectedTYPE"),
("got", prettyStr True t)]
toInfo (ExpectedPi t) =
[("type", "ExpectedPi"),
("got", prettyStr True t)]
toInfo (ExpectedSig t) =
[("type", "ExpectedSig"),
("got", prettyStr True t)]
toInfo (ExpectedEq t) =
[("type", "ExpectedEq"),
("got", prettyStr True t)]
toInfo (BadUniverse k l) =
[("type", "BadUniverse"),
("low", show k),
("high", show l)]
toInfo (ClashT mode ty s t) =
[("type", "ClashT"),
("mode", show mode),
("ty", prettyStr True ty),
("left", prettyStr True s),
("right", prettyStr True t)]
toInfo (ClashE mode e f) =
[("type", "ClashE"),
("mode", show mode),
("left", prettyStr True e),
("right", prettyStr True f)]
toInfo (ClashU mode k l) =
[("type", "ClashU"),
("mode", show mode),
("left", prettyStr True k),
("right", prettyStr True l)]
toInfo (ClashQ pi rh) =
[("type", "ClashQ"),
("left", prettyStr True pi),
("right", prettyStr True rh)]
toInfo (ClashD p q) =
[("type", "ClashD"),
("left", prettyStr True p),
("right", prettyStr True q)]
toInfo (NotType ty) =
[("type", "NotType"),
("actual", prettyStr True ty)]
toInfo (WrongType ty s t) =
[("type", "WrongType"),
("ty", prettyStr True ty),
("left", prettyStr True s),
("right", prettyStr True t)]
0 M : Type -> Type
M = ReaderT (Definitions Three) (Either (Error Three))
@ -68,6 +13,7 @@ defGlobals = fromList
[("A", mkAbstract Zero $ TYPE 0),
("B", mkAbstract Zero $ TYPE 0),
("a", mkAbstract Any $ FT "A"),
("a'", mkAbstract Any $ FT "A"),
("b", mkAbstract Any $ FT "B"),
("f", mkAbstract Any $ Arr One (FT "A") (FT "A"))]
@ -100,6 +46,7 @@ export
tests : Test
tests = "equality & subtyping" :- [
note #""0=1𝒥" means that 𝒥 holds in an inconsistent dim context"#,
note #""s{}" for term substs; "s" for dim substs"#,
"universes" :- [
testEq "★₀ ≡ ★₀" $
@ -117,8 +64,8 @@ tests = "equality & subtyping" :- [
],
"pi" :- [
note #""AB" for (1 _ : A) → B"#,
note #""AB" for (0 _ : A) → B"#,
note #""AB" for (1·A) → B"#,
note #""AB" for (0·A) → B"#,
testEq "A ⊸ B ≡ A ⊸ B" $
let tm = Arr One (FT "A") (FT "B") in
equalT [<] (TYPE 0) tm tm,
@ -168,32 +115,31 @@ tests = "equality & subtyping" :- [
"lambda" :- [
testEq "λ x ⇒ [x] ≡ λ x ⇒ [x]" $
equalT [<] (Arr One (FT "A") (FT "A"))
(Lam "x" $ TUsed $ BVT 0)
(Lam "x" $ TUsed $ BVT 0),
(["x"] :\\ BVT 0)
(["x"] :\\ BVT 0),
testEq "λ x ⇒ [x] <: λ x ⇒ [x]" $
subT [<] (Arr One (FT "A") (FT "A"))
(Lam "x" $ TUsed $ BVT 0)
(Lam "x" $ TUsed $ BVT 0),
(["x"] :\\ BVT 0)
(["x"] :\\ BVT 0),
testEq "λ x ⇒ [x] ≡ λ y ⇒ [y]" $
equalT [<] (Arr One (FT "A") (FT "A"))
(Lam "x" $ TUsed $ BVT 0)
(Lam "y" $ TUsed $ BVT 0),
(["x"] :\\ BVT 0)
(["y"] :\\ BVT 0),
testEq "λ x ⇒ [x] <: λ y ⇒ [y]" $
equalT [<] (Arr One (FT "A") (FT "A"))
(Lam "x" $ TUsed $ BVT 0)
(Lam "y" $ TUsed $ BVT 0),
(["x"] :\\ BVT 0)
(["y"] :\\ BVT 0),
testNeq "λ x y ⇒ [x] ≢ λ x y ⇒ [y]" $
equalT [<] (Arr One (FT "A") $ Arr One (FT "A") (FT "A"))
(Lam "x" $ TUsed $ Lam "y" $ TUsed $ BVT 1)
(Lam "x" $ TUsed $ Lam "y" $ TUsed $ BVT 0),
(["x", "y"] :\\ BVT 1)
(["x", "y"] :\\ BVT 0),
testEq "λ x ⇒ [a] ≡ λ x ⇒ [a] (TUsed vs TUnused)" $
equalT [<] (Arr Zero (FT "B") (FT "A"))
(Lam "x" $ TUsed $ FT "a")
(Lam "x" $ TUnused $ FT "a"),
skipWith "(no η yet)" $
testEq "λ x ⇒ [f [x]] ≡ [f] (η)" $
equalT [<] (Arr One (FT "A") (FT "A"))
(Lam "x" $ TUsed $ E $ F "f" :@ BVT 0)
(["x"] :\\ E (F "f" :@ BVT 0))
(FT "f")
],
@ -208,7 +154,23 @@ tests = "equality & subtyping" :- [
(Eq0 (FT "A") (TYPE 0) (TYPE 0))
],
todo "dim lambda",
"equalities" :-
let refl : Term q d n -> Term q d n -> Elim q d n
refl a x = (DLam "_" $ DUnused x) :# (Eq0 a x x)
in
[
note #""refl [A] x" is an abbreviation for "(λᴰi ⇒ x)(x ≡ x : A)""#,
testEq "refl [A] a ≡ refl [A] a" $
equalE [<] (refl (FT "A") (FT "a")) (refl (FT "A") (FT "a")),
testEq "p : (a ≡ a' : A), q : (a ≡ a' : A) ⊢ p ≡ q (free)"
{globals =
let def = mkAbstract Zero $ Eq0 (FT "A") (FT "a") (FT "a'") in
defGlobals `mergeLeft` fromList [("p", def), ("q", def)]} $
equalE [<] (F "p") (F "q"),
testEq "x : (a ≡ a' : A), y : (a ≡ a' : A) ⊢ x ≡ y (bound)" $
let ty : forall n. Term Three 0 n := Eq0 (FT "A") (FT "a") (FT "a'") in
equalE [< ty, ty] (BV 0) (BV 1) {n = 2}
],
"term closure" :- [
note "𝑖, 𝑗 for bound variables pointing outside of the current expr",
@ -230,8 +192,8 @@ tests = "equality & subtyping" :- [
(Lam "y" $ TUnused $ FT "a"),
testEq "(λy. [𝑖]){y/y, a/𝑖} ≡ λy. [a] (TUsed)" $
equalT [<] (Arr Zero (FT "B") (FT "A"))
(CloT (Lam "y" $ TUsed $ BVT 1) (F "a" ::: id))
(Lam "y" $ TUsed $ FT "a")
(CloT (["y"] :\\ BVT 1) (F "a" ::: id))
(["y"] :\\ FT "a")
],
todo "term d-closure",
@ -290,48 +252,29 @@ tests = "equality & subtyping" :- [
subE [<] (F "f" :@ FT "a") (F "f" :@ FT "a"),
testEq "(λ x ⇒ [x] ∷ A ⊸ A) a ≡ ([a ∷ A] ∷ A) (β)" $
equalE [<]
((Lam "x" (TUsed (BVT 0)) :# (Arr One (FT "A") (FT "A")))
:@ FT "a")
(((["x"] :\\ BVT 0) :# Arr One (FT "A") (FT "A")) :@ FT "a")
(E (FT "a" :# FT "A") :# FT "A"),
testEq "(λ x ⇒ [x] ∷ A ⊸ A) a ≡ a (βυ)" $
equalE [<]
((Lam "x" (TUsed (BVT 0)) :# (Arr One (FT "A") (FT "A")))
:@ FT "a")
(((["x"] :\\ BVT 0) :# Arr One (FT "A") (FT "A")) :@ FT "a")
(F "a"),
testEq "(λ g ⇒ [g [a]] ∷ ⋯)) [f] ≡ (λ y ⇒ [f [y]] ∷ ⋯) [a] (β↘↙)" $
let a = FT "A"; a2a = (Arr One a a) in
equalE [<]
((Lam "g" (TUsed (E (BV 0 :@ FT "a"))) :# Arr One a2a a) :@ FT "f")
((Lam "y" (TUsed (E (F "f" :@ BVT 0))) :# a2a) :@ FT "a"),
(((["g"] :\\ E (BV 0 :@ FT "a")) :# Arr One a2a a) :@ FT "f")
(((["y"] :\\ E (F "f" :@ BVT 0)) :# a2a) :@ FT "a"),
testEq "(λ x ⇒ [x] ∷ A ⊸ A) a <: a" $
subE [<]
((Lam "x" (TUsed (BVT 0)) :# (Arr One (FT "A") (FT "A")))
:@ FT "a")
(((["x"] :\\ BVT 0) :# (Arr One (FT "A") (FT "A"))) :@ FT "a")
(F "a"),
testEq "id : A ⊸ A ≔ λ x ⇒ [x] ⊢ id [a] ≡ a"
{globals = defGlobals `mergeLeft` fromList
[("id", mkDef Any (Arr One (FT "A") (FT "A"))
(Lam "x" (TUsed (BVT 0))))]} $
(["x"] :\\ BVT 0))]} $
equalE [<] (F "id" :@ FT "a") (F "a")
],
"dim application" :-
let refl : Term q d n -> Term q d n -> Elim q d n
refl a x = (DLam "_" $ DUnused x) :# (Eq0 a x x)
in
[
note #""refl [A] x" is an abbreviation for "(λᴰi ⇒ x)(x ≡ x : A)""#,
testEq "refl [A] a ≡ refl [A] a" $
equalE [<] (refl (FT "A") (FT "a")) (refl (FT "A") (FT "a")),
testEq "p : (a ≡ b : A), q : (a ≡ b : A) ⊢ p ≡ q"
{globals =
let def = mkAbstract Zero $ Eq0 (FT "A") (FT "a") (FT "b") in
fromList [("A", mkAbstract Zero $ TYPE 0),
("a", mkAbstract Any $ FT "A"),
("b", mkAbstract Any $ FT "A"),
("p", def), ("q", def)]} $
equalE [<] (F "p") (F "q")
],
todo "dim application",
todo "annotation",