more typed equality, uip, etc
This commit is contained in:
parent
7fd7a31635
commit
7d2c3b5a8e
8 changed files with 381 additions and 217 deletions
|
@ -1,65 +1,10 @@
|
|||
module Tests.Equal
|
||||
|
||||
import Quox.Equal as Lib
|
||||
import Quox.Pretty
|
||||
import Quox.Equal
|
||||
import Quox.Syntax.Qty.Three
|
||||
import public TypingImpls
|
||||
import TAP
|
||||
|
||||
export
|
||||
ToInfo (Error Three) where
|
||||
toInfo (NotInScope x) =
|
||||
[("type", "NotInScope"),
|
||||
("name", show x)]
|
||||
toInfo (ExpectedTYPE t) =
|
||||
[("type", "ExpectedTYPE"),
|
||||
("got", prettyStr True t)]
|
||||
toInfo (ExpectedPi t) =
|
||||
[("type", "ExpectedPi"),
|
||||
("got", prettyStr True t)]
|
||||
toInfo (ExpectedSig t) =
|
||||
[("type", "ExpectedSig"),
|
||||
("got", prettyStr True t)]
|
||||
toInfo (ExpectedEq t) =
|
||||
[("type", "ExpectedEq"),
|
||||
("got", prettyStr True t)]
|
||||
toInfo (BadUniverse k l) =
|
||||
[("type", "BadUniverse"),
|
||||
("low", show k),
|
||||
("high", show l)]
|
||||
toInfo (ClashT mode ty s t) =
|
||||
[("type", "ClashT"),
|
||||
("mode", show mode),
|
||||
("ty", prettyStr True ty),
|
||||
("left", prettyStr True s),
|
||||
("right", prettyStr True t)]
|
||||
toInfo (ClashE mode e f) =
|
||||
[("type", "ClashE"),
|
||||
("mode", show mode),
|
||||
("left", prettyStr True e),
|
||||
("right", prettyStr True f)]
|
||||
toInfo (ClashU mode k l) =
|
||||
[("type", "ClashU"),
|
||||
("mode", show mode),
|
||||
("left", prettyStr True k),
|
||||
("right", prettyStr True l)]
|
||||
toInfo (ClashQ pi rh) =
|
||||
[("type", "ClashQ"),
|
||||
("left", prettyStr True pi),
|
||||
("right", prettyStr True rh)]
|
||||
toInfo (ClashD p q) =
|
||||
[("type", "ClashD"),
|
||||
("left", prettyStr True p),
|
||||
("right", prettyStr True q)]
|
||||
toInfo (NotType ty) =
|
||||
[("type", "NotType"),
|
||||
("actual", prettyStr True ty)]
|
||||
toInfo (WrongType ty s t) =
|
||||
[("type", "WrongType"),
|
||||
("ty", prettyStr True ty),
|
||||
("left", prettyStr True s),
|
||||
("right", prettyStr True t)]
|
||||
|
||||
|
||||
0 M : Type -> Type
|
||||
M = ReaderT (Definitions Three) (Either (Error Three))
|
||||
|
||||
|
@ -68,6 +13,7 @@ defGlobals = fromList
|
|||
[("A", mkAbstract Zero $ TYPE 0),
|
||||
("B", mkAbstract Zero $ TYPE 0),
|
||||
("a", mkAbstract Any $ FT "A"),
|
||||
("a'", mkAbstract Any $ FT "A"),
|
||||
("b", mkAbstract Any $ FT "B"),
|
||||
("f", mkAbstract Any $ Arr One (FT "A") (FT "A"))]
|
||||
|
||||
|
@ -100,6 +46,7 @@ export
|
|||
tests : Test
|
||||
tests = "equality & subtyping" :- [
|
||||
note #""0=1 ⊢ 𝒥" means that 𝒥 holds in an inconsistent dim context"#,
|
||||
note #""s{…}" for term substs; "s‹…›" for dim substs"#,
|
||||
|
||||
"universes" :- [
|
||||
testEq "★₀ ≡ ★₀" $
|
||||
|
@ -117,8 +64,8 @@ tests = "equality & subtyping" :- [
|
|||
],
|
||||
|
||||
"pi" :- [
|
||||
note #""A ⊸ B" for (1 _ : A) → B"#,
|
||||
note #""A ⇾ B" for (0 _ : A) → B"#,
|
||||
note #""A ⊸ B" for (1·A) → B"#,
|
||||
note #""A ⇾ B" for (0·A) → B"#,
|
||||
testEq "A ⊸ B ≡ A ⊸ B" $
|
||||
let tm = Arr One (FT "A") (FT "B") in
|
||||
equalT [<] (TYPE 0) tm tm,
|
||||
|
@ -168,32 +115,31 @@ tests = "equality & subtyping" :- [
|
|||
"lambda" :- [
|
||||
testEq "λ x ⇒ [x] ≡ λ x ⇒ [x]" $
|
||||
equalT [<] (Arr One (FT "A") (FT "A"))
|
||||
(Lam "x" $ TUsed $ BVT 0)
|
||||
(Lam "x" $ TUsed $ BVT 0),
|
||||
(["x"] :\\ BVT 0)
|
||||
(["x"] :\\ BVT 0),
|
||||
testEq "λ x ⇒ [x] <: λ x ⇒ [x]" $
|
||||
subT [<] (Arr One (FT "A") (FT "A"))
|
||||
(Lam "x" $ TUsed $ BVT 0)
|
||||
(Lam "x" $ TUsed $ BVT 0),
|
||||
(["x"] :\\ BVT 0)
|
||||
(["x"] :\\ BVT 0),
|
||||
testEq "λ x ⇒ [x] ≡ λ y ⇒ [y]" $
|
||||
equalT [<] (Arr One (FT "A") (FT "A"))
|
||||
(Lam "x" $ TUsed $ BVT 0)
|
||||
(Lam "y" $ TUsed $ BVT 0),
|
||||
(["x"] :\\ BVT 0)
|
||||
(["y"] :\\ BVT 0),
|
||||
testEq "λ x ⇒ [x] <: λ y ⇒ [y]" $
|
||||
equalT [<] (Arr One (FT "A") (FT "A"))
|
||||
(Lam "x" $ TUsed $ BVT 0)
|
||||
(Lam "y" $ TUsed $ BVT 0),
|
||||
(["x"] :\\ BVT 0)
|
||||
(["y"] :\\ BVT 0),
|
||||
testNeq "λ x y ⇒ [x] ≢ λ x y ⇒ [y]" $
|
||||
equalT [<] (Arr One (FT "A") $ Arr One (FT "A") (FT "A"))
|
||||
(Lam "x" $ TUsed $ Lam "y" $ TUsed $ BVT 1)
|
||||
(Lam "x" $ TUsed $ Lam "y" $ TUsed $ BVT 0),
|
||||
(["x", "y"] :\\ BVT 1)
|
||||
(["x", "y"] :\\ BVT 0),
|
||||
testEq "λ x ⇒ [a] ≡ λ x ⇒ [a] (TUsed vs TUnused)" $
|
||||
equalT [<] (Arr Zero (FT "B") (FT "A"))
|
||||
(Lam "x" $ TUsed $ FT "a")
|
||||
(Lam "x" $ TUnused $ FT "a"),
|
||||
skipWith "(no η yet)" $
|
||||
testEq "λ x ⇒ [f [x]] ≡ [f] (η)" $
|
||||
equalT [<] (Arr One (FT "A") (FT "A"))
|
||||
(Lam "x" $ TUsed $ E $ F "f" :@ BVT 0)
|
||||
(["x"] :\\ E (F "f" :@ BVT 0))
|
||||
(FT "f")
|
||||
],
|
||||
|
||||
|
@ -208,7 +154,23 @@ tests = "equality & subtyping" :- [
|
|||
(Eq0 (FT "A") (TYPE 0) (TYPE 0))
|
||||
],
|
||||
|
||||
todo "dim lambda",
|
||||
"equalities" :-
|
||||
let refl : Term q d n -> Term q d n -> Elim q d n
|
||||
refl a x = (DLam "_" $ DUnused x) :# (Eq0 a x x)
|
||||
in
|
||||
[
|
||||
note #""refl [A] x" is an abbreviation for "(λᴰi ⇒ x) ∷ (x ≡ x : A)""#,
|
||||
testEq "refl [A] a ≡ refl [A] a" $
|
||||
equalE [<] (refl (FT "A") (FT "a")) (refl (FT "A") (FT "a")),
|
||||
testEq "p : (a ≡ a' : A), q : (a ≡ a' : A) ⊢ p ≡ q (free)"
|
||||
{globals =
|
||||
let def = mkAbstract Zero $ Eq0 (FT "A") (FT "a") (FT "a'") in
|
||||
defGlobals `mergeLeft` fromList [("p", def), ("q", def)]} $
|
||||
equalE [<] (F "p") (F "q"),
|
||||
testEq "x : (a ≡ a' : A), y : (a ≡ a' : A) ⊢ x ≡ y (bound)" $
|
||||
let ty : forall n. Term Three 0 n := Eq0 (FT "A") (FT "a") (FT "a'") in
|
||||
equalE [< ty, ty] (BV 0) (BV 1) {n = 2}
|
||||
],
|
||||
|
||||
"term closure" :- [
|
||||
note "𝑖, 𝑗 for bound variables pointing outside of the current expr",
|
||||
|
@ -230,8 +192,8 @@ tests = "equality & subtyping" :- [
|
|||
(Lam "y" $ TUnused $ FT "a"),
|
||||
testEq "(λy. [𝑖]){y/y, a/𝑖} ≡ λy. [a] (TUsed)" $
|
||||
equalT [<] (Arr Zero (FT "B") (FT "A"))
|
||||
(CloT (Lam "y" $ TUsed $ BVT 1) (F "a" ::: id))
|
||||
(Lam "y" $ TUsed $ FT "a")
|
||||
(CloT (["y"] :\\ BVT 1) (F "a" ::: id))
|
||||
(["y"] :\\ FT "a")
|
||||
],
|
||||
|
||||
todo "term d-closure",
|
||||
|
@ -290,48 +252,29 @@ tests = "equality & subtyping" :- [
|
|||
subE [<] (F "f" :@ FT "a") (F "f" :@ FT "a"),
|
||||
testEq "(λ x ⇒ [x] ∷ A ⊸ A) a ≡ ([a ∷ A] ∷ A) (β)" $
|
||||
equalE [<]
|
||||
((Lam "x" (TUsed (BVT 0)) :# (Arr One (FT "A") (FT "A")))
|
||||
:@ FT "a")
|
||||
(((["x"] :\\ BVT 0) :# Arr One (FT "A") (FT "A")) :@ FT "a")
|
||||
(E (FT "a" :# FT "A") :# FT "A"),
|
||||
testEq "(λ x ⇒ [x] ∷ A ⊸ A) a ≡ a (βυ)" $
|
||||
equalE [<]
|
||||
((Lam "x" (TUsed (BVT 0)) :# (Arr One (FT "A") (FT "A")))
|
||||
:@ FT "a")
|
||||
(((["x"] :\\ BVT 0) :# Arr One (FT "A") (FT "A")) :@ FT "a")
|
||||
(F "a"),
|
||||
testEq "(λ g ⇒ [g [a]] ∷ ⋯)) [f] ≡ (λ y ⇒ [f [y]] ∷ ⋯) [a] (β↘↙)" $
|
||||
let a = FT "A"; a2a = (Arr One a a) in
|
||||
equalE [<]
|
||||
((Lam "g" (TUsed (E (BV 0 :@ FT "a"))) :# Arr One a2a a) :@ FT "f")
|
||||
((Lam "y" (TUsed (E (F "f" :@ BVT 0))) :# a2a) :@ FT "a"),
|
||||
(((["g"] :\\ E (BV 0 :@ FT "a")) :# Arr One a2a a) :@ FT "f")
|
||||
(((["y"] :\\ E (F "f" :@ BVT 0)) :# a2a) :@ FT "a"),
|
||||
testEq "(λ x ⇒ [x] ∷ A ⊸ A) a <: a" $
|
||||
subE [<]
|
||||
((Lam "x" (TUsed (BVT 0)) :# (Arr One (FT "A") (FT "A")))
|
||||
:@ FT "a")
|
||||
(((["x"] :\\ BVT 0) :# (Arr One (FT "A") (FT "A"))) :@ FT "a")
|
||||
(F "a"),
|
||||
testEq "id : A ⊸ A ≔ λ x ⇒ [x] ⊢ id [a] ≡ a"
|
||||
{globals = defGlobals `mergeLeft` fromList
|
||||
[("id", mkDef Any (Arr One (FT "A") (FT "A"))
|
||||
(Lam "x" (TUsed (BVT 0))))]} $
|
||||
(["x"] :\\ BVT 0))]} $
|
||||
equalE [<] (F "id" :@ FT "a") (F "a")
|
||||
],
|
||||
|
||||
"dim application" :-
|
||||
let refl : Term q d n -> Term q d n -> Elim q d n
|
||||
refl a x = (DLam "_" $ DUnused x) :# (Eq0 a x x)
|
||||
in
|
||||
[
|
||||
note #""refl [A] x" is an abbreviation for "(λᴰi ⇒ x) ∷ (x ≡ x : A)""#,
|
||||
testEq "refl [A] a ≡ refl [A] a" $
|
||||
equalE [<] (refl (FT "A") (FT "a")) (refl (FT "A") (FT "a")),
|
||||
testEq "p : (a ≡ b : A), q : (a ≡ b : A) ⊢ p ≡ q"
|
||||
{globals =
|
||||
let def = mkAbstract Zero $ Eq0 (FT "A") (FT "a") (FT "b") in
|
||||
fromList [("A", mkAbstract Zero $ TYPE 0),
|
||||
("a", mkAbstract Any $ FT "A"),
|
||||
("b", mkAbstract Any $ FT "A"),
|
||||
("p", def), ("q", def)]} $
|
||||
equalE [<] (F "p") (F "q")
|
||||
],
|
||||
todo "dim application",
|
||||
|
||||
todo "annotation",
|
||||
|
||||
|
|
138
tests/Tests/Typechecker.idr
Normal file
138
tests/Tests/Typechecker.idr
Normal file
|
@ -0,0 +1,138 @@
|
|||
module Tests.Typechecker
|
||||
|
||||
import Quox.Syntax
|
||||
import Quox.Syntax.Qty.Three
|
||||
import Quox.Typechecker as Lib
|
||||
import public TypingImpls
|
||||
import TAP
|
||||
|
||||
|
||||
0 M : Type -> Type
|
||||
M = ReaderT (Definitions Three) $ Either (Error Three)
|
||||
|
||||
|
||||
|
||||
reflTy : IsQty q => Term q d n
|
||||
reflTy =
|
||||
Pi zero "A" (TYPE 0) $ TUsed $
|
||||
Pi zero "x" (BVT 0) $ TUsed $
|
||||
Eq0 (BVT 1) (BVT 0) (BVT 0)
|
||||
|
||||
reflDef : IsQty q => Term q d n
|
||||
reflDef = ["A","x"] :\\ ["i"] :\\% BVT 0
|
||||
|
||||
defGlobals : Definitions Three
|
||||
defGlobals = fromList
|
||||
[("A", mkAbstract Zero $ TYPE 0),
|
||||
("B", mkAbstract Zero $ TYPE 0),
|
||||
("C", mkAbstract Zero $ TYPE 1),
|
||||
("D", mkAbstract Zero $ TYPE 1),
|
||||
("a", mkAbstract Any $ FT "A"),
|
||||
("b", mkAbstract Any $ FT "B"),
|
||||
("f", mkAbstract Any $ Arr One (FT "A") (FT "A")),
|
||||
("refl", mkDef Any reflTy reflDef)]
|
||||
|
||||
parameters (label : String) (act : Lazy (M ()))
|
||||
{default defGlobals globals : Definitions Three}
|
||||
testTC : Test
|
||||
testTC = test label $ runReaderT globals act
|
||||
|
||||
testTCFail : Test
|
||||
testTCFail = testThrows label (const True) $ runReaderT globals act
|
||||
|
||||
|
||||
ctxWith : DContext d -> Context (\i => (Term Three d i, Three)) n ->
|
||||
TyContext Three d n
|
||||
ctxWith dctx tqctx =
|
||||
let (tctx, qctx) = unzip tqctx in MkTyContext {dctx, tctx, qctx}
|
||||
|
||||
ctx : Context (\i => (Term Three 0 i, Three)) n -> TyContext Three 0 n
|
||||
ctx = ctxWith DNil
|
||||
|
||||
inferAs : TyContext Three d n -> (sg : SQty Three) ->
|
||||
Elim Three d n -> Term Three d n -> M ()
|
||||
inferAs ctx sg e ty = do
|
||||
ty' <- infer ctx sg e
|
||||
catchError
|
||||
(equalType (makeDimEq ctx.dctx) ctx.tctx ty ty'.type)
|
||||
(\_ : Error Three => throwError $ ClashT Equal (TYPE UAny) ty ty'.type)
|
||||
|
||||
infer_ : TyContext Three d n -> (sg : SQty Three) -> Elim Three d n -> M ()
|
||||
infer_ ctx sg e = ignore $ infer ctx sg e
|
||||
|
||||
check_ : TyContext Three d n -> SQty Three ->
|
||||
Term Three d n -> Term Three d n -> M ()
|
||||
check_ ctx sg s ty = ignore $ check ctx sg s ty
|
||||
|
||||
export
|
||||
tests : Test
|
||||
tests = "typechecker" :- [
|
||||
"universes" :- [
|
||||
testTC "0 · ★₀ ⇐ ★₁" $ check_ (ctx [<]) szero (TYPE 0) (TYPE 1),
|
||||
testTC "0 · ★₀ ⇐ ★₂" $ check_ (ctx [<]) szero (TYPE 0) (TYPE 2),
|
||||
testTC "0 · ★₀ ⇐ ★_" $ check_ (ctx [<]) szero (TYPE 0) (TYPE UAny),
|
||||
testTCFail "0 · ★₁ ⇍ ★₀" $ check_ (ctx [<]) szero (TYPE 1) (TYPE 0),
|
||||
testTCFail "0 · ★₀ ⇍ ★₀" $ check_ (ctx [<]) szero (TYPE 0) (TYPE 0),
|
||||
testTCFail "0 · ★_ ⇍ ★_" $ check_ (ctx [<]) szero (TYPE UAny) (TYPE UAny),
|
||||
testTCFail "1 · ★₀ ⇍ ★₁" $ check_ (ctx [<]) sone (TYPE 0) (TYPE 1)
|
||||
],
|
||||
|
||||
"function types" :- [
|
||||
note "A, B : ★₀; C, D : ★₁",
|
||||
testTC "0 · (1·A) → B ⇐ ★₀" $
|
||||
check_ (ctx [<]) szero (Arr One (FT "A") (FT "B")) (TYPE 0),
|
||||
testTC "0 · (1·A) → B ⇐ ★₁👈" $
|
||||
check_ (ctx [<]) szero (Arr One (FT "A") (FT "B")) (TYPE 1),
|
||||
testTC "0 · (1·C) → D ⇐ ★₁" $
|
||||
check_ (ctx [<]) szero (Arr One (FT "C") (FT "D")) (TYPE 1),
|
||||
testTCFail "0 · (1·C) → D ⇍ ★₀" $
|
||||
check_ (ctx [<]) szero (Arr One (FT "C") (FT "D")) (TYPE 0)
|
||||
],
|
||||
|
||||
"free vars" :- [
|
||||
testTC "0 · A ⇒ ★₀" $
|
||||
inferAs (ctx [<]) szero (F "A") (TYPE 0),
|
||||
testTC "0 · A ⇐👈 ★₀" $
|
||||
check_ (ctx [<]) szero (FT "A") (TYPE 0),
|
||||
testTC "0 · A ⇐ ★₁👈" $
|
||||
check_ (ctx [<]) szero (FT "A") (TYPE 1),
|
||||
testTCFail "1👈 · A ⇏ ★₀" $
|
||||
infer_ (ctx [<]) sone (F "A"),
|
||||
note "refl : (0·A : ★₀) → (0·x : A) → (x ≡ x : A) ≔ (λ A x ⇒ λᴰ _ ⇒ x)",
|
||||
testTC "1 · refl ⇒ {type of refl}" $
|
||||
inferAs (ctx [<]) sone (F "refl") reflTy,
|
||||
testTC "1 · refl ⇐ {type of refl}" $
|
||||
check_ (ctx [<]) sone (FT "refl") reflTy
|
||||
],
|
||||
|
||||
"lambda" :- [
|
||||
testTC #"1 · (λ A x ⇒ refl A x) ⇐ {type of refl, see "free vars"}"# $
|
||||
check_ (ctx [<]) sone
|
||||
(["A", "x"] :\\ E (F "refl" :@@ [BVT 1, BVT 0]))
|
||||
reflTy
|
||||
],
|
||||
|
||||
"misc" :- [
|
||||
testTC "funext"
|
||||
{globals = fromList
|
||||
[("A", mkAbstract Zero $ TYPE 0),
|
||||
("B", mkAbstract Zero $ Arr Any (FT "A") (TYPE 0)),
|
||||
("f", mkAbstract Any $
|
||||
Pi Any "x" (FT "A") $ TUsed $ E $ F "B" :@ BVT 0),
|
||||
("g", mkAbstract Any $
|
||||
Pi Any "x" (FT "A") $ TUsed $ E $ F "B" :@ BVT 0)]} $
|
||||
-- 0·A : Type, 0·B : ω·A → Type,
|
||||
-- ω·f, g : (ω·x : A) → B x
|
||||
-- ⊢
|
||||
-- 0·funext : (ω·eq : (0·x : A) → f x ≡ g x) → f ≡ g
|
||||
-- = λ eq ⇒ λᴰ i ⇒ λ x ⇒ eq x i
|
||||
check_ (ctx [<]) szero
|
||||
(["eq"] :\\ ["i"] :\\% ["x"] :\\ E (BV 1 :@ BVT 0 :% BV 0))
|
||||
(Pi Any "eq"
|
||||
(Pi Zero "x" (FT "A") $ TUsed $
|
||||
Eq0 (E $ F "B" :@ BVT 0)
|
||||
(E $ F "f" :@ BVT 0) (E $ F "g" :@ BVT 0)) $ TUsed $
|
||||
Eq0 (Pi Any "x" (FT "A") $ TUsed $ E $ F "B" :@ BVT 0)
|
||||
(FT "f") (FT "g"))
|
||||
]
|
||||
]
|
Loading…
Add table
Add a link
Reference in a new issue