a half-implemented verified dimeq
This commit is contained in:
parent
1ab0e42605
commit
5e220da2f4
1 changed files with 363 additions and 0 deletions
363
lib/on-hold/Quox/Syntax/DimEq.idr
Normal file
363
lib/on-hold/Quox/Syntax/DimEq.idr
Normal file
|
@ -0,0 +1,363 @@
|
|||
module Quox.Syntax.DimEq
|
||||
|
||||
import public Quox.Syntax.Var
|
||||
import public Quox.Syntax.Dim
|
||||
import public Quox.Syntax.Subst
|
||||
import public Quox.Context
|
||||
|
||||
import Data.Maybe
|
||||
import Data.DPair
|
||||
|
||||
%default total
|
||||
|
||||
mutual
|
||||
||| consistent (0≠1) set of constraints between dimension variables
|
||||
public export
|
||||
data DimEq' : Nat -> Type where
|
||||
||| empty context
|
||||
Nil : DimEq' 0
|
||||
||| Ψ, 𝑖, 𝑖=ε
|
||||
Const : (eqs : DimEq' d) -> (e : DimConst) -> DimEq' (S d)
|
||||
||| Ψ, 𝑖, 𝑖=𝑗 (Ψ ⊢ 𝑗 and 𝑗 is unassigned)
|
||||
Var : (eqs : DimEq' d) -> (i : Var d) -> (0 un : Unassigned eqs i) ->
|
||||
DimEq' (S d)
|
||||
||| Ψ, 𝑖 (𝑖 unassigned)
|
||||
None : (eqs : DimEq' d) -> DimEq' (S d)
|
||||
%name DimEq' eqs
|
||||
|
||||
public export
|
||||
data Unassigned : DimEq' d -> Var d -> Type where
|
||||
UZ : Unassigned (None eqs) VZ
|
||||
USK : Unassigned eqs i -> Unassigned (Const eqs e) (VS i)
|
||||
USV : Unassigned eqs i -> Unassigned (Var eqs j un) (VS i)
|
||||
USN : Unassigned eqs i -> Unassigned (None eqs ) (VS i)
|
||||
%name Unassigned un
|
||||
|
||||
|
||||
||| set of constraints that might be inconsistent
|
||||
public export
|
||||
data DimEq : Nat -> Type where
|
||||
||| 0=1
|
||||
ZeroIsOne : DimEq d
|
||||
||| 0≠1, plus other constraints
|
||||
C : (eqs : DimEq' d) -> DimEq d
|
||||
%name DimEq eqs
|
||||
|
||||
|
||||
||| contains a value iff the dim ctx is consistent
|
||||
public export
|
||||
data IfConsistent : DimEq d -> Type -> Type where
|
||||
Nothing : IfConsistent ZeroIsOne a
|
||||
Just : a -> IfConsistent (C eqs) a
|
||||
|
||||
export
|
||||
Functor (IfConsistent eqs) where
|
||||
map f Nothing = Nothing
|
||||
map f (Just x) = Just (f x)
|
||||
|
||||
export
|
||||
Foldable (IfConsistent eqs) where
|
||||
foldr f z Nothing = z
|
||||
foldr f z (Just x) = f x z
|
||||
|
||||
export
|
||||
Traversable (IfConsistent eqs) where
|
||||
traverse f Nothing = pure Nothing
|
||||
traverse f (Just x) = Just <$> f x
|
||||
|
||||
||| performs an action if the dim ctx is consistent
|
||||
public export
|
||||
ifConsistent : Applicative f => (eqs : DimEq d) -> f a -> f (IfConsistent eqs a)
|
||||
ifConsistent ZeroIsOne act = pure Nothing
|
||||
ifConsistent (C _) act = Just <$> act
|
||||
|
||||
|
||||
public export %inline
|
||||
weakD : Dim d -> Dim (S d)
|
||||
weakD p = p // SS SZ
|
||||
|
||||
|
||||
public export
|
||||
tail' : DimEq' (S d) -> DimEq' d
|
||||
tail' (Const eqs e) = eqs
|
||||
tail' (Var eqs i un) = eqs
|
||||
tail' (None eqs ) = eqs
|
||||
|
||||
public export
|
||||
tail : DimEq (S d) -> DimEq d
|
||||
tail ZeroIsOne = ZeroIsOne
|
||||
tail (C eqs) = C $ tail' eqs
|
||||
|
||||
public export
|
||||
head' : DimEq' (S d) -> Maybe (Dim d)
|
||||
head' (Const _ e) = Just $ K e
|
||||
head' (Var _ i _) = Just $ B i
|
||||
head' (None _) = Nothing
|
||||
|
||||
export
|
||||
tailU : Unassigned eqs (VS i) -> Unassigned (tail' eqs) i
|
||||
tailU (USK un) = un
|
||||
tailU (USV un) = un
|
||||
tailU (USN un) = un
|
||||
|
||||
|
||||
||| make a dim ctx where each variable has a constant assignment
|
||||
public export
|
||||
fromGround' : Context' DimConst d -> DimEq' d
|
||||
fromGround' [<] = Nil
|
||||
fromGround' (ctx :< e) = Const (fromGround' ctx) e
|
||||
|
||||
||| make a dim ctx where each variable has a constant assignment
|
||||
public export
|
||||
fromGround : Context' DimConst d -> DimEq d
|
||||
fromGround = C . fromGround'
|
||||
|
||||
|
||||
||| make a dim ctx where each variable is unassigned
|
||||
public export
|
||||
new' : (d : Nat) -> DimEq' d
|
||||
new' 0 = Nil
|
||||
new' (S d) = None (new' d)
|
||||
|
||||
||| make a dim ctx where each variable is unassigned
|
||||
public export
|
||||
new : (d : Nat) -> DimEq d
|
||||
new d = C $ new' d
|
||||
|
||||
|
||||
||| if the dim is a variable, then it is unassigned
|
||||
public export
|
||||
data UnassignedDim : DimEq' d -> Dim d -> Type where
|
||||
UDK : UnassignedDim eqs (K e)
|
||||
UDB : Unassigned eqs i -> UnassignedDim eqs (B i)
|
||||
|
||||
export
|
||||
weakUD : {eqs : DimEq' (S d)} -> {p : Dim d} ->
|
||||
UnassignedDim (tail' eqs) p -> UnassignedDim eqs (weakD p)
|
||||
weakUD UDK = UDK
|
||||
weakUD (UDB un) {eqs = Const eqs e} = UDB $ USK un
|
||||
weakUD (UDB un) {eqs = Var eqs _ _} = UDB $ USV un
|
||||
weakUD (UDB un) {eqs = None eqs} = UDB $ USN un
|
||||
|
||||
|
||||
||| get the constraint on a variable 𝑖. if it is equal to another var 𝑗,
|
||||
||| then 𝑗 is not further constrained
|
||||
public export
|
||||
getVarPrf : (eqs : DimEq' d) -> Var d -> Subset (Dim d) (UnassignedDim eqs)
|
||||
getVarPrf (Const eqs e) VZ = Element (K e) UDK
|
||||
getVarPrf (Var eqs i un) VZ = Element (B $ VS i) (UDB $ USV un)
|
||||
getVarPrf (None eqs) VZ = Element (B VZ) (UDB UZ)
|
||||
getVarPrf (Const eqs _) (VS i) = let p = getVarPrf eqs i in
|
||||
Element (weakD p.fst) (weakUD p.snd)
|
||||
getVarPrf (Var eqs _ _) (VS i) = let p = getVarPrf eqs i in
|
||||
Element (weakD p.fst) (weakUD p.snd)
|
||||
getVarPrf (None eqs) (VS i) = let p = getVarPrf eqs i in
|
||||
Element (weakD p.fst) (weakUD p.snd)
|
||||
|
||||
public export
|
||||
getVar : (eqs : DimEq' d) -> Var d -> Dim d
|
||||
getVar eqs i = fst $ getVarPrf eqs i
|
||||
|
||||
public export
|
||||
getPrf : (eqs : DimEq' d) -> Dim d -> Subset (Dim d) (UnassignedDim eqs)
|
||||
getPrf eqs (K e) = Element (K e) UDK
|
||||
getPrf eqs (B i) = getVarPrf eqs i
|
||||
|
||||
public export
|
||||
get : DimEq' d -> Dim d -> Dim d
|
||||
get eqs p = fst $ getPrf eqs p
|
||||
|
||||
|
||||
-- version of `get` that only shifts once but is even more annoying to prove
|
||||
-- anything about
|
||||
private
|
||||
getShift' : Shift d out -> DimEq' d -> Var d -> Maybe (Dim out)
|
||||
getShift' by (Const eqs e) VZ = Just $ K e
|
||||
getShift' by (Var eqs i un) VZ = Just $ B $ i // ssDown by
|
||||
getShift' by (None eqs) VZ = Nothing
|
||||
getShift' by eqs (VS i) = getShift' (ssDown by) (tail' eqs) i
|
||||
|
||||
private
|
||||
getShift0' : DimEq' d -> Var d -> Maybe (Dim d)
|
||||
getShift0' = getShift' SZ
|
||||
|
||||
private
|
||||
get' : DimEq' d -> Dim d -> Dim d
|
||||
get' eqs (K e) = K e
|
||||
get' eqs (B i) = fromMaybe (B i) $ getShift0' eqs i
|
||||
|
||||
%transform "DimEq.get" get = get'
|
||||
|
||||
|
||||
public export
|
||||
Equal' : DimEq' d -> Rel (Dim d)
|
||||
Equal' eqs p q = get eqs p = get eqs q
|
||||
|
||||
||| whether two dimensions are equal under the current constraints
|
||||
public export
|
||||
data Equal : DimEq d -> Rel (Dim d) where
|
||||
Eq01 : Equal ZeroIsOne p q
|
||||
EqC : Equal' eqs p q -> Equal (C eqs) p q
|
||||
%name DimEq.Equal prf
|
||||
|
||||
export
|
||||
decEqual : (eqs : DimEq d) -> Dec2 (Equal eqs)
|
||||
decEqual ZeroIsOne _ _ = Yes Eq01
|
||||
decEqual (C eqs) p q = case get eqs p `decEq` get eqs q of
|
||||
Yes y => Yes $ EqC y
|
||||
No n => No $ \case EqC p => n p
|
||||
|
||||
export
|
||||
equal : (eqs : DimEq d) -> Dim d -> Dim d -> Bool
|
||||
equal eqs p q = isYes $ decEqual eqs p q
|
||||
|
||||
export
|
||||
{eqs : DimEq d} -> Reflexive _ (Equal eqs) where
|
||||
reflexive = case eqs of
|
||||
ZeroIsOne => Eq01
|
||||
C eqs => EqC Refl
|
||||
|
||||
export
|
||||
Symmetric _ (Equal eqs) where
|
||||
symmetric Eq01 = Eq01
|
||||
symmetric (EqC eq) = EqC $ sym eq
|
||||
|
||||
export
|
||||
Transitive _ (Equal eqs) where
|
||||
transitive Eq01 Eq01 = Eq01
|
||||
transitive (EqC p) (EqC q) = EqC $ p `trans` q
|
||||
|
||||
export {eqs : DimEq d} -> Equivalence _ (Equal eqs) where
|
||||
|
||||
|
||||
||| extend the context with a new variable, possibly constrained
|
||||
public export
|
||||
(:<) : DimEq' d -> Maybe (Dim d) -> DimEq' (S d)
|
||||
eqs :< Nothing = None eqs
|
||||
eqs :< Just (K e) = Const eqs e
|
||||
eqs :< Just (B i) with (getVarPrf eqs i)
|
||||
_ | Element (K e) _ = Const eqs e
|
||||
_ | Element (B j) un = Var eqs j $ let UDB un = un in un
|
||||
|
||||
infixl 7 :<?
|
||||
||| extend the context with a new variable, possibly constrained
|
||||
public export
|
||||
(:<?) : DimEq d -> Maybe (Dim d) -> DimEq (S d)
|
||||
ZeroIsOne :<? p = ZeroIsOne
|
||||
C eqs :<? p = C $ eqs :< p
|
||||
|
||||
|
||||
public export
|
||||
checkConst : DimConst -> DimConst -> DimEq' d -> DimEq d
|
||||
checkConst e f eqs = case decEq e f of Yes _ => C eqs; No _ => ZeroIsOne
|
||||
|
||||
public export
|
||||
setConst : Var d -> DimConst -> DimEq' d -> DimEq d
|
||||
setConst VZ e (Const eqs f) = checkConst e f $ eqs :< Just (K e)
|
||||
setConst VZ e (Var eqs i un) = setConst i e eqs :<? Just (K e)
|
||||
setConst VZ e (None eqs) = C $ Const eqs e
|
||||
setConst (VS i) e (Const eqs f) = setConst i e eqs :<? Just (K f)
|
||||
setConst (VS i) e (Var eqs j un) = setConst i e eqs :<? Just (B j)
|
||||
setConst (VS i) e (None eqs) = setConst i e eqs :<? Nothing
|
||||
|
||||
public export
|
||||
setVar : Var d -> Var d -> DimEq' d -> DimEq d
|
||||
setVar VZ VZ eqs = C eqs
|
||||
setVar VZ (VS j) (Const eqs e) = setConst j e eqs :<? Just (K e)
|
||||
setVar VZ (VS j) (Var eqs k un) = setVar j k eqs :<? Just (B k)
|
||||
setVar VZ (VS j) (None eqs) = C eqs :<? Just (B j)
|
||||
setVar (VS i) VZ (Const eqs e) = setConst i e eqs :<? Just (K e)
|
||||
setVar (VS i) VZ (Var eqs k un) = setVar i k eqs :<? Just (B k)
|
||||
setVar (VS i) VZ (None eqs) = C eqs :<? Just (B i)
|
||||
setVar (VS i) (VS j) (Const eqs e) = setVar i j eqs :<? Just (K e)
|
||||
setVar (VS i) (VS j) (Var eqs k un) = setVar i j eqs :<? Just (B k)
|
||||
setVar (VS i) (VS j) (None eqs) = setVar i j eqs :<? Nothing
|
||||
|
||||
public export
|
||||
set : Dim d -> Dim d -> DimEq d -> DimEq d
|
||||
set p q ZeroIsOne = ZeroIsOne
|
||||
set (K e) (K f) (C eqs) = checkConst e f eqs
|
||||
set (K e) (B j) (C eqs) = setConst j e eqs
|
||||
set (B i) (K f) (C eqs) = setConst i f eqs
|
||||
set (B i) (B j) (C eqs) = setVar i j eqs
|
||||
|
||||
|
||||
private
|
||||
splitV0 : (p : Dim (S d)) -> Either (p = B VZ) (q : Dim d ** p = weakD q)
|
||||
splitV0 (K e) = Right (K e ** Refl)
|
||||
splitV0 (B VZ) = Left Refl
|
||||
splitV0 (B (VS i)) = Right (B i ** Refl)
|
||||
|
||||
|
||||
export
|
||||
0 getSnoc : (eqs : DimEq' d) -> (u : Maybe (Dim d)) -> (i : Var d) ->
|
||||
getVar (eqs :< u) (VS i) = weakD (getVar eqs i)
|
||||
getSnoc eqs Nothing i = Refl
|
||||
getSnoc eqs (Just (K e)) i = Refl
|
||||
getSnoc eqs (Just (B j)) i with (getVarPrf eqs j)
|
||||
_ | Element (K _) _ = Refl
|
||||
_ | Element (B _) _ = Refl
|
||||
|
||||
export
|
||||
0 snocStrengthen : (p, q : Dim d) ->
|
||||
Equal' (eqs :< u) (weakD p) (weakD q) -> Equal' eqs p q
|
||||
snocStrengthen (K e) (K e) Refl = Refl
|
||||
snocStrengthen (K e) (B i) prf =
|
||||
shiftInj (SS SZ) _ _ $
|
||||
rewrite sym $ getSnoc eqs u i in prf
|
||||
snocStrengthen (B i) (K e) prf =
|
||||
shiftInj (SS SZ) _ _ $
|
||||
rewrite sym $ getSnoc eqs u i in prf
|
||||
snocStrengthen (B i) (B j) prf =
|
||||
shiftInj (SS SZ) _ _ $
|
||||
rewrite sym $ getSnoc eqs u i in
|
||||
rewrite sym $ getSnoc eqs u j in prf
|
||||
|
||||
export
|
||||
0 snocStable : (eqs : DimEq d) -> (u : Maybe (Dim d)) -> (p, q : Dim d) ->
|
||||
Equal eqs p q -> Equal (eqs :<? u) (weakD p) (weakD q)
|
||||
snocStable ZeroIsOne u p q Eq01 = Eq01
|
||||
snocStable (C eqs) u (K e) (K e) (EqC Refl) = reflexive
|
||||
snocStable (C eqs) u (K e) (B i) (EqC prf) = EqC $
|
||||
rewrite getSnoc eqs u i in rewrite sym prf in Refl
|
||||
snocStable (C eqs) u (B i) (K e) (EqC prf) = EqC $
|
||||
rewrite getSnoc eqs u i in rewrite prf in Refl
|
||||
snocStable (C eqs) u (B i) (B j) (EqC prf) = EqC $
|
||||
rewrite getSnoc eqs u i in
|
||||
rewrite getSnoc eqs u j in
|
||||
rewrite prf in Refl
|
||||
|
||||
export
|
||||
0 checkConstStable : (eqs : DimEq' d) -> (e, f : DimConst) ->
|
||||
(p, q : Dim d) -> Equal' eqs p q ->
|
||||
Equal (checkConst e f eqs) p q
|
||||
checkConstStable eqs e f p q prf with (decEq e f)
|
||||
_ | Yes _ = EqC prf
|
||||
_ | No _ = Eq01
|
||||
|
||||
export
|
||||
0 setConstStable : (eqs : DimEq' d) -> (i : Var d) -> (e : DimConst) ->
|
||||
(p, q : Dim d) -> Equal' eqs p q ->
|
||||
Equal (setConst i e eqs) p q
|
||||
setConstStable (Const eqs f) VZ e p q prf with (decEq e f)
|
||||
_ | Yes _ = EqC prf
|
||||
_ | No _ = Eq01
|
||||
setConstStable (Const eqs f) (VS i) e p q prf = ?setConstStable_rhs_5
|
||||
setConstStable (Var eqs j un) VZ e p q prf = ?setConstStable_rhs_6
|
||||
setConstStable (Var eqs j un) (VS i) e p q prf = ?setConstStable_rhs_7
|
||||
setConstStable (None eqs) VZ e p q prf = ?setConstStable_rhs_8
|
||||
setConstStable (None eqs) (VS i) e p q prf = ?setConstStable_rhs_9
|
||||
|
||||
export
|
||||
0 setVarStable : (eqs : DimEq' d) -> (i, j : Var d) ->
|
||||
(p, q : Dim d) -> Equal' eqs p q ->
|
||||
Equal (setVar i j eqs) p q
|
||||
|
||||
export
|
||||
0 setStable : (eqs : DimEq d) -> (u, v, p, q : Dim d) ->
|
||||
Equal eqs p q -> Equal (set u v eqs) p q
|
||||
setStable ZeroIsOne p q u v Eq01 = Eq01
|
||||
setStable (C eqs) (K e) (K f) p q (EqC prf) = checkConstStable eqs e f p q prf
|
||||
setStable (C eqs) (K e) (B i) p q (EqC prf) = setConstStable eqs i e p q prf
|
||||
setStable (C eqs) (B i) (K e) p q (EqC prf) = setConstStable eqs i e p q prf
|
||||
setStable (C eqs) (B i) (B j) p q (EqC prf) = setVarStable eqs i j p q prf
|
Loading…
Reference in a new issue