remove on-hold dir

This commit is contained in:
rhiannon morris 2023-09-20 21:55:03 +02:00
parent dc076b636d
commit 4704dd0441
4 changed files with 0 additions and 673 deletions

View File

@ -1,102 +0,0 @@
module Quox.Lexer
import public Quox.Token
import Data.String
import Data.String.Extra
import public Text.Lexer
import public Text.Lexer.Tokenizer
import Control.Monad.Either
import Generics.Derive
%default total
%language ElabReflection
public export
record Error where
constructor Err
reason : StopReason
line, col : Int
char : Char
nameStart = pred $ \c => isAlpha c || c == '_'
nameCont = pred $ \c => isAlphaNum c || c == '_' || c == '\''
name = nameStart <+> many nameCont <+> reject nameCont
wild = is '_' <+> reject nameCont
%hide Text.Lexer.symbol
symbol = is '\'' <+> name
decimal = some digit <+> reject nameCont
natToNumber : Nat -> Number
natToNumber 0 = Zero
natToNumber 1 = One
natToNumber k = Other k
skip : Lexer -> Tokenizer (Maybe a)
skip lex = match lex $ const Nothing
simple : Char -> a -> Tokenizer (Maybe a)
simple ch = match (is ch) . const . Just
keyword : String -> Keyword -> Tokenizer (Maybe Token)
keyword str = match (exact str <+> reject nameCont) . const . Just . K
choice : (xs : List (Tokenizer a)) -> {auto 0 _ : NonEmpty xs} -> Tokenizer a
choice (t :: ts) = foldl (\a, b => a <|> b) t ts
match : Lexer -> (String -> a) -> Tokenizer (Maybe a)
match lex f = Tokenizer.match lex (Just . f)
%hide Tokenizer.match
tokens : Tokenizer (Maybe Token)
tokens = choice [
skip $ lineComment $ exact "--",
skip $ blockComment (exact "{-") (exact "-}"),
skip spaces,
simple '(' $ P LParen, simple ')' $ P RParen,
simple '[' $ P LSquare, simple ']' $ P RSquare,
simple '{' $ P LBrace, simple '}' $ P RBrace,
simple ',' $ P Comma,
simple '' $ P DblColon,
simple ':' $ P Colon, -- needs to be after '::'
simple '.' $ P Dot,
simple '' $ P Arrow,
simple '' $ P DblArrow,
simple '×' $ P Times,
simple '' $ P Triangle,
match wild $ const $ P Wild,
keyword "λ" Lam,
keyword "let" Let, keyword "in" In,
keyword "case" Case, keyword "of" Of,
keyword "ω" Omega,
keyword "Π" Pi, keyword "Σ" Sigma, keyword "W" W,
match name $ Name,
match symbol $ Symbol . assert_total strTail,
match decimal $ N . natToNumber . cast,
match (is '' <+> decimal) $ TYPE . cast . assert_total strTail
]
export
lex : String -> Either Error (List BToken)
lex str =
let (res, (reason, line, col, str)) = lex tokens str in
case reason of
EndInput => Right $ mapMaybe sequence res
_ => let char = assert_total strIndex str 0 in
Left $ Err {reason, line, col, char}

View File

@ -1,159 +0,0 @@
module Quox.Parser
import Quox.Syntax
import Quox.Token
import Quox.Lexer
import Data.Maybe
import Data.SnocVect
import Data.SnocList
import Text.Parser
%default total
public export
Vars : Nat -> Type
Vars n = SnocVect n String
public export
Grammar : Bool -> Type -> Type
Grammar = Core.Grammar () Token
%hide Core.Grammar
public export
data Error
= Lex (Lexer.Error)
| Parse (List1 (ParsingError Token))
| Leftover (List BToken)
%hide Lexer.Error
public export
parseAll : {c : Bool} -> Grammar c a -> List BToken -> Either Error a
parseAll grm input =
case parse grm input of
Right (x, []) => Right x
Right (x, rest) => Left $ Leftover rest
Left errs => Left $ Parse errs
public export
lexParseAll : {c : Bool} -> Grammar c a -> String -> Either Error a
lexParseAll grm = lex' >=> parseAll grm
where lex' : String -> Either Error (List BToken)
lex' = bimap Lex id . lex
export
punc : Punc -> Grammar True ()
punc p = terminal (show p) $ \case
P p' => if p == p' then Just () else Nothing
_ => Nothing
export
keyword : Keyword -> Grammar True ()
keyword k = terminal (show k) $ \case
K k' => if k == k' then Just () else Nothing
_ => Nothing
export
between : Punc -> Punc -> Grammar True a -> Grammar True a
between opener closer inner = punc opener *> inner <* punc closer
export
parens, squares, braces : Grammar True a -> Grammar True a
parens = between LParen RParen
squares = between LSquare RSquare
braces = between LBrace RBrace
export
number : Grammar True Nat
number = terminal "number" $ \case
N Zero => Just 0
N One => Just 1
N (Other k) => Just k
_ => Nothing
export
universe : Grammar True Nat
universe = terminal "universe" $ \case TYPE k => Just k; _ => Nothing
export
zero, one, omega : Grammar True ()
zero = terminal "0" $ \case N Zero => Just (); _ => Nothing
one = terminal "1" $ \case N One => Just (); _ => Nothing
omega = terminal "ω" $ \case K Omega => Just (); _ => Nothing
export
quantity : Grammar True Qty
quantity = Zero <$ zero <|> One <$ one <|> Any <$ omega
find1 : Eq a => SnocVect k a -> a -> Maybe (Var k)
find1 [<] y = Nothing
find1 (sx :< x) y = if x == y then Just VZ else VS <$> find1 sx y
find : Vars k -> Name -> Maybe (Var k)
find vs (MakeName [<] (UN y)) = find1 vs y
find _ _ = Nothing
export
checkAvoid1 : Vars n -> String -> Grammar False ()
checkAvoid1 avoid y =
when (isJust $ find1 avoid y) $
fail "wrong type of bound variable: \{show y}"
export
checkAvoid : Vars n -> Name -> Grammar False ()
checkAvoid avoid (MakeName [<] (UN y)) = checkAvoid1 avoid y
checkAvoid _ _ = pure ()
export
bound : (what : String) -> (bound : Vars k) -> (avoid : Vars n) ->
Grammar True (Var k)
bound what vs avoid = do
x <- terminal "bound \{what} variable" $ \case Name x => Just x; _ => Nothing
checkAvoid1 avoid x
maybe (fail "not in scope: \{x}") pure $ find1 vs x
export
sname : Grammar True String
sname = terminal "simple name" $ \case Name x => pure x; _ => Nothing
export
qname : Grammar True Name
qname = do
parts <- sepBy1 (punc Dot) sname
pure $ MakeName {mods = cast $ init parts, base = UN $ last parts}
export
nameWith : (bound : Vars k) -> (avoid : Vars n) ->
Grammar True (Either (Var k) Name)
nameWith bound avoid = do
y <- qname
checkAvoid avoid y
pure $ maybe (Right y) Left $ find bound y
export
dimension : (dvars : Vars d) -> (tvars : Vars n) -> Grammar True (Dim d)
dimension dvars tvars =
K Zero <$ zero
<|> K One <$ one
<|> B <$> bound "dimension" {bound = dvars, avoid = tvars}
mutual
export
term : (dvars : Vars d) -> (tvars : Vars n) -> Grammar True (Term d n)
term dvars tvars =
E <$> squares (elim {dvars, tvars})
<|> TYPE . U <$> universe
export
elim : (dvars : Vars d) -> (tvars : Vars n) -> Grammar True (Elim d n)
elim dvars tvars =
either B F <$> nameWith {bound = tvars, avoid = dvars}

View File

@ -1,363 +0,0 @@
module Quox.Syntax.DimEq
import public Quox.Syntax.Var
import public Quox.Syntax.Dim
import public Quox.Syntax.Subst
import public Quox.Context
import Data.Maybe
import Data.DPair
%default total
mutual
||| consistent (0≠1) set of constraints between dimension variables
public export
data DimEq' : Nat -> Type where
||| empty context
Nil : DimEq' 0
||| Ψ, 𝑖, 𝑖
Const : (eqs : DimEq' d) -> (e : DimConst) -> DimEq' (S d)
||| Ψ, 𝑖, 𝑖=𝑗 (Ψ ⊢ 𝑗 and 𝑗 is unassigned)
Var : (eqs : DimEq' d) -> (i : Var d) -> (0 un : Unassigned eqs i) ->
DimEq' (S d)
||| Ψ, 𝑖 (𝑖 unassigned)
None : (eqs : DimEq' d) -> DimEq' (S d)
%name DimEq' eqs
public export
data Unassigned : DimEq' d -> Var d -> Type where
UZ : Unassigned (None eqs) VZ
USK : Unassigned eqs i -> Unassigned (Const eqs e) (VS i)
USV : Unassigned eqs i -> Unassigned (Var eqs j un) (VS i)
USN : Unassigned eqs i -> Unassigned (None eqs ) (VS i)
%name Unassigned un
||| set of constraints that might be inconsistent
public export
data DimEq : Nat -> Type where
||| 0=1
ZeroIsOne : DimEq d
||| 0≠1, plus other constraints
C : (eqs : DimEq' d) -> DimEq d
%name DimEq eqs
||| contains a value iff the dim ctx is consistent
public export
data IfConsistent : DimEq d -> Type -> Type where
Nothing : IfConsistent ZeroIsOne a
Just : a -> IfConsistent (C eqs) a
export
Functor (IfConsistent eqs) where
map f Nothing = Nothing
map f (Just x) = Just (f x)
export
Foldable (IfConsistent eqs) where
foldr f z Nothing = z
foldr f z (Just x) = f x z
export
Traversable (IfConsistent eqs) where
traverse f Nothing = pure Nothing
traverse f (Just x) = Just <$> f x
||| performs an action if the dim ctx is consistent
public export
ifConsistent : Applicative f => (eqs : DimEq d) -> f a -> f (IfConsistent eqs a)
ifConsistent ZeroIsOne act = pure Nothing
ifConsistent (C _) act = Just <$> act
public export %inline
weakD : Dim d -> Dim (S d)
weakD p = p // SS SZ
public export
tail' : DimEq' (S d) -> DimEq' d
tail' (Const eqs e) = eqs
tail' (Var eqs i un) = eqs
tail' (None eqs ) = eqs
public export
tail : DimEq (S d) -> DimEq d
tail ZeroIsOne = ZeroIsOne
tail (C eqs) = C $ tail' eqs
public export
head' : DimEq' (S d) -> Maybe (Dim d)
head' (Const _ e) = Just $ K e
head' (Var _ i _) = Just $ B i
head' (None _) = Nothing
export
tailU : Unassigned eqs (VS i) -> Unassigned (tail' eqs) i
tailU (USK un) = un
tailU (USV un) = un
tailU (USN un) = un
||| make a dim ctx where each variable has a constant assignment
public export
fromGround' : Context' DimConst d -> DimEq' d
fromGround' [<] = Nil
fromGround' (ctx :< e) = Const (fromGround' ctx) e
||| make a dim ctx where each variable has a constant assignment
public export
fromGround : Context' DimConst d -> DimEq d
fromGround = C . fromGround'
||| make a dim ctx where each variable is unassigned
public export
new' : (d : Nat) -> DimEq' d
new' 0 = Nil
new' (S d) = None (new' d)
||| make a dim ctx where each variable is unassigned
public export
new : (d : Nat) -> DimEq d
new d = C $ new' d
||| if the dim is a variable, then it is unassigned
public export
data UnassignedDim : DimEq' d -> Dim d -> Type where
UDK : UnassignedDim eqs (K e)
UDB : Unassigned eqs i -> UnassignedDim eqs (B i)
export
weakUD : {eqs : DimEq' (S d)} -> {p : Dim d} ->
UnassignedDim (tail' eqs) p -> UnassignedDim eqs (weakD p)
weakUD UDK = UDK
weakUD (UDB un) {eqs = Const eqs e} = UDB $ USK un
weakUD (UDB un) {eqs = Var eqs _ _} = UDB $ USV un
weakUD (UDB un) {eqs = None eqs} = UDB $ USN un
||| get the constraint on a variable 𝑖. if it is equal to another var 𝑗,
||| then 𝑗 is not further constrained
public export
getVarPrf : (eqs : DimEq' d) -> Var d -> Subset (Dim d) (UnassignedDim eqs)
getVarPrf (Const eqs e) VZ = Element (K e) UDK
getVarPrf (Var eqs i un) VZ = Element (B $ VS i) (UDB $ USV un)
getVarPrf (None eqs) VZ = Element (B VZ) (UDB UZ)
getVarPrf (Const eqs _) (VS i) = let p = getVarPrf eqs i in
Element (weakD p.fst) (weakUD p.snd)
getVarPrf (Var eqs _ _) (VS i) = let p = getVarPrf eqs i in
Element (weakD p.fst) (weakUD p.snd)
getVarPrf (None eqs) (VS i) = let p = getVarPrf eqs i in
Element (weakD p.fst) (weakUD p.snd)
public export
getVar : (eqs : DimEq' d) -> Var d -> Dim d
getVar eqs i = fst $ getVarPrf eqs i
public export
getPrf : (eqs : DimEq' d) -> Dim d -> Subset (Dim d) (UnassignedDim eqs)
getPrf eqs (K e) = Element (K e) UDK
getPrf eqs (B i) = getVarPrf eqs i
public export
get : DimEq' d -> Dim d -> Dim d
get eqs p = fst $ getPrf eqs p
-- version of `get` that only shifts once but is even more annoying to prove
-- anything about
private
getShift' : Shift d out -> DimEq' d -> Var d -> Maybe (Dim out)
getShift' by (Const eqs e) VZ = Just $ K e
getShift' by (Var eqs i un) VZ = Just $ B $ i // ssDown by
getShift' by (None eqs) VZ = Nothing
getShift' by eqs (VS i) = getShift' (ssDown by) (tail' eqs) i
private
getShift0' : DimEq' d -> Var d -> Maybe (Dim d)
getShift0' = getShift' SZ
private
get' : DimEq' d -> Dim d -> Dim d
get' eqs (K e) = K e
get' eqs (B i) = fromMaybe (B i) $ getShift0' eqs i
%transform "DimEq.get" get = get'
public export
Equal' : DimEq' d -> Rel (Dim d)
Equal' eqs p q = get eqs p = get eqs q
||| whether two dimensions are equal under the current constraints
public export
data Equal : DimEq d -> Rel (Dim d) where
Eq01 : Equal ZeroIsOne p q
EqC : Equal' eqs p q -> Equal (C eqs) p q
%name DimEq.Equal prf
export
decEqual : (eqs : DimEq d) -> Dec2 (Equal eqs)
decEqual ZeroIsOne _ _ = Yes Eq01
decEqual (C eqs) p q = case get eqs p `decEq` get eqs q of
Yes y => Yes $ EqC y
No n => No $ \case EqC p => n p
export
equal : (eqs : DimEq d) -> Dim d -> Dim d -> Bool
equal eqs p q = isYes $ decEqual eqs p q
export
{eqs : DimEq d} -> Reflexive _ (Equal eqs) where
reflexive = case eqs of
ZeroIsOne => Eq01
C eqs => EqC Refl
export
Symmetric _ (Equal eqs) where
symmetric Eq01 = Eq01
symmetric (EqC eq) = EqC $ sym eq
export
Transitive _ (Equal eqs) where
transitive Eq01 Eq01 = Eq01
transitive (EqC p) (EqC q) = EqC $ p `trans` q
export {eqs : DimEq d} -> Equivalence _ (Equal eqs) where
||| extend the context with a new variable, possibly constrained
public export
(:<) : DimEq' d -> Maybe (Dim d) -> DimEq' (S d)
eqs :< Nothing = None eqs
eqs :< Just (K e) = Const eqs e
eqs :< Just (B i) with (getVarPrf eqs i)
_ | Element (K e) _ = Const eqs e
_ | Element (B j) un = Var eqs j $ let UDB un = un in un
infixl 7 :<?
||| extend the context with a new variable, possibly constrained
public export
(:<?) : DimEq d -> Maybe (Dim d) -> DimEq (S d)
ZeroIsOne :<? p = ZeroIsOne
C eqs :<? p = C $ eqs :< p
public export
checkConst : DimConst -> DimConst -> DimEq' d -> DimEq d
checkConst e f eqs = case decEq e f of Yes _ => C eqs; No _ => ZeroIsOne
public export
setConst : Var d -> DimConst -> DimEq' d -> DimEq d
setConst VZ e (Const eqs f) = checkConst e f $ eqs :< Just (K e)
setConst VZ e (Var eqs i un) = setConst i e eqs :<? Just (K e)
setConst VZ e (None eqs) = C $ Const eqs e
setConst (VS i) e (Const eqs f) = setConst i e eqs :<? Just (K f)
setConst (VS i) e (Var eqs j un) = setConst i e eqs :<? Just (B j)
setConst (VS i) e (None eqs) = setConst i e eqs :<? Nothing
public export
setVar : Var d -> Var d -> DimEq' d -> DimEq d
setVar VZ VZ eqs = C eqs
setVar VZ (VS j) (Const eqs e) = setConst j e eqs :<? Just (K e)
setVar VZ (VS j) (Var eqs k un) = setVar j k eqs :<? Just (B k)
setVar VZ (VS j) (None eqs) = C eqs :<? Just (B j)
setVar (VS i) VZ (Const eqs e) = setConst i e eqs :<? Just (K e)
setVar (VS i) VZ (Var eqs k un) = setVar i k eqs :<? Just (B k)
setVar (VS i) VZ (None eqs) = C eqs :<? Just (B i)
setVar (VS i) (VS j) (Const eqs e) = setVar i j eqs :<? Just (K e)
setVar (VS i) (VS j) (Var eqs k un) = setVar i j eqs :<? Just (B k)
setVar (VS i) (VS j) (None eqs) = setVar i j eqs :<? Nothing
public export
set : Dim d -> Dim d -> DimEq d -> DimEq d
set p q ZeroIsOne = ZeroIsOne
set (K e) (K f) (C eqs) = checkConst e f eqs
set (K e) (B j) (C eqs) = setConst j e eqs
set (B i) (K f) (C eqs) = setConst i f eqs
set (B i) (B j) (C eqs) = setVar i j eqs
private
splitV0 : (p : Dim (S d)) -> Either (p = B VZ) (q : Dim d ** p = weakD q)
splitV0 (K e) = Right (K e ** Refl)
splitV0 (B VZ) = Left Refl
splitV0 (B (VS i)) = Right (B i ** Refl)
export
0 getSnoc : (eqs : DimEq' d) -> (u : Maybe (Dim d)) -> (i : Var d) ->
getVar (eqs :< u) (VS i) = weakD (getVar eqs i)
getSnoc eqs Nothing i = Refl
getSnoc eqs (Just (K e)) i = Refl
getSnoc eqs (Just (B j)) i with (getVarPrf eqs j)
_ | Element (K _) _ = Refl
_ | Element (B _) _ = Refl
export
0 snocStrengthen : (p, q : Dim d) ->
Equal' (eqs :< u) (weakD p) (weakD q) -> Equal' eqs p q
snocStrengthen (K e) (K e) Refl = Refl
snocStrengthen (K e) (B i) prf =
shiftInj (SS SZ) _ _ $
rewrite sym $ getSnoc eqs u i in prf
snocStrengthen (B i) (K e) prf =
shiftInj (SS SZ) _ _ $
rewrite sym $ getSnoc eqs u i in prf
snocStrengthen (B i) (B j) prf =
shiftInj (SS SZ) _ _ $
rewrite sym $ getSnoc eqs u i in
rewrite sym $ getSnoc eqs u j in prf
export
0 snocStable : (eqs : DimEq d) -> (u : Maybe (Dim d)) -> (p, q : Dim d) ->
Equal eqs p q -> Equal (eqs :<? u) (weakD p) (weakD q)
snocStable ZeroIsOne u p q Eq01 = Eq01
snocStable (C eqs) u (K e) (K e) (EqC Refl) = reflexive
snocStable (C eqs) u (K e) (B i) (EqC prf) = EqC $
rewrite getSnoc eqs u i in rewrite sym prf in Refl
snocStable (C eqs) u (B i) (K e) (EqC prf) = EqC $
rewrite getSnoc eqs u i in rewrite prf in Refl
snocStable (C eqs) u (B i) (B j) (EqC prf) = EqC $
rewrite getSnoc eqs u i in
rewrite getSnoc eqs u j in
rewrite prf in Refl
export
0 checkConstStable : (eqs : DimEq' d) -> (e, f : DimConst) ->
(p, q : Dim d) -> Equal' eqs p q ->
Equal (checkConst e f eqs) p q
checkConstStable eqs e f p q prf with (decEq e f)
_ | Yes _ = EqC prf
_ | No _ = Eq01
export
0 setConstStable : (eqs : DimEq' d) -> (i : Var d) -> (e : DimConst) ->
(p, q : Dim d) -> Equal' eqs p q ->
Equal (setConst i e eqs) p q
setConstStable (Const eqs f) VZ e p q prf with (decEq e f)
_ | Yes _ = EqC prf
_ | No _ = Eq01
setConstStable (Const eqs f) (VS i) e p q prf = ?setConstStable_rhs_5
setConstStable (Var eqs j un) VZ e p q prf = ?setConstStable_rhs_6
setConstStable (Var eqs j un) (VS i) e p q prf = ?setConstStable_rhs_7
setConstStable (None eqs) VZ e p q prf = ?setConstStable_rhs_8
setConstStable (None eqs) (VS i) e p q prf = ?setConstStable_rhs_9
export
0 setVarStable : (eqs : DimEq' d) -> (i, j : Var d) ->
(p, q : Dim d) -> Equal' eqs p q ->
Equal (setVar i j eqs) p q
export
0 setStable : (eqs : DimEq d) -> (u, v, p, q : Dim d) ->
Equal eqs p q -> Equal (set u v eqs) p q
setStable ZeroIsOne p q u v Eq01 = Eq01
setStable (C eqs) (K e) (K f) p q (EqC prf) = checkConstStable eqs e f p q prf
setStable (C eqs) (K e) (B i) p q (EqC prf) = setConstStable eqs i e p q prf
setStable (C eqs) (B i) (K e) p q (EqC prf) = setConstStable eqs i e p q prf
setStable (C eqs) (B i) (B j) p q (EqC prf) = setVarStable eqs i j p q prf

View File

@ -1,49 +0,0 @@
module Quox.Token
import Generics.Derive
import Text.Lexer
%default total
%language ElabReflection
public export
data Punc
= LParen | RParen
| LSquare | RSquare
| LBrace | RBrace
| Comma
| Colon | DblColon
| Dot
| Arrow | DblArrow
| Times | Triangle
| Wild
%runElab derive "Punc" [Generic, Meta, Eq, Ord, DecEq, Show]
public export
data Keyword
= Lam | Let | In | Case | Of | Omega
| Pi | Sigma | W
%runElab derive "Keyword" [Generic, Meta, Eq, Ord, DecEq, Show]
||| zero and one are separate because they are
||| quantity & dimension constants
public export
data Number = Zero | One | Other Nat
%runElab derive "Number" [Generic, Meta, Eq, Ord, DecEq, Show]
public export
data Token
= P Punc
| K Keyword
| Name String | Symbol String
| N Number | TYPE Nat
%runElab derive "Token" [Generic, Meta, Eq, Ord, DecEq, Show]
public export
BToken : Type
BToken = WithBounds Token