namespaces work now
This commit is contained in:
parent
4db373a84f
commit
4578b30c79
9 changed files with 291 additions and 252 deletions
|
@ -54,14 +54,41 @@ isZero : Definition -> Bool
|
||||||
isZero g = g.qty.fst == Zero
|
isZero g = g.qty.fst == Zero
|
||||||
|
|
||||||
|
|
||||||
|
public export
|
||||||
|
data DefEnvTag = NS | DEFS
|
||||||
|
|
||||||
public export
|
public export
|
||||||
Definitions : Type
|
Definitions : Type
|
||||||
Definitions = SortedMap Name Definition
|
Definitions = SortedMap Name Definition
|
||||||
|
|
||||||
|
public export
|
||||||
|
0 CurNSReader : Type -> Type
|
||||||
|
CurNSReader = ReaderL NS Mods
|
||||||
|
|
||||||
public export
|
public export
|
||||||
0 DefsReader : Type -> Type
|
0 DefsReader : Type -> Type
|
||||||
DefsReader = Reader Definitions
|
DefsReader = ReaderL DEFS Definitions
|
||||||
|
|
||||||
|
export
|
||||||
|
ns : Has CurNSReader fs => Eff fs Mods
|
||||||
|
ns = askAt NS
|
||||||
|
|
||||||
|
export
|
||||||
|
defs : Has DefsReader fs => Eff fs Definitions
|
||||||
|
defs = askAt DEFS
|
||||||
|
|
||||||
|
|
||||||
|
public export
|
||||||
|
lookupNS : Mods -> Name -> Definitions -> Maybe Definition
|
||||||
|
lookupNS [<] x defs = lookup x defs
|
||||||
|
lookupNS mms@(ms :< _) x defs =
|
||||||
|
lookup (addMods mms x) defs <|> lookupNS ms x defs
|
||||||
|
|
||||||
|
parameters {d, n : Nat}
|
||||||
|
public export %inline
|
||||||
|
lookupElim : Name -> Definitions -> Maybe (Elim d n)
|
||||||
|
lookupElim x defs = toElim !(lookup x defs)
|
||||||
|
|
||||||
public export %inline
|
public export %inline
|
||||||
lookupElim : {d, n : Nat} -> Name -> Definitions -> Maybe (Elim d n)
|
lookupElimNS : Mods -> Name -> Definitions -> Maybe (Elim d n)
|
||||||
lookupElim x defs = toElim !(lookup x defs)
|
lookupElimNS mods x defs = toElim !(lookupNS mods x defs)
|
||||||
|
|
|
@ -81,19 +81,19 @@ sameTyCon (E {}) _ = False
|
||||||
||| * a box type is a subsingleton if its content is
|
||| * a box type is a subsingleton if its content is
|
||||||
public export covering
|
public export covering
|
||||||
isSubSing : Has ErrorEff fs => {n : Nat} ->
|
isSubSing : Has ErrorEff fs => {n : Nat} ->
|
||||||
Definitions -> EqContext n -> Term 0 n -> Eff fs Bool
|
Mods -> Definitions -> EqContext n -> Term 0 n -> Eff fs Bool
|
||||||
isSubSing defs ctx ty0 = do
|
isSubSing ns defs ctx ty0 = do
|
||||||
Element ty0 nc <- whnf defs ctx ty0
|
Element ty0 nc <- whnf ns defs ctx ty0
|
||||||
case ty0 of
|
case ty0 of
|
||||||
TYPE _ => pure False
|
TYPE _ => pure False
|
||||||
Pi _ arg res => isSubSing defs (extendTy Zero res.name arg ctx) res.term
|
Pi _ arg res => isSubSing ns defs (extendTy Zero res.name arg ctx) res.term
|
||||||
Sig fst snd => isSubSing defs ctx fst `andM`
|
Sig fst snd => isSubSing ns defs ctx fst `andM`
|
||||||
isSubSing defs (extendTy Zero snd.name fst ctx) snd.term
|
isSubSing ns defs (extendTy Zero snd.name fst ctx) snd.term
|
||||||
Enum tags => pure $ length (SortedSet.toList tags) <= 1
|
Enum tags => pure $ length (SortedSet.toList tags) <= 1
|
||||||
Eq {} => pure True
|
Eq {} => pure True
|
||||||
Nat => pure False
|
Nat => pure False
|
||||||
BOX _ ty => isSubSing defs ctx ty
|
BOX _ ty => isSubSing ns defs ctx ty
|
||||||
E (s :# _) => isSubSing defs ctx s
|
E (s :# _) => isSubSing ns defs ctx s
|
||||||
E _ => pure False
|
E _ => pure False
|
||||||
Lam _ => pure False
|
Lam _ => pure False
|
||||||
Pair _ _ => pure False
|
Pair _ _ => pure False
|
||||||
|
@ -116,14 +116,14 @@ ensureTyCon ctx t = case nchoose $ isTyConE t of
|
||||||
|||
|
|||
|
||||||
||| ⚠ **assumes the elim is already typechecked.** ⚠
|
||| ⚠ **assumes the elim is already typechecked.** ⚠
|
||||||
private covering
|
private covering
|
||||||
computeElimTypeE : (defs : Definitions) -> EqContext n ->
|
computeElimTypeE : (ns : Mods) -> (defs : Definitions) -> EqContext n ->
|
||||||
(e : Elim 0 n) -> (0 ne : NotRedex defs e) =>
|
(e : Elim 0 n) -> (0 ne : NotRedex ns defs e) =>
|
||||||
Equal (Term 0 n)
|
Equal (Term 0 n)
|
||||||
computeElimTypeE defs ectx e =
|
computeElimTypeE ns defs ectx e =
|
||||||
let Val n = ectx.termLen in
|
let Val n = ectx.termLen in
|
||||||
rethrow $ computeElimType defs (toWhnfContext ectx) e
|
rethrow $ computeElimType ns defs (toWhnfContext ectx) e
|
||||||
|
|
||||||
parameters (defs : Definitions)
|
parameters (ns : Mods) (defs : Definitions)
|
||||||
mutual
|
mutual
|
||||||
namespace Term
|
namespace Term
|
||||||
||| `compare0 ctx ty s t` compares `s` and `t` at type `ty`, according to
|
||| `compare0 ctx ty s t` compares `s` and `t` at type `ty`, according to
|
||||||
|
@ -135,9 +135,9 @@ parameters (defs : Definitions)
|
||||||
compare0 ctx ty s t =
|
compare0 ctx ty s t =
|
||||||
wrapErr (WhileComparingT ctx !mode ty s t) $ do
|
wrapErr (WhileComparingT ctx !mode ty s t) $ do
|
||||||
let Val n = ctx.termLen
|
let Val n = ctx.termLen
|
||||||
Element ty nty <- whnf defs ctx ty
|
Element ty _ <- whnf ns defs ctx ty
|
||||||
Element s ns <- whnf defs ctx s
|
Element s _ <- whnf ns defs ctx s
|
||||||
Element t nt <- whnf defs ctx t
|
Element t _ <- whnf ns defs ctx t
|
||||||
tty <- ensureTyCon ctx ty
|
tty <- ensureTyCon ctx ty
|
||||||
compare0' ctx ty s t
|
compare0' ctx ty s t
|
||||||
|
|
||||||
|
@ -150,8 +150,8 @@ parameters (defs : Definitions)
|
||||||
private covering
|
private covering
|
||||||
compare0' : EqContext n ->
|
compare0' : EqContext n ->
|
||||||
(ty, s, t : Term 0 n) ->
|
(ty, s, t : Term 0 n) ->
|
||||||
(0 nty : NotRedex defs ty) => (0 tty : So (isTyConE ty)) =>
|
(0 _ : NotRedex ns defs ty) => (0 _ : So (isTyConE ty)) =>
|
||||||
(0 ns : NotRedex defs s) => (0 nt : NotRedex defs t) =>
|
(0 _ : NotRedex ns defs s) => (0 _ : NotRedex ns defs t) =>
|
||||||
Equal ()
|
Equal ()
|
||||||
compare0' ctx (TYPE _) s t = compareType ctx s t
|
compare0' ctx (TYPE _) s t = compareType ctx s t
|
||||||
|
|
||||||
|
@ -275,19 +275,18 @@ parameters (defs : Definitions)
|
||||||
compareType : EqContext n -> (s, t : Term 0 n) -> Equal ()
|
compareType : EqContext n -> (s, t : Term 0 n) -> Equal ()
|
||||||
compareType ctx s t = do
|
compareType ctx s t = do
|
||||||
let Val n = ctx.termLen
|
let Val n = ctx.termLen
|
||||||
Element s ns <- whnf defs ctx s
|
Element s _ <- whnf ns defs ctx s
|
||||||
Element t nt <- whnf defs ctx t
|
Element t _ <- whnf ns defs ctx t
|
||||||
ts <- ensureTyCon ctx s
|
ts <- ensureTyCon ctx s
|
||||||
tt <- ensureTyCon ctx t
|
tt <- ensureTyCon ctx t
|
||||||
st <- either pure (const $ clashTy ctx s t) $
|
st <- either pure (const $ clashTy ctx s t) $ nchoose $ sameTyCon s t
|
||||||
nchoose $ sameTyCon s t
|
|
||||||
compareType' ctx s t
|
compareType' ctx s t
|
||||||
|
|
||||||
private covering
|
private covering
|
||||||
compareType' : EqContext n -> (s, t : Term 0 n) ->
|
compareType' : EqContext n -> (s, t : Term 0 n) ->
|
||||||
(0 ns : NotRedex defs s) => (0 ts : So (isTyConE s)) =>
|
(0 _ : NotRedex ns defs s) => (0 _ : So (isTyConE s)) =>
|
||||||
(0 nt : NotRedex defs t) => (0 tt : So (isTyConE t)) =>
|
(0 _ : NotRedex ns defs t) => (0 _ : So (isTyConE t)) =>
|
||||||
(0 st : So (sameTyCon s t)) =>
|
(0 _ : So (sameTyCon s t)) =>
|
||||||
Equal ()
|
Equal ()
|
||||||
-- equality is the same as subtyping, except with the
|
-- equality is the same as subtyping, except with the
|
||||||
-- "≤" in the TYPE rule being replaced with "="
|
-- "≤" in the TYPE rule being replaced with "="
|
||||||
|
@ -350,10 +349,10 @@ parameters (defs : Definitions)
|
||||||
|
|
||||||
private covering
|
private covering
|
||||||
replaceEnd : EqContext n ->
|
replaceEnd : EqContext n ->
|
||||||
(e : Elim 0 n) -> DimConst -> (0 ne : NotRedex defs e) ->
|
(e : Elim 0 n) -> DimConst -> (0 ne : NotRedex ns defs e) ->
|
||||||
Equal (Elim 0 n)
|
Equal (Elim 0 n)
|
||||||
replaceEnd ctx e p ne = do
|
replaceEnd ctx e p ne = do
|
||||||
(ty, l, r) <- expectEq defs ctx !(computeElimTypeE defs ctx e)
|
(ty, l, r) <- expectEq ns defs ctx !(computeElimTypeE ns defs ctx e)
|
||||||
pure $ ends l r p :# dsub1 ty (K p)
|
pure $ ends l r p :# dsub1 ty (K p)
|
||||||
|
|
||||||
namespace Elim
|
namespace Elim
|
||||||
|
@ -369,16 +368,16 @@ parameters (defs : Definitions)
|
||||||
compare0 ctx e f =
|
compare0 ctx e f =
|
||||||
wrapErr (WhileComparingE ctx !mode e f) $ do
|
wrapErr (WhileComparingE ctx !mode e f) $ do
|
||||||
let Val n = ctx.termLen
|
let Val n = ctx.termLen
|
||||||
Element e ne <- whnf defs ctx e
|
Element e ne <- whnf ns defs ctx e
|
||||||
Element f nf <- whnf defs ctx f
|
Element f nf <- whnf ns defs ctx f
|
||||||
-- [fixme] there is a better way to do this "isSubSing" stuff for sure
|
-- [fixme] there is a better way to do this "isSubSing" stuff for sure
|
||||||
unless !(isSubSing defs ctx !(computeElimTypeE defs ctx e)) $
|
unless !(isSubSing ns defs ctx !(computeElimTypeE ns defs ctx e)) $
|
||||||
compare0' ctx e f ne nf
|
compare0' ctx e f ne nf
|
||||||
|
|
||||||
private covering
|
private covering
|
||||||
compare0' : EqContext n ->
|
compare0' : EqContext n ->
|
||||||
(e, f : Elim 0 n) ->
|
(e, f : Elim 0 n) ->
|
||||||
(0 ne : NotRedex defs e) -> (0 nf : NotRedex defs f) ->
|
(0 ne : NotRedex ns defs e) -> (0 nf : NotRedex ns defs f) ->
|
||||||
Equal ()
|
Equal ()
|
||||||
-- replace applied equalities with the appropriate end first
|
-- replace applied equalities with the appropriate end first
|
||||||
-- e.g. e : Eq [i ⇒ A] s t ⊢ e 𝟎 = s : A‹𝟎/i›
|
-- e.g. e : Eq [i ⇒ A] s t ⊢ e 𝟎 = s : A‹𝟎/i›
|
||||||
|
@ -398,8 +397,8 @@ parameters (defs : Definitions)
|
||||||
compare0' ctx (e :@ s) (f :@ t) ne nf =
|
compare0' ctx (e :@ s) (f :@ t) ne nf =
|
||||||
local_ Equal $ do
|
local_ Equal $ do
|
||||||
compare0 ctx e f
|
compare0 ctx e f
|
||||||
(_, arg, _) <- expectPi defs ctx =<<
|
(_, arg, _) <- expectPi ns defs ctx =<<
|
||||||
computeElimTypeE defs ctx e @{noOr1 ne}
|
computeElimTypeE ns defs ctx e @{noOr1 ne}
|
||||||
Term.compare0 ctx arg s t
|
Term.compare0 ctx arg s t
|
||||||
compare0' ctx e@(_ :@ _) f _ _ = clashE ctx e f
|
compare0' ctx e@(_ :@ _) f _ _ = clashE ctx e f
|
||||||
|
|
||||||
|
@ -407,9 +406,9 @@ parameters (defs : Definitions)
|
||||||
(CasePair fpi f fret fbody) ne nf =
|
(CasePair fpi f fret fbody) ne nf =
|
||||||
local_ Equal $ do
|
local_ Equal $ do
|
||||||
compare0 ctx e f
|
compare0 ctx e f
|
||||||
ety <- computeElimTypeE defs ctx e @{noOr1 ne}
|
ety <- computeElimTypeE ns defs ctx e @{noOr1 ne}
|
||||||
compareType (extendTy Zero eret.name ety ctx) eret.term fret.term
|
compareType (extendTy Zero eret.name ety ctx) eret.term fret.term
|
||||||
(fst, snd) <- expectSig defs ctx ety
|
(fst, snd) <- expectSig ns defs ctx ety
|
||||||
let [< x, y] = ebody.names
|
let [< x, y] = ebody.names
|
||||||
Term.compare0 (extendTyN [< (epi, x, fst), (epi, y, snd.term)] ctx)
|
Term.compare0 (extendTyN [< (epi, x, fst), (epi, y, snd.term)] ctx)
|
||||||
(substCasePairRet ety eret)
|
(substCasePairRet ety eret)
|
||||||
|
@ -421,9 +420,9 @@ parameters (defs : Definitions)
|
||||||
(CaseEnum fpi f fret farms) ne nf =
|
(CaseEnum fpi f fret farms) ne nf =
|
||||||
local_ Equal $ do
|
local_ Equal $ do
|
||||||
compare0 ctx e f
|
compare0 ctx e f
|
||||||
ety <- computeElimTypeE defs ctx e @{noOr1 ne}
|
ety <- computeElimTypeE ns defs ctx e @{noOr1 ne}
|
||||||
compareType (extendTy Zero eret.name ety ctx) eret.term fret.term
|
compareType (extendTy Zero eret.name ety ctx) eret.term fret.term
|
||||||
for_ !(expectEnum defs ctx ety) $ \t =>
|
for_ !(expectEnum ns defs ctx ety) $ \t =>
|
||||||
compare0 ctx (sub1 eret $ Tag t :# ety)
|
compare0 ctx (sub1 eret $ Tag t :# ety)
|
||||||
!(lookupArm t earms) !(lookupArm t farms)
|
!(lookupArm t earms) !(lookupArm t farms)
|
||||||
expectEqualQ epi fpi
|
expectEqualQ epi fpi
|
||||||
|
@ -438,7 +437,7 @@ parameters (defs : Definitions)
|
||||||
(CaseNat fpi fpi' f fret fzer fsuc) ne nf =
|
(CaseNat fpi fpi' f fret fzer fsuc) ne nf =
|
||||||
local_ Equal $ do
|
local_ Equal $ do
|
||||||
compare0 ctx e f
|
compare0 ctx e f
|
||||||
ety <- computeElimTypeE defs ctx e @{noOr1 ne}
|
ety <- computeElimTypeE ns defs ctx e @{noOr1 ne}
|
||||||
compareType (extendTy Zero eret.name ety ctx) eret.term fret.term
|
compareType (extendTy Zero eret.name ety ctx) eret.term fret.term
|
||||||
compare0 ctx (sub1 eret (Zero :# Nat)) ezer fzer
|
compare0 ctx (sub1 eret (Zero :# Nat)) ezer fzer
|
||||||
let [< p, ih] = esuc.names
|
let [< p, ih] = esuc.names
|
||||||
|
@ -453,9 +452,9 @@ parameters (defs : Definitions)
|
||||||
(CaseBox fpi f fret fbody) ne nf =
|
(CaseBox fpi f fret fbody) ne nf =
|
||||||
local_ Equal $ do
|
local_ Equal $ do
|
||||||
compare0 ctx e f
|
compare0 ctx e f
|
||||||
ety <- computeElimTypeE defs ctx e @{noOr1 ne}
|
ety <- computeElimTypeE ns defs ctx e @{noOr1 ne}
|
||||||
compareType (extendTy Zero eret.name ety ctx) eret.term fret.term
|
compareType (extendTy Zero eret.name ety ctx) eret.term fret.term
|
||||||
(q, ty) <- expectBOX defs ctx ety
|
(q, ty) <- expectBOX ns defs ctx ety
|
||||||
compare0 (extendTy (epi * q) ebody.name ty ctx)
|
compare0 (extendTy (epi * q) ebody.name ty ctx)
|
||||||
(substCaseBoxRet ety eret)
|
(substCaseBoxRet ety eret)
|
||||||
ebody.term fbody.term
|
ebody.term fbody.term
|
||||||
|
@ -481,8 +480,8 @@ parameters (defs : Definitions)
|
||||||
ne _ =
|
ne _ =
|
||||||
local_ Equal $ do
|
local_ Equal $ do
|
||||||
compare0 ctx ty1 ty2
|
compare0 ctx ty1 ty2
|
||||||
u <- expectTYPE defs ctx =<<
|
u <- expectTYPE ns defs ctx =<<
|
||||||
computeElimTypeE defs ctx ty1 @{noOr1 ne}
|
computeElimTypeE ns defs ctx ty1 @{noOr1 ne}
|
||||||
compareType ctx ret1 ret2
|
compareType ctx ret1 ret2
|
||||||
compareType ctx def1 def2
|
compareType ctx def1 def2
|
||||||
for_ allKinds $ \k =>
|
for_ allKinds $ \k =>
|
||||||
|
@ -551,7 +550,8 @@ parameters (defs : Definitions)
|
||||||
compare0 ctx (weakT 1 ret) b1.term b1.term
|
compare0 ctx (weakT 1 ret) b1.term b1.term
|
||||||
|
|
||||||
|
|
||||||
parameters {auto _ : (Has DefsReader fs, Has ErrorEff fs)} (ctx : TyContext d n)
|
parameters {auto _ : (Has DefsReader fs, Has CurNSReader fs, Has ErrorEff fs)}
|
||||||
|
(ctx : TyContext d n)
|
||||||
-- [todo] only split on the dvars that are actually used anywhere in
|
-- [todo] only split on the dvars that are actually used anywhere in
|
||||||
-- the calls to `splits`
|
-- the calls to `splits`
|
||||||
|
|
||||||
|
@ -559,33 +559,30 @@ parameters {auto _ : (Has DefsReader fs, Has ErrorEff fs)} (ctx : TyContext d n)
|
||||||
namespace Term
|
namespace Term
|
||||||
export covering
|
export covering
|
||||||
compare : (ty, s, t : Term d n) -> Eff fs ()
|
compare : (ty, s, t : Term d n) -> Eff fs ()
|
||||||
compare ty s t = do
|
compare ty s t =
|
||||||
defs <- ask
|
|
||||||
map fst $ runState @{Z} mode $
|
map fst $ runState @{Z} mode $
|
||||||
for_ (splits ctx.dctx) $ \th =>
|
for_ (splits ctx.dctx) $ \th =>
|
||||||
let ectx = makeEqContext ctx th in
|
let ectx = makeEqContext ctx th in
|
||||||
lift $ compare0 defs ectx (ty // th) (s // th) (t // th)
|
lift $ compare0 !ns !defs ectx (ty // th) (s // th) (t // th)
|
||||||
|
|
||||||
export covering
|
export covering
|
||||||
compareType : (s, t : Term d n) -> Eff fs ()
|
compareType : (s, t : Term d n) -> Eff fs ()
|
||||||
compareType s t = do
|
compareType s t =
|
||||||
defs <- ask
|
|
||||||
map fst $ runState @{Z} mode $
|
map fst $ runState @{Z} mode $
|
||||||
for_ (splits ctx.dctx) $ \th =>
|
for_ (splits ctx.dctx) $ \th =>
|
||||||
let ectx = makeEqContext ctx th in
|
let ectx = makeEqContext ctx th in
|
||||||
lift $ compareType defs ectx (s // th) (t // th)
|
lift $ compareType !ns !defs ectx (s // th) (t // th)
|
||||||
|
|
||||||
namespace Elim
|
namespace Elim
|
||||||
||| you don't have to pass the type in but the arguments must still be
|
||| you don't have to pass the type in but the arguments must still be
|
||||||
||| of the same type!!
|
||| of the same type!!
|
||||||
export covering %inline
|
export covering %inline
|
||||||
compare : (e, f : Elim d n) -> Eff fs ()
|
compare : (e, f : Elim d n) -> Eff fs ()
|
||||||
compare e f = do
|
compare e f =
|
||||||
defs <- ask
|
|
||||||
map fst $ runState @{Z} mode $
|
map fst $ runState @{Z} mode $
|
||||||
for_ (splits ctx.dctx) $ \th =>
|
for_ (splits ctx.dctx) $ \th =>
|
||||||
let ectx = makeEqContext ctx th in
|
let ectx = makeEqContext ctx th in
|
||||||
lift $ compare0 defs ectx (e // th) (f // th)
|
lift $ compare0 !ns !defs ectx (e // th) (f // th)
|
||||||
|
|
||||||
namespace Term
|
namespace Term
|
||||||
export covering %inline
|
export covering %inline
|
||||||
|
|
|
@ -20,6 +20,8 @@ import public Quox.Parser.FromParser.Error as Quox.Parser.FromParser
|
||||||
%hide Typing.Error
|
%hide Typing.Error
|
||||||
%hide Lexer.Error
|
%hide Lexer.Error
|
||||||
%hide Parser.Error
|
%hide Parser.Error
|
||||||
|
%hide Definition.DEFS
|
||||||
|
%hide Definition.NS
|
||||||
|
|
||||||
|
|
||||||
public export
|
public export
|
||||||
|
@ -234,9 +236,10 @@ fromPNameNS : Has (StateL NS Mods) fs => PName -> Eff fs Name
|
||||||
fromPNameNS name = pure $ addMods !(getAt NS) $ fromPName name
|
fromPNameNS name = pure $ addMods !(getAt NS) $ fromPName name
|
||||||
|
|
||||||
private
|
private
|
||||||
injTC : (Has (StateL DEFS Definitions) fs, Has (Except Error) fs) =>
|
injTC : (Has (StateL DEFS Definitions) fs, Has (StateL NS Mods) fs,
|
||||||
|
Has (Except Error) fs) =>
|
||||||
TC a -> Eff fs a
|
TC a -> Eff fs a
|
||||||
injTC act = rethrow $ mapFst TypeError $ runTC !(getAt DEFS) act
|
injTC act = rethrow $ mapFst TypeError $ runTC !(getAt NS) !(getAt DEFS) act
|
||||||
|
|
||||||
export covering
|
export covering
|
||||||
fromPDef : (Has (StateL DEFS Definitions) fs,
|
fromPDef : (Has (StateL DEFS Definitions) fs,
|
||||||
|
|
|
@ -14,35 +14,37 @@ import Data.List
|
||||||
|
|
||||||
public export
|
public export
|
||||||
0 RedexTest : TermLike -> Type
|
0 RedexTest : TermLike -> Type
|
||||||
RedexTest tm = {d, n : Nat} -> Definitions -> tm d n -> Bool
|
RedexTest tm = {d, n : Nat} -> Mods -> Definitions -> tm d n -> Bool
|
||||||
|
|
||||||
public export
|
public export
|
||||||
interface Whnf (0 tm : TermLike) (0 isRedex : RedexTest tm) | tm
|
interface Whnf (0 tm : TermLike) (0 isRedex : RedexTest tm) | tm
|
||||||
where
|
where
|
||||||
whnf : {d, n : Nat} -> (defs : Definitions) -> (ctx : WhnfContext d n) ->
|
whnf : {d, n : Nat} -> (ns : Mods) -> (defs : Definitions) ->
|
||||||
tm d n -> Either Error (Subset (tm d n) (No . isRedex defs))
|
(ctx : WhnfContext d n) ->
|
||||||
|
tm d n -> Either Error (Subset (tm d n) (No . isRedex ns defs))
|
||||||
|
|
||||||
public export %inline
|
public export %inline
|
||||||
whnf0 : {d, n : Nat} -> {0 isRedex : RedexTest tm} -> Whnf tm isRedex =>
|
whnf0 : {d, n : Nat} -> {0 isRedex : RedexTest tm} -> Whnf tm isRedex =>
|
||||||
(defs : Definitions) -> WhnfContext d n -> tm d n ->
|
(ns : Mods) -> (defs : Definitions) ->
|
||||||
Either Error (tm d n)
|
WhnfContext d n -> tm d n -> Either Error (tm d n)
|
||||||
whnf0 defs ctx t = fst <$> whnf defs ctx t
|
whnf0 ns defs ctx t = fst <$> whnf ns defs ctx t
|
||||||
|
|
||||||
public export
|
public export
|
||||||
0 IsRedex, NotRedex : {isRedex : RedexTest tm} -> Whnf tm isRedex =>
|
0 IsRedex, NotRedex : {isRedex : RedexTest tm} -> Whnf tm isRedex =>
|
||||||
Definitions -> Pred (tm d n)
|
Mods -> Definitions -> Pred (tm d n)
|
||||||
IsRedex defs = So . isRedex defs
|
IsRedex ns defs = So . isRedex ns defs
|
||||||
NotRedex defs = No . isRedex defs
|
NotRedex ns defs = No . isRedex ns defs
|
||||||
|
|
||||||
public export
|
public export
|
||||||
0 NonRedex : (tm : TermLike) -> {isRedex : RedexTest tm} ->
|
0 NonRedex : (tm : TermLike) -> {isRedex : RedexTest tm} ->
|
||||||
Whnf tm isRedex => (d, n : Nat) -> (defs : Definitions) -> Type
|
Whnf tm isRedex => (d, n : Nat) ->
|
||||||
NonRedex tm d n defs = Subset (tm d n) (NotRedex defs)
|
(ns : Mods) -> (defs : Definitions) -> Type
|
||||||
|
NonRedex tm d n ns defs = Subset (tm d n) (NotRedex ns defs)
|
||||||
|
|
||||||
public export %inline
|
public export %inline
|
||||||
nred : {0 isRedex : RedexTest tm} -> (0 _ : Whnf tm isRedex) =>
|
nred : {0 isRedex : RedexTest tm} -> (0 _ : Whnf tm isRedex) =>
|
||||||
(t : tm d n) -> (0 nr : NotRedex defs t) =>
|
(t : tm d n) -> (0 nr : NotRedex ns defs t) =>
|
||||||
NonRedex tm d n defs
|
NonRedex tm d n ns defs
|
||||||
nred t = Element t nr
|
nred t = Element t nr
|
||||||
|
|
||||||
|
|
||||||
|
@ -134,38 +136,38 @@ isK _ = False
|
||||||
mutual
|
mutual
|
||||||
public export
|
public export
|
||||||
isRedexE : RedexTest Elim
|
isRedexE : RedexTest Elim
|
||||||
isRedexE defs (F x) {d, n} =
|
isRedexE ns defs (F x) {d, n} =
|
||||||
isJust $ lookupElim x defs {d, n}
|
isJust $ lookupElimNS ns x defs {d, n}
|
||||||
isRedexE _ (B _) = False
|
isRedexE _ _ (B _) = False
|
||||||
isRedexE defs (f :@ _) =
|
isRedexE ns defs (f :@ _) =
|
||||||
isRedexE defs f || isLamHead f
|
isRedexE ns defs f || isLamHead f
|
||||||
isRedexE defs (CasePair {pair, _}) =
|
isRedexE ns defs (CasePair {pair, _}) =
|
||||||
isRedexE defs pair || isPairHead pair
|
isRedexE ns defs pair || isPairHead pair
|
||||||
isRedexE defs (CaseEnum {tag, _}) =
|
isRedexE ns defs (CaseEnum {tag, _}) =
|
||||||
isRedexE defs tag || isTagHead tag
|
isRedexE ns defs tag || isTagHead tag
|
||||||
isRedexE defs (CaseNat {nat, _}) =
|
isRedexE ns defs (CaseNat {nat, _}) =
|
||||||
isRedexE defs nat || isNatHead nat
|
isRedexE ns defs nat || isNatHead nat
|
||||||
isRedexE defs (CaseBox {box, _}) =
|
isRedexE ns defs (CaseBox {box, _}) =
|
||||||
isRedexE defs box || isBoxHead box
|
isRedexE ns defs box || isBoxHead box
|
||||||
isRedexE defs (f :% p) =
|
isRedexE ns defs (f :% p) =
|
||||||
isRedexE defs f || isDLamHead f || isK p
|
isRedexE ns defs f || isDLamHead f || isK p
|
||||||
isRedexE defs (t :# a) =
|
isRedexE ns defs (t :# a) =
|
||||||
isE t || isRedexT defs t || isRedexT defs a
|
isE t || isRedexT ns defs t || isRedexT ns defs a
|
||||||
isRedexE defs (Coe {val, _}) =
|
isRedexE ns defs (Coe {val, _}) =
|
||||||
isRedexT defs val || not (isE val)
|
isRedexT ns defs val || not (isE val)
|
||||||
isRedexE defs (Comp {ty, r, _}) =
|
isRedexE ns defs (Comp {ty, r, _}) =
|
||||||
isRedexT defs ty || isK r
|
isRedexT ns defs ty || isK r
|
||||||
isRedexE defs (TypeCase {ty, ret, _}) =
|
isRedexE ns defs (TypeCase {ty, ret, _}) =
|
||||||
isRedexE defs ty || isRedexT defs ret || isAnnTyCon ty
|
isRedexE ns defs ty || isRedexT ns defs ret || isAnnTyCon ty
|
||||||
isRedexE _ (CloE {}) = True
|
isRedexE _ _ (CloE {}) = True
|
||||||
isRedexE _ (DCloE {}) = True
|
isRedexE _ _ (DCloE {}) = True
|
||||||
|
|
||||||
public export
|
public export
|
||||||
isRedexT : RedexTest Term
|
isRedexT : RedexTest Term
|
||||||
isRedexT _ (CloT {}) = True
|
isRedexT _ _ (CloT {}) = True
|
||||||
isRedexT _ (DCloT {}) = True
|
isRedexT _ _ (DCloT {}) = True
|
||||||
isRedexT defs (E e) = isAnn e || isRedexE defs e
|
isRedexT ns defs (E e) = isAnn e || isRedexE ns defs e
|
||||||
isRedexT _ _ = False
|
isRedexT _ _ _ = False
|
||||||
|
|
||||||
|
|
||||||
public export
|
public export
|
||||||
|
@ -211,21 +213,23 @@ coeScoped ty p q (S names (N body)) =
|
||||||
|
|
||||||
|
|
||||||
mutual
|
mutual
|
||||||
parameters {d, n : Nat} (defs : Definitions) (ctx : WhnfContext d n)
|
parameters {d, n : Nat} (ns : Mods) (defs : Definitions)
|
||||||
|
(ctx : WhnfContext d n)
|
||||||
||| performs the minimum work required to recompute the type of an elim.
|
||| performs the minimum work required to recompute the type of an elim.
|
||||||
|||
|
|||
|
||||||
||| ⚠ **assumes the elim is already typechecked.** ⚠
|
||| ⚠ **assumes the elim is already typechecked.** ⚠
|
||||||
export covering
|
export covering
|
||||||
computeElimType : (e : Elim d n) -> (0 ne : No (isRedexE defs e)) =>
|
computeElimType : (e : Elim d n) -> (0 ne : No (isRedexE ns defs e)) =>
|
||||||
Either Error (Term d n)
|
Either Error (Term d n)
|
||||||
computeElimType (F x) = do
|
computeElimType (F x) = do
|
||||||
let Just def = lookup x defs | Nothing => Left $ NotInScope x
|
let Just def = lookupNS ns x defs | Nothing => Left $ NotInScope x
|
||||||
pure $ def.type
|
pure $ def.type
|
||||||
computeElimType (B i) = pure $ ctx.tctx !! i
|
computeElimType (B i) = pure $ ctx.tctx !! i
|
||||||
computeElimType (f :@ s) {ne} = do
|
computeElimType (f :@ s) {ne} = do
|
||||||
-- can't use `expectPi` (or `expectEq` below) without making this
|
-- can't use `expectPi` (or `expectEq` below) without making this
|
||||||
-- mutual block from hell even worse lol
|
-- mutual block from hell even worse lol
|
||||||
Pi {arg, res, _} <- whnf0 defs ctx =<< computeElimType f {ne = noOr1 ne}
|
Pi {arg, res, _} <- whnf0 ns defs ctx =<<
|
||||||
|
computeElimType f {ne = noOr1 ne}
|
||||||
| t => Left $ ExpectedPi ctx.names t
|
| t => Left $ ExpectedPi ctx.names t
|
||||||
pure $ sub1 res (s :# arg)
|
pure $ sub1 res (s :# arg)
|
||||||
computeElimType (CasePair {pair, ret, _}) = pure $ sub1 ret pair
|
computeElimType (CasePair {pair, ret, _}) = pure $ sub1 ret pair
|
||||||
|
@ -233,7 +237,7 @@ mutual
|
||||||
computeElimType (CaseNat {nat, ret, _}) = pure $ sub1 ret nat
|
computeElimType (CaseNat {nat, ret, _}) = pure $ sub1 ret nat
|
||||||
computeElimType (CaseBox {box, ret, _}) = pure $ sub1 ret box
|
computeElimType (CaseBox {box, ret, _}) = pure $ sub1 ret box
|
||||||
computeElimType (f :% p) {ne} = do
|
computeElimType (f :% p) {ne} = do
|
||||||
Eq {ty, _} <- whnf0 defs ctx =<< computeElimType f {ne = noOr1 ne}
|
Eq {ty, _} <- whnf0 ns defs ctx =<< computeElimType f {ne = noOr1 ne}
|
||||||
| t => Left $ ExpectedEq ctx.names t
|
| t => Left $ ExpectedEq ctx.names t
|
||||||
pure $ dsub1 ty p
|
pure $ dsub1 ty p
|
||||||
computeElimType (Coe {ty, q, _}) = pure $ dsub1 ty q
|
computeElimType (Coe {ty, q, _}) = pure $ dsub1 ty q
|
||||||
|
@ -241,16 +245,17 @@ mutual
|
||||||
computeElimType (TypeCase {ret, _}) = pure ret
|
computeElimType (TypeCase {ret, _}) = pure ret
|
||||||
computeElimType (_ :# ty) = pure ty
|
computeElimType (_ :# ty) = pure ty
|
||||||
|
|
||||||
parameters {d, n : Nat} (defs : Definitions) (ctx : WhnfContext (S d) n)
|
parameters {d, n : Nat} (ns : Mods) (defs : Definitions)
|
||||||
|
(ctx : WhnfContext (S d) n)
|
||||||
||| for π.(x : A) → B, returns (A, B);
|
||| for π.(x : A) → B, returns (A, B);
|
||||||
||| for an elim returns a pair of type-cases that will reduce to that;
|
||| for an elim returns a pair of type-cases that will reduce to that;
|
||||||
||| for other intro forms error
|
||| for other intro forms error
|
||||||
private covering
|
private covering
|
||||||
tycasePi : (t : Term (S d) n) -> (0 tnf : No (isRedexT defs t)) =>
|
tycasePi : (t : Term (S d) n) -> (0 tnf : No (isRedexT ns defs t)) =>
|
||||||
Either Error (Term (S d) n, ScopeTerm (S d) n)
|
Either Error (Term (S d) n, ScopeTerm (S d) n)
|
||||||
tycasePi (Pi {arg, res, _}) = pure (arg, res)
|
tycasePi (Pi {arg, res, _}) = pure (arg, res)
|
||||||
tycasePi (E e) {tnf} = do
|
tycasePi (E e) {tnf} = do
|
||||||
ty <- computeElimType defs ctx e @{noOr2 tnf}
|
ty <- computeElimType ns defs ctx e @{noOr2 tnf}
|
||||||
let arg = E $ typeCase1Y e ty KPi [< "Arg", "Ret"] (BVT 1)
|
let arg = E $ typeCase1Y e ty KPi [< "Arg", "Ret"] (BVT 1)
|
||||||
res' = typeCase1Y e (Arr Zero arg ty) KPi [< "Arg", "Ret"] (BVT 0)
|
res' = typeCase1Y e (Arr Zero arg ty) KPi [< "Arg", "Ret"] (BVT 0)
|
||||||
res = SY [< "Arg"] $ E $ weakE 1 res' :@ BVT 0
|
res = SY [< "Arg"] $ E $ weakE 1 res' :@ BVT 0
|
||||||
|
@ -261,11 +266,11 @@ mutual
|
||||||
||| for an elim returns a pair of type-cases that will reduce to that;
|
||| for an elim returns a pair of type-cases that will reduce to that;
|
||||||
||| for other intro forms error
|
||| for other intro forms error
|
||||||
private covering
|
private covering
|
||||||
tycaseSig : (t : Term (S d) n) -> (0 tnf : No (isRedexT defs t)) =>
|
tycaseSig : (t : Term (S d) n) -> (0 tnf : No (isRedexT ns defs t)) =>
|
||||||
Either Error (Term (S d) n, ScopeTerm (S d) n)
|
Either Error (Term (S d) n, ScopeTerm (S d) n)
|
||||||
tycaseSig (Sig {fst, snd, _}) = pure (fst, snd)
|
tycaseSig (Sig {fst, snd, _}) = pure (fst, snd)
|
||||||
tycaseSig (E e) {tnf} = do
|
tycaseSig (E e) {tnf} = do
|
||||||
ty <- computeElimType defs ctx e @{noOr2 tnf}
|
ty <- computeElimType ns defs ctx e @{noOr2 tnf}
|
||||||
let fst = E $ typeCase1Y e ty KSig [< "Fst", "Snd"] (BVT 1)
|
let fst = E $ typeCase1Y e ty KSig [< "Fst", "Snd"] (BVT 1)
|
||||||
snd' = typeCase1Y e (Arr Zero fst ty) KSig [< "Fst", "Snd"] (BVT 0)
|
snd' = typeCase1Y e (Arr Zero fst ty) KSig [< "Fst", "Snd"] (BVT 0)
|
||||||
snd = SY [< "Fst"] $ E $ weakE 1 snd' :@ BVT 0
|
snd = SY [< "Fst"] $ E $ weakE 1 snd' :@ BVT 0
|
||||||
|
@ -276,11 +281,11 @@ mutual
|
||||||
||| for an elim returns a type-case that will reduce to that;
|
||| for an elim returns a type-case that will reduce to that;
|
||||||
||| for other intro forms error
|
||| for other intro forms error
|
||||||
private covering
|
private covering
|
||||||
tycaseBOX : (t : Term (S d) n) -> (0 tnf : No (isRedexT defs t)) =>
|
tycaseBOX : (t : Term (S d) n) -> (0 tnf : No (isRedexT ns defs t)) =>
|
||||||
Either Error (Term (S d) n)
|
Either Error (Term (S d) n)
|
||||||
tycaseBOX (BOX _ a) = pure a
|
tycaseBOX (BOX _ a) = pure a
|
||||||
tycaseBOX (E e) {tnf} = do
|
tycaseBOX (E e) {tnf} = do
|
||||||
ty <- computeElimType defs ctx e @{noOr2 tnf}
|
ty <- computeElimType ns defs ctx e @{noOr2 tnf}
|
||||||
pure $ E $ typeCase1Y e ty KBOX [< "Ty"] (BVT 0)
|
pure $ E $ typeCase1Y e ty KBOX [< "Ty"] (BVT 0)
|
||||||
tycaseBOX t = Left $ ExpectedBOX ctx.names t
|
tycaseBOX t = Left $ ExpectedBOX ctx.names t
|
||||||
|
|
||||||
|
@ -288,12 +293,12 @@ mutual
|
||||||
||| for an elim returns five type-cases that will reduce to that;
|
||| for an elim returns five type-cases that will reduce to that;
|
||||||
||| for other intro forms error
|
||| for other intro forms error
|
||||||
private covering
|
private covering
|
||||||
tycaseEq : (t : Term (S d) n) -> (0 tnf : No (isRedexT defs t)) =>
|
tycaseEq : (t : Term (S d) n) -> (0 tnf : No (isRedexT ns defs t)) =>
|
||||||
Either Error (Term (S d) n, Term (S d) n, DScopeTerm (S d) n,
|
Either Error (Term (S d) n, Term (S d) n, DScopeTerm (S d) n,
|
||||||
Term (S d) n, Term (S d) n)
|
Term (S d) n, Term (S d) n)
|
||||||
tycaseEq (Eq {ty, l, r}) = pure (ty.zero, ty.one, ty, l, r)
|
tycaseEq (Eq {ty, l, r}) = pure (ty.zero, ty.one, ty, l, r)
|
||||||
tycaseEq (E e) {tnf} = do
|
tycaseEq (E e) {tnf} = do
|
||||||
ty <- computeElimType defs ctx e @{noOr2 tnf}
|
ty <- computeElimType ns defs ctx e @{noOr2 tnf}
|
||||||
let names = [< "A0", "A1", "A", "L", "R"]
|
let names = [< "A0", "A1", "A", "L", "R"]
|
||||||
a0 = E $ typeCase1Y e ty KEq names (BVT 4)
|
a0 = E $ typeCase1Y e ty KEq names (BVT 4)
|
||||||
a1 = E $ typeCase1Y e ty KEq names (BVT 3)
|
a1 = E $ typeCase1Y e ty KEq names (BVT 3)
|
||||||
|
@ -304,12 +309,14 @@ mutual
|
||||||
pure (a0, a1, a, l, r)
|
pure (a0, a1, a, l, r)
|
||||||
tycaseEq t = Left $ ExpectedEq ctx.names t
|
tycaseEq t = Left $ ExpectedEq ctx.names t
|
||||||
|
|
||||||
|
-- new block because the functions below might pass a different ctx
|
||||||
parameters {d, n : Nat} (defs : Definitions) (ctx : WhnfContext d n)
|
-- into the ones above
|
||||||
|
parameters {d, n : Nat} (ns : Mods) (defs : Definitions)
|
||||||
|
(ctx : WhnfContext d n)
|
||||||
||| reduce a function application `Coe ty p q val :@ s`
|
||| reduce a function application `Coe ty p q val :@ s`
|
||||||
private covering
|
private covering
|
||||||
piCoe : (ty : DScopeTerm d n) -> (p, q : Dim d) -> (val, s : Term d n) ->
|
piCoe : (ty : DScopeTerm d n) -> (p, q : Dim d) -> (val, s : Term d n) ->
|
||||||
Either Error (Subset (Elim d n) (No . isRedexE defs))
|
Either Error (Subset (Elim d n) (No . isRedexE ns defs))
|
||||||
piCoe sty@(S [< i] ty) p q val s = do
|
piCoe sty@(S [< i] ty) p q val s = do
|
||||||
-- (coe [i ⇒ π.(x : A) → B] @p @q t) s ⇝
|
-- (coe [i ⇒ π.(x : A) → B] @p @q t) s ⇝
|
||||||
-- coe [i ⇒ B[𝒔‹i›/x] @p @q ((t ∷ (π.(x : A) → B)‹p/i›) 𝒔‹p›)
|
-- coe [i ⇒ B[𝒔‹i›/x] @p @q ((t ∷ (π.(x : A) → B)‹p/i›) 𝒔‹p›)
|
||||||
|
@ -317,20 +324,20 @@ mutual
|
||||||
--
|
--
|
||||||
-- type-case is used to expose A,B if the type is neutral
|
-- type-case is used to expose A,B if the type is neutral
|
||||||
let ctx1 = extendDim i ctx
|
let ctx1 = extendDim i ctx
|
||||||
Element ty tynf <- whnf defs ctx1 ty.term
|
Element ty tynf <- whnf ns defs ctx1 ty.term
|
||||||
(arg, res) <- tycasePi defs ctx1 ty
|
(arg, res) <- tycasePi ns defs ctx1 ty
|
||||||
let s0 = CoeT i arg q p s
|
let s0 = CoeT i arg q p s
|
||||||
body = E $ (val :# (ty // one p)) :@ E s0
|
body = E $ (val :# (ty // one p)) :@ E s0
|
||||||
s1 = CoeT i (arg // (BV 0 ::: shift 2)) (weakD 1 q) (BV 0)
|
s1 = CoeT i (arg // (BV 0 ::: shift 2)) (weakD 1 q) (BV 0)
|
||||||
(s // shift 1)
|
(s // shift 1)
|
||||||
whnf defs ctx $ CoeT i (sub1 res s1) p q body
|
whnf ns defs ctx $ CoeT i (sub1 res s1) p q body
|
||||||
|
|
||||||
||| reduce a pair elimination `CasePair pi (Coe ty p q val) ret body`
|
||| reduce a pair elimination `CasePair pi (Coe ty p q val) ret body`
|
||||||
private covering
|
private covering
|
||||||
sigCoe : (qty : Qty) ->
|
sigCoe : (qty : Qty) ->
|
||||||
(ty : DScopeTerm d n) -> (p, q : Dim d) -> (val : Term d n) ->
|
(ty : DScopeTerm d n) -> (p, q : Dim d) -> (val : Term d n) ->
|
||||||
(ret : ScopeTerm d n) -> (body : ScopeTermN 2 d n) ->
|
(ret : ScopeTerm d n) -> (body : ScopeTermN 2 d n) ->
|
||||||
Either Error (Subset (Elim d n) (No . isRedexE defs))
|
Either Error (Subset (Elim d n) (No . isRedexE ns defs))
|
||||||
sigCoe qty sty@(S [< i] ty) p q val ret body = do
|
sigCoe qty sty@(S [< i] ty) p q val ret body = do
|
||||||
-- caseπ (coe [i ⇒ (x : A) × B] @p @q s) return z ⇒ C of { (a, b) ⇒ e }
|
-- caseπ (coe [i ⇒ (x : A) × B] @p @q s) return z ⇒ C of { (a, b) ⇒ e }
|
||||||
-- ⇝
|
-- ⇝
|
||||||
|
@ -341,101 +348,101 @@ mutual
|
||||||
--
|
--
|
||||||
-- type-case is used to expose A,B if the type is neutral
|
-- type-case is used to expose A,B if the type is neutral
|
||||||
let ctx1 = extendDim i ctx
|
let ctx1 = extendDim i ctx
|
||||||
Element ty tynf <- whnf defs ctx1 ty.term
|
Element ty tynf <- whnf ns defs ctx1 ty.term
|
||||||
(tfst, tsnd) <- tycaseSig defs ctx1 ty
|
(tfst, tsnd) <- tycaseSig ns defs ctx1 ty
|
||||||
let a' = CoeT i (weakT 2 tfst) p q (BVT 1)
|
let a' = CoeT i (weakT 2 tfst) p q (BVT 1)
|
||||||
tsnd' = tsnd.term //
|
tsnd' = tsnd.term //
|
||||||
(CoeT i (weakT 2 $ tfst // (BV 0 ::: shift 2))
|
(CoeT i (weakT 2 $ tfst // (BV 0 ::: shift 2))
|
||||||
(weakD 1 p) (BV 0) (BVT 1) ::: shift 2)
|
(weakD 1 p) (BV 0) (BVT 1) ::: shift 2)
|
||||||
b' = CoeT i tsnd' p q (BVT 0)
|
b' = CoeT i tsnd' p q (BVT 0)
|
||||||
whnf defs ctx $ CasePair qty (val :# (ty // one p)) ret $
|
whnf ns defs ctx $ CasePair qty (val :# (ty // one p)) ret $
|
||||||
ST body.names $ body.term // (a' ::: b' ::: shift 2)
|
ST body.names $ body.term // (a' ::: b' ::: shift 2)
|
||||||
|
|
||||||
||| reduce a dimension application `Coe ty p q val :% r`
|
||| reduce a dimension application `Coe ty p q val :% r`
|
||||||
private covering
|
private covering
|
||||||
eqCoe : (ty : DScopeTerm d n) -> (p, q : Dim d) -> (val : Term d n) ->
|
eqCoe : (ty : DScopeTerm d n) -> (p, q : Dim d) -> (val : Term d n) ->
|
||||||
(r : Dim d) ->
|
(r : Dim d) ->
|
||||||
Either Error (Subset (Elim d n) (No . isRedexE defs))
|
Either Error (Subset (Elim d n) (No . isRedexE ns defs))
|
||||||
eqCoe sty@(S [< j] ty) p q val r = do
|
eqCoe sty@(S [< j] ty) p q val r = do
|
||||||
-- (coe [j ⇒ Eq [i ⇒ A] L R] @p @q eq) @r
|
-- (coe [j ⇒ Eq [i ⇒ A] L R] @p @q eq) @r
|
||||||
-- ⇝
|
-- ⇝
|
||||||
-- comp [j ⇒ A‹r/i›] @p @q (eq ∷ (Eq [i ⇒ A] L R)‹p/j›)
|
-- comp [j ⇒ A‹r/i›] @p @q (eq ∷ (Eq [i ⇒ A] L R)‹p/j›)
|
||||||
-- { (r=0) j ⇒ L; (r=1) j ⇒ R }
|
-- { (r=0) j ⇒ L; (r=1) j ⇒ R }
|
||||||
let ctx1 = extendDim j ctx
|
let ctx1 = extendDim j ctx
|
||||||
Element ty tynf <- whnf defs ctx1 ty.term
|
Element ty tynf <- whnf ns defs ctx1 ty.term
|
||||||
(a0, a1, a, s, t) <- tycaseEq defs ctx1 ty
|
(a0, a1, a, s, t) <- tycaseEq ns defs ctx1 ty
|
||||||
let a' = dsub1 a (weakD 1 r)
|
let a' = dsub1 a (weakD 1 r)
|
||||||
val' = E $ (val :# (ty // one p)) :% r
|
val' = E $ (val :# (ty // one p)) :% r
|
||||||
whnf defs ctx $ CompH j a' p q val' r j s j t
|
whnf ns defs ctx $ CompH j a' p q val' r j s j t
|
||||||
|
|
||||||
||| reduce a pair elimination `CaseBox pi (Coe ty p q val) ret body`
|
||| reduce a pair elimination `CaseBox pi (Coe ty p q val) ret body`
|
||||||
private covering
|
private covering
|
||||||
boxCoe : (qty : Qty) ->
|
boxCoe : (qty : Qty) ->
|
||||||
(ty : DScopeTerm d n) -> (p, q : Dim d) -> (val : Term d n) ->
|
(ty : DScopeTerm d n) -> (p, q : Dim d) -> (val : Term d n) ->
|
||||||
(ret : ScopeTerm d n) -> (body : ScopeTerm d n) ->
|
(ret : ScopeTerm d n) -> (body : ScopeTerm d n) ->
|
||||||
Either Error (Subset (Elim d n) (No . isRedexE defs))
|
Either Error (Subset (Elim d n) (No . isRedexE ns defs))
|
||||||
boxCoe qty sty@(S [< i] ty) p q val ret body = do
|
boxCoe qty sty@(S [< i] ty) p q val ret body = do
|
||||||
-- caseπ (coe [i ⇒ [ρ. A]] @p @q s) return z ⇒ C of { [a] ⇒ e }
|
-- caseπ (coe [i ⇒ [ρ. A]] @p @q s) return z ⇒ C of { [a] ⇒ e }
|
||||||
-- ⇝
|
-- ⇝
|
||||||
-- caseπ s ∷ [ρ. A]‹p/i› return z ⇒ C
|
-- caseπ s ∷ [ρ. A]‹p/i› return z ⇒ C
|
||||||
-- of { [a] ⇒ e[(coe [i ⇒ A] p q a)/a] }
|
-- of { [a] ⇒ e[(coe [i ⇒ A] p q a)/a] }
|
||||||
let ctx1 = extendDim i ctx
|
let ctx1 = extendDim i ctx
|
||||||
Element ty tynf <- whnf defs ctx1 ty.term
|
Element ty tynf <- whnf ns defs ctx1 ty.term
|
||||||
ta <- tycaseBOX defs ctx1 ty
|
ta <- tycaseBOX ns defs ctx1 ty
|
||||||
let a' = CoeT i (weakT 1 ta) p q $ BVT 0
|
let a' = CoeT i (weakT 1 ta) p q $ BVT 0
|
||||||
whnf defs ctx $ CaseBox qty (val :# (ty // one p)) ret $
|
whnf ns defs ctx $ CaseBox qty (val :# (ty // one p)) ret $
|
||||||
ST body.names $ body.term // (a' ::: shift 1)
|
ST body.names $ body.term // (a' ::: shift 1)
|
||||||
|
|
||||||
|
|
||||||
export covering
|
export covering
|
||||||
Whnf Elim Reduce.isRedexE where
|
Whnf Elim Reduce.isRedexE where
|
||||||
whnf defs ctx (F x) with (lookupElim x defs) proof eq
|
whnf ns defs ctx (F x) with (lookupElimNS ns x defs) proof eq
|
||||||
_ | Just y = whnf defs ctx y
|
_ | Just y = whnf ns defs ctx y
|
||||||
_ | Nothing = pure $ Element (F x) $ rewrite eq in Ah
|
_ | Nothing = pure $ Element (F x) $ rewrite eq in Ah
|
||||||
|
|
||||||
whnf _ _ (B i) = pure $ nred $ B i
|
whnf _ _ _ (B i) = pure $ nred $ B i
|
||||||
|
|
||||||
-- ((λ x ⇒ t) ∷ (π.x : A) → B) s ⇝ t[s∷A/x] ∷ B[s∷A/x]
|
-- ((λ x ⇒ t) ∷ (π.x : A) → B) s ⇝ t[s∷A/x] ∷ B[s∷A/x]
|
||||||
whnf defs ctx (f :@ s) = do
|
whnf ns defs ctx (f :@ s) = do
|
||||||
Element f fnf <- whnf defs ctx f
|
Element f fnf <- whnf ns defs ctx f
|
||||||
case nchoose $ isLamHead f of
|
case nchoose $ isLamHead f of
|
||||||
Left _ => case f of
|
Left _ => case f of
|
||||||
Lam body :# Pi {arg, res, _} =>
|
Lam body :# Pi {arg, res, _} =>
|
||||||
let s = s :# arg in
|
let s = s :# arg in
|
||||||
whnf defs ctx $ sub1 body s :# sub1 res s
|
whnf ns defs ctx $ sub1 body s :# sub1 res s
|
||||||
Coe ty p q val => piCoe defs ctx ty p q val s
|
Coe ty p q val => piCoe ns defs ctx ty p q val s
|
||||||
Right nlh => pure $ Element (f :@ s) $ fnf `orNo` nlh
|
Right nlh => pure $ Element (f :@ s) $ fnf `orNo` nlh
|
||||||
|
|
||||||
-- case (s, t) ∷ (x : A) × B return p ⇒ C of { (a, b) ⇒ u } ⇝
|
-- case (s, t) ∷ (x : A) × B return p ⇒ C of { (a, b) ⇒ u } ⇝
|
||||||
-- u[s∷A/a, t∷B[s∷A/x]] ∷ C[(s, t)∷((x : A) × B)/p]
|
-- u[s∷A/a, t∷B[s∷A/x]] ∷ C[(s, t)∷((x : A) × B)/p]
|
||||||
whnf defs ctx (CasePair pi pair ret body) = do
|
whnf ns defs ctx (CasePair pi pair ret body) = do
|
||||||
Element pair pairnf <- whnf defs ctx pair
|
Element pair pairnf <- whnf ns defs ctx pair
|
||||||
case nchoose $ isPairHead pair of
|
case nchoose $ isPairHead pair of
|
||||||
Left _ => case pair of
|
Left _ => case pair of
|
||||||
Pair {fst, snd} :# Sig {fst = tfst, snd = tsnd, _} =>
|
Pair {fst, snd} :# Sig {fst = tfst, snd = tsnd, _} =>
|
||||||
let fst = fst :# tfst
|
let fst = fst :# tfst
|
||||||
snd = snd :# sub1 tsnd fst
|
snd = snd :# sub1 tsnd fst
|
||||||
in
|
in
|
||||||
whnf defs ctx $ subN body [< fst, snd] :# sub1 ret pair
|
whnf ns defs ctx $ subN body [< fst, snd] :# sub1 ret pair
|
||||||
Coe ty p q val => do
|
Coe ty p q val => do
|
||||||
sigCoe defs ctx pi ty p q val ret body
|
sigCoe ns defs ctx pi ty p q val ret body
|
||||||
Right np =>
|
Right np =>
|
||||||
pure $ Element (CasePair pi pair ret body) $ pairnf `orNo` np
|
pure $ Element (CasePair pi pair ret body) $ pairnf `orNo` np
|
||||||
|
|
||||||
-- case 'a ∷ {a,…} return p ⇒ C of { 'a ⇒ u } ⇝
|
-- case 'a ∷ {a,…} return p ⇒ C of { 'a ⇒ u } ⇝
|
||||||
-- u ∷ C['a∷{a,…}/p]
|
-- u ∷ C['a∷{a,…}/p]
|
||||||
whnf defs ctx (CaseEnum pi tag ret arms) = do
|
whnf ns defs ctx (CaseEnum pi tag ret arms) = do
|
||||||
Element tag tagnf <- whnf defs ctx tag
|
Element tag tagnf <- whnf ns defs ctx tag
|
||||||
case nchoose $ isTagHead tag of
|
case nchoose $ isTagHead tag of
|
||||||
Left t => case tag of
|
Left t => case tag of
|
||||||
Tag t :# Enum ts =>
|
Tag t :# Enum ts =>
|
||||||
let ty = sub1 ret tag in
|
let ty = sub1 ret tag in
|
||||||
case lookup t arms of
|
case lookup t arms of
|
||||||
Just arm => whnf defs ctx $ arm :# ty
|
Just arm => whnf ns defs ctx $ arm :# ty
|
||||||
Nothing => Left $ MissingEnumArm t (keys arms)
|
Nothing => Left $ MissingEnumArm t (keys arms)
|
||||||
Coe ty p q val =>
|
Coe ty p q val =>
|
||||||
-- there is nowhere an equality can be hiding inside an Enum
|
-- there is nowhere an equality can be hiding inside an Enum
|
||||||
whnf defs ctx $ CaseEnum pi (val :# dsub1 ty q) ret arms
|
whnf ns defs ctx $ CaseEnum pi (val :# dsub1 ty q) ret arms
|
||||||
Right nt =>
|
Right nt =>
|
||||||
pure $ Element (CaseEnum pi tag ret arms) $ tagnf `orNo` nt
|
pure $ Element (CaseEnum pi tag ret arms) $ tagnf `orNo` nt
|
||||||
|
|
||||||
|
@ -444,35 +451,35 @@ mutual
|
||||||
--
|
--
|
||||||
-- case succ n ∷ ℕ return p ⇒ C of { succ n', π.ih ⇒ u; … } ⇝
|
-- case succ n ∷ ℕ return p ⇒ C of { succ n', π.ih ⇒ u; … } ⇝
|
||||||
-- u[n∷ℕ/n', (case n ∷ ℕ ⋯)/ih] ∷ C[succ n ∷ ℕ/p]
|
-- u[n∷ℕ/n', (case n ∷ ℕ ⋯)/ih] ∷ C[succ n ∷ ℕ/p]
|
||||||
whnf defs ctx (CaseNat pi piIH nat ret zer suc) = do
|
whnf ns defs ctx (CaseNat pi piIH nat ret zer suc) = do
|
||||||
Element nat natnf <- whnf defs ctx nat
|
Element nat natnf <- whnf ns defs ctx nat
|
||||||
case nchoose $ isNatHead nat of
|
case nchoose $ isNatHead nat of
|
||||||
Left _ =>
|
Left _ =>
|
||||||
let ty = sub1 ret nat in
|
let ty = sub1 ret nat in
|
||||||
case nat of
|
case nat of
|
||||||
Zero :# Nat => whnf defs ctx (zer :# ty)
|
Zero :# Nat => whnf ns defs ctx (zer :# ty)
|
||||||
Succ n :# Nat =>
|
Succ n :# Nat =>
|
||||||
let nn = n :# Nat
|
let nn = n :# Nat
|
||||||
tm = subN suc [< nn, CaseNat pi piIH nn ret zer suc]
|
tm = subN suc [< nn, CaseNat pi piIH nn ret zer suc]
|
||||||
in
|
in
|
||||||
whnf defs ctx $ tm :# ty
|
whnf ns defs ctx $ tm :# ty
|
||||||
Coe ty p q val =>
|
Coe ty p q val =>
|
||||||
-- same deal as Enum
|
-- same deal as Enum
|
||||||
whnf defs ctx $ CaseNat pi piIH (val :# dsub1 ty q) ret zer suc
|
whnf ns defs ctx $ CaseNat pi piIH (val :# dsub1 ty q) ret zer suc
|
||||||
Right nn =>
|
Right nn =>
|
||||||
pure $ Element (CaseNat pi piIH nat ret zer suc) $ natnf `orNo` nn
|
pure $ Element (CaseNat pi piIH nat ret zer suc) $ natnf `orNo` nn
|
||||||
|
|
||||||
-- case [t] ∷ [π.A] return p ⇒ C of { [x] ⇒ u } ⇝
|
-- case [t] ∷ [π.A] return p ⇒ C of { [x] ⇒ u } ⇝
|
||||||
-- u[t∷A/x] ∷ C[[t] ∷ [π.A]/p]
|
-- u[t∷A/x] ∷ C[[t] ∷ [π.A]/p]
|
||||||
whnf defs ctx (CaseBox pi box ret body) = do
|
whnf ns defs ctx (CaseBox pi box ret body) = do
|
||||||
Element box boxnf <- whnf defs ctx box
|
Element box boxnf <- whnf ns defs ctx box
|
||||||
case nchoose $ isBoxHead box of
|
case nchoose $ isBoxHead box of
|
||||||
Left _ => case box of
|
Left _ => case box of
|
||||||
Box val :# BOX q bty =>
|
Box val :# BOX q bty =>
|
||||||
let ty = sub1 ret box in
|
let ty = sub1 ret box in
|
||||||
whnf defs ctx $ sub1 body (val :# bty) :# ty
|
whnf ns defs ctx $ sub1 body (val :# bty) :# ty
|
||||||
Coe ty p q val =>
|
Coe ty p q val =>
|
||||||
boxCoe defs ctx pi ty p q val ret body
|
boxCoe ns defs ctx pi ty p q val ret body
|
||||||
Right nb =>
|
Right nb =>
|
||||||
pure $ Element (CaseBox pi box ret body) $ boxnf `orNo` nb
|
pure $ Element (CaseBox pi box ret body) $ boxnf `orNo` nb
|
||||||
|
|
||||||
|
@ -480,102 +487,104 @@ mutual
|
||||||
-- ((δ 𝑖 ⇒ s) ∷ Eq [𝑗 ⇒ A] t u) @1 ⇝ u ∷ A‹1/𝑗›
|
-- ((δ 𝑖 ⇒ s) ∷ Eq [𝑗 ⇒ A] t u) @1 ⇝ u ∷ A‹1/𝑗›
|
||||||
-- ((δ 𝑖 ⇒ s) ∷ Eq [𝑗 ⇒ A] t u) @𝑘 ⇝ s‹𝑘/𝑖› ∷ A‹𝑘/𝑗›
|
-- ((δ 𝑖 ⇒ s) ∷ Eq [𝑗 ⇒ A] t u) @𝑘 ⇝ s‹𝑘/𝑖› ∷ A‹𝑘/𝑗›
|
||||||
-- (if 𝑘 is a variable)
|
-- (if 𝑘 is a variable)
|
||||||
whnf defs ctx (f :% p) = do
|
whnf ns defs ctx (f :% p) = do
|
||||||
Element f fnf <- whnf defs ctx f
|
Element f fnf <- whnf ns defs ctx f
|
||||||
case nchoose $ isDLamHead f of
|
case nchoose $ isDLamHead f of
|
||||||
Left _ => case f of
|
Left _ => case f of
|
||||||
DLam body :# Eq {ty = ty, l, r, _} =>
|
DLam body :# Eq {ty = ty, l, r, _} =>
|
||||||
let body = endsOr l r (dsub1 body p) p in
|
let body = endsOr l r (dsub1 body p) p in
|
||||||
whnf defs ctx $ body :# dsub1 ty p
|
whnf ns defs ctx $ body :# dsub1 ty p
|
||||||
Coe ty p' q' val =>
|
Coe ty p' q' val =>
|
||||||
eqCoe defs ctx ty p' q' val p
|
eqCoe ns defs ctx ty p' q' val p
|
||||||
Right ndlh => case p of
|
Right ndlh => case p of
|
||||||
K e => do
|
K e => do
|
||||||
Eq {l, r, ty, _} <- whnf0 defs ctx =<< computeElimType defs ctx f
|
Eq {l, r, ty, _} <- whnf0 ns defs ctx =<<
|
||||||
|
computeElimType ns defs ctx f
|
||||||
| ty => Left $ ExpectedEq ctx.names ty
|
| ty => Left $ ExpectedEq ctx.names ty
|
||||||
whnf defs ctx $ ends (l :# ty.zero) (r :# ty.one) e
|
whnf ns defs ctx $ ends (l :# ty.zero) (r :# ty.one) e
|
||||||
B _ => pure $ Element (f :% p) $ fnf `orNo` ndlh `orNo` Ah
|
B _ => pure $ Element (f :% p) $ fnf `orNo` ndlh `orNo` Ah
|
||||||
|
|
||||||
-- e ∷ A ⇝ e
|
-- e ∷ A ⇝ e
|
||||||
whnf defs ctx (s :# a) = do
|
whnf ns defs ctx (s :# a) = do
|
||||||
Element s snf <- whnf defs ctx s
|
Element s snf <- whnf ns defs ctx s
|
||||||
case nchoose $ isE s of
|
case nchoose $ isE s of
|
||||||
Left _ => let E e = s in pure $ Element e $ noOr2 snf
|
Left _ => let E e = s in pure $ Element e $ noOr2 snf
|
||||||
Right ne => do
|
Right ne => do
|
||||||
Element a anf <- whnf defs ctx a
|
Element a anf <- whnf ns defs ctx a
|
||||||
pure $ Element (s :# a) $ ne `orNo` snf `orNo` anf
|
pure $ Element (s :# a) $ ne `orNo` snf `orNo` anf
|
||||||
|
|
||||||
whnf defs ctx (Coe (S _ (N ty)) _ _ val) =
|
whnf ns defs ctx (Coe (S _ (N ty)) _ _ val) =
|
||||||
whnf defs ctx $ val :# ty
|
whnf ns defs ctx $ val :# ty
|
||||||
whnf defs ctx (Coe (S [< i] ty) p q val) = do
|
whnf ns defs ctx (Coe (S [< i] ty) p q val) = do
|
||||||
Element ty tynf <- whnf defs (extendDim i ctx) ty.term
|
Element ty tynf <- whnf ns defs (extendDim i ctx) ty.term
|
||||||
Element val valnf <- whnf defs ctx val
|
Element val valnf <- whnf ns defs ctx val
|
||||||
pushCoe defs ctx i ty p q val
|
pushCoe ns defs ctx i ty p q val
|
||||||
|
|
||||||
whnf defs ctx (Comp ty p q val r zero one) =
|
whnf ns defs ctx (Comp ty p q val r zero one) =
|
||||||
-- comp [A] @p @p s { ⋯ } ⇝ s ∷ A
|
-- comp [A] @p @p s { ⋯ } ⇝ s ∷ A
|
||||||
if p == q then whnf defs ctx $ val :# ty else
|
if p == q then whnf ns defs ctx $ val :# ty else
|
||||||
case nchoose (isK r) of
|
case nchoose (isK r) of
|
||||||
-- comp [A] @p @q s { (0=0) j ⇒ t; ⋯ } ⇝ t‹q/j› ∷ A
|
-- comp [A] @p @q s { (0=0) j ⇒ t; ⋯ } ⇝ t‹q/j› ∷ A
|
||||||
-- comp [A] @p @q s { (1=1) j ⇒ t; ⋯ } ⇝ t‹q/j› ∷ A
|
-- comp [A] @p @q s { (1=1) j ⇒ t; ⋯ } ⇝ t‹q/j› ∷ A
|
||||||
Left y => case r of
|
Left y => case r of
|
||||||
K Zero => whnf defs ctx $ dsub1 zero q :# ty
|
K Zero => whnf ns defs ctx $ dsub1 zero q :# ty
|
||||||
K One => whnf defs ctx $ dsub1 one q :# ty
|
K One => whnf ns defs ctx $ dsub1 one q :# ty
|
||||||
Right nk => do
|
Right nk => do
|
||||||
Element ty tynf <- whnf defs ctx ty
|
Element ty tynf <- whnf ns defs ctx ty
|
||||||
pure $ Element (Comp ty p q val r zero one) $ tynf `orNo` nk
|
pure $ Element (Comp ty p q val r zero one) $ tynf `orNo` nk
|
||||||
-- [todo] anything other than just the boundaries??
|
-- [todo] anything other than just the boundaries??
|
||||||
|
|
||||||
whnf defs ctx (TypeCase ty ret arms def) = do
|
whnf ns defs ctx (TypeCase ty ret arms def) = do
|
||||||
Element ty tynf <- whnf defs ctx ty
|
Element ty tynf <- whnf ns defs ctx ty
|
||||||
Element ret retnf <- whnf defs ctx ret
|
Element ret retnf <- whnf ns defs ctx ret
|
||||||
case nchoose $ isAnnTyCon ty of
|
case nchoose $ isAnnTyCon ty of
|
||||||
Left y => let ty :# TYPE u = ty in
|
Left y => let ty :# TYPE u = ty in
|
||||||
reduceTypeCase defs ctx ty u ret arms def
|
reduceTypeCase ns defs ctx ty u ret arms def
|
||||||
Right nt => pure $ Element (TypeCase ty ret arms def) $
|
Right nt => pure $ Element (TypeCase ty ret arms def) $
|
||||||
tynf `orNo` retnf `orNo` nt
|
tynf `orNo` retnf `orNo` nt
|
||||||
|
|
||||||
whnf defs ctx (CloE el th) = whnf defs ctx $ pushSubstsWith' id th el
|
whnf ns defs ctx (CloE el th) = whnf ns defs ctx $ pushSubstsWith' id th el
|
||||||
whnf defs ctx (DCloE el th) = whnf defs ctx $ pushSubstsWith' th id el
|
whnf ns defs ctx (DCloE el th) = whnf ns defs ctx $ pushSubstsWith' th id el
|
||||||
|
|
||||||
export covering
|
export covering
|
||||||
Whnf Term Reduce.isRedexT where
|
Whnf Term Reduce.isRedexT where
|
||||||
whnf _ _ t@(TYPE {}) = pure $ nred t
|
whnf _ _ _ t@(TYPE {}) = pure $ nred t
|
||||||
whnf _ _ t@(Pi {}) = pure $ nred t
|
whnf _ _ _ t@(Pi {}) = pure $ nred t
|
||||||
whnf _ _ t@(Lam {}) = pure $ nred t
|
whnf _ _ _ t@(Lam {}) = pure $ nred t
|
||||||
whnf _ _ t@(Sig {}) = pure $ nred t
|
whnf _ _ _ t@(Sig {}) = pure $ nred t
|
||||||
whnf _ _ t@(Pair {}) = pure $ nred t
|
whnf _ _ _ t@(Pair {}) = pure $ nred t
|
||||||
whnf _ _ t@(Enum {}) = pure $ nred t
|
whnf _ _ _ t@(Enum {}) = pure $ nred t
|
||||||
whnf _ _ t@(Tag {}) = pure $ nred t
|
whnf _ _ _ t@(Tag {}) = pure $ nred t
|
||||||
whnf _ _ t@(Eq {}) = pure $ nred t
|
whnf _ _ _ t@(Eq {}) = pure $ nred t
|
||||||
whnf _ _ t@(DLam {}) = pure $ nred t
|
whnf _ _ _ t@(DLam {}) = pure $ nred t
|
||||||
whnf _ _ Nat = pure $ nred Nat
|
whnf _ _ _ Nat = pure $ nred Nat
|
||||||
whnf _ _ Zero = pure $ nred Zero
|
whnf _ _ _ Zero = pure $ nred Zero
|
||||||
whnf _ _ t@(Succ {}) = pure $ nred t
|
whnf _ _ _ t@(Succ {}) = pure $ nred t
|
||||||
whnf _ _ t@(BOX {}) = pure $ nred t
|
whnf _ _ _ t@(BOX {}) = pure $ nred t
|
||||||
whnf _ _ t@(Box {}) = pure $ nred t
|
whnf _ _ _ t@(Box {}) = pure $ nred t
|
||||||
|
|
||||||
-- s ∷ A ⇝ s (in term context)
|
-- s ∷ A ⇝ s (in term context)
|
||||||
whnf defs ctx (E e) = do
|
whnf ns defs ctx (E e) = do
|
||||||
Element e enf <- whnf defs ctx e
|
Element e enf <- whnf ns defs ctx e
|
||||||
case nchoose $ isAnn e of
|
case nchoose $ isAnn e of
|
||||||
Left _ => let tm :# _ = e in pure $ Element tm $ noOr1 $ noOr2 enf
|
Left _ => let tm :# _ = e in pure $ Element tm $ noOr1 $ noOr2 enf
|
||||||
Right na => pure $ Element (E e) $ na `orNo` enf
|
Right na => pure $ Element (E e) $ na `orNo` enf
|
||||||
|
|
||||||
whnf defs ctx (CloT tm th) = whnf defs ctx $ pushSubstsWith' id th tm
|
whnf ns defs ctx (CloT tm th) = whnf ns defs ctx $ pushSubstsWith' id th tm
|
||||||
whnf defs ctx (DCloT tm th) = whnf defs ctx $ pushSubstsWith' th id tm
|
whnf ns defs ctx (DCloT tm th) = whnf ns defs ctx $ pushSubstsWith' th id tm
|
||||||
|
|
||||||
||| reduce a type-case applied to a type constructor
|
||| reduce a type-case applied to a type constructor
|
||||||
private covering
|
private covering
|
||||||
reduceTypeCase : {d, n : Nat} -> (defs : Definitions) -> WhnfContext d n ->
|
reduceTypeCase : {d, n : Nat} -> (ns : Mods) -> (defs : Definitions) ->
|
||||||
|
WhnfContext d n ->
|
||||||
(ty : Term d n) -> (u : Universe) -> (ret : Term d n) ->
|
(ty : Term d n) -> (u : Universe) -> (ret : Term d n) ->
|
||||||
(arms : TypeCaseArms d n) -> (def : Term d n) ->
|
(arms : TypeCaseArms d n) -> (def : Term d n) ->
|
||||||
(0 _ : So (isTyCon ty)) =>
|
(0 _ : So (isTyCon ty)) =>
|
||||||
Either Error (Subset (Elim d n) (No . isRedexE defs))
|
Either Error (Subset (Elim d n) (No . isRedexE ns defs))
|
||||||
reduceTypeCase defs ctx ty u ret arms def = case ty of
|
reduceTypeCase ns defs ctx ty u ret arms def = case ty of
|
||||||
-- (type-case ★ᵢ ∷ _ return Q of { ★ ⇒ s; ⋯ }) ⇝ s ∷ Q
|
-- (type-case ★ᵢ ∷ _ return Q of { ★ ⇒ s; ⋯ }) ⇝ s ∷ Q
|
||||||
TYPE _ =>
|
TYPE _ =>
|
||||||
whnf defs ctx $ tycaseRhsDef0 def KTYPE arms :# ret
|
whnf ns defs ctx $ tycaseRhsDef0 def KTYPE arms :# ret
|
||||||
|
|
||||||
-- (type-case π.(x : A) → B ∷ ★ᵢ return Q of { (a → b) ⇒ s; ⋯ }) ⇝
|
-- (type-case π.(x : A) → B ∷ ★ᵢ return Q of { (a → b) ⇒ s; ⋯ }) ⇝
|
||||||
-- s[(A ∷ ★ᵢ)/a, ((λ x ⇒ B) ∷ 0.A → ★ᵢ)/b] ∷ ★ᵢ
|
-- s[(A ∷ ★ᵢ)/a, ((λ x ⇒ B) ∷ 0.A → ★ᵢ)/b] ∷ ★ᵢ
|
||||||
|
@ -583,7 +592,7 @@ mutual
|
||||||
let arg = arg :# TYPE u
|
let arg = arg :# TYPE u
|
||||||
res = Lam res :# Arr Zero (TYPE u) (TYPE u)
|
res = Lam res :# Arr Zero (TYPE u) (TYPE u)
|
||||||
in
|
in
|
||||||
whnf defs ctx $ subN (tycaseRhsDef def KPi arms) [< arg, res] :# ret
|
whnf ns defs ctx $ subN (tycaseRhsDef def KPi arms) [< arg, res] :# ret
|
||||||
|
|
||||||
-- (type-case (x : A) × B ∷ ★ᵢ return Q of { (a × b) ⇒ s; ⋯ }) ⇝
|
-- (type-case (x : A) × B ∷ ★ᵢ return Q of { (a × b) ⇒ s; ⋯ }) ⇝
|
||||||
-- s[(A ∷ ★ᵢ)/a, ((λ x ⇒ B) ∷ 0.A → ★ᵢ)/b] ∷ ★ᵢ
|
-- s[(A ∷ ★ᵢ)/a, ((λ x ⇒ B) ∷ 0.A → ★ᵢ)/b] ∷ ★ᵢ
|
||||||
|
@ -591,11 +600,11 @@ mutual
|
||||||
let fst = fst :# TYPE u
|
let fst = fst :# TYPE u
|
||||||
snd = Lam snd :# Arr Zero (TYPE u) (TYPE u)
|
snd = Lam snd :# Arr Zero (TYPE u) (TYPE u)
|
||||||
in
|
in
|
||||||
whnf defs ctx $ subN (tycaseRhsDef def KSig arms) [< fst, snd] :# ret
|
whnf ns defs ctx $ subN (tycaseRhsDef def KSig arms) [< fst, snd] :# ret
|
||||||
|
|
||||||
-- (type-case {⋯} ∷ _ return Q of { {} ⇒ s; ⋯ }) ⇝ s ∷ Q
|
-- (type-case {⋯} ∷ _ return Q of { {} ⇒ s; ⋯ }) ⇝ s ∷ Q
|
||||||
Enum _ =>
|
Enum _ =>
|
||||||
whnf defs ctx $ tycaseRhsDef0 def KEnum arms :# ret
|
whnf ns defs ctx $ tycaseRhsDef0 def KEnum arms :# ret
|
||||||
|
|
||||||
-- (type-case Eq [i ⇒ A] L R ∷ ★ᵢ return Q
|
-- (type-case Eq [i ⇒ A] L R ∷ ★ᵢ return Q
|
||||||
-- of { Eq a₀ a₁ a l r ⇒ s; ⋯ }) ⇝
|
-- of { Eq a₀ a₁ a l r ⇒ s; ⋯ }) ⇝
|
||||||
|
@ -604,7 +613,7 @@ mutual
|
||||||
-- (L ∷ A‹0/i›)/l, (R ∷ A‹1/i›)/r] ∷ Q
|
-- (L ∷ A‹0/i›)/l, (R ∷ A‹1/i›)/r] ∷ Q
|
||||||
Eq a l r =>
|
Eq a l r =>
|
||||||
let a0 = a.zero; a1 = a.one in
|
let a0 = a.zero; a1 = a.one in
|
||||||
whnf defs ctx $
|
whnf ns defs ctx $
|
||||||
subN (tycaseRhsDef def KEq arms)
|
subN (tycaseRhsDef def KEq arms)
|
||||||
[< a0 :# TYPE u, a1 :# TYPE u,
|
[< a0 :# TYPE u, a1 :# TYPE u,
|
||||||
DLam a :# Eq0 (TYPE u) a0 a1, l :# a0, r :# a1]
|
DLam a :# Eq0 (TYPE u) a0 a1, l :# a0, r :# a1]
|
||||||
|
@ -612,22 +621,23 @@ mutual
|
||||||
|
|
||||||
-- (type-case ℕ ∷ _ return Q of { ℕ ⇒ s; ⋯ }) ⇝ s ∷ Q
|
-- (type-case ℕ ∷ _ return Q of { ℕ ⇒ s; ⋯ }) ⇝ s ∷ Q
|
||||||
Nat =>
|
Nat =>
|
||||||
whnf defs ctx $ tycaseRhsDef0 def KNat arms :# ret
|
whnf ns defs ctx $ tycaseRhsDef0 def KNat arms :# ret
|
||||||
|
|
||||||
-- (type-case [π.A] ∷ ★ᵢ return Q of { [a] ⇒ s; ⋯ }) ⇝ s[(A ∷ ★ᵢ)/a] ∷ Q
|
-- (type-case [π.A] ∷ ★ᵢ return Q of { [a] ⇒ s; ⋯ }) ⇝ s[(A ∷ ★ᵢ)/a] ∷ Q
|
||||||
BOX _ s =>
|
BOX _ s =>
|
||||||
whnf defs ctx $ sub1 (tycaseRhsDef def KBOX arms) (s :# TYPE u) :# ret
|
whnf ns defs ctx $ sub1 (tycaseRhsDef def KBOX arms) (s :# TYPE u) :# ret
|
||||||
|
|
||||||
||| pushes a coercion inside a whnf-ed term
|
||| pushes a coercion inside a whnf-ed term
|
||||||
private covering
|
private covering
|
||||||
pushCoe : {n, d : Nat} -> (defs : Definitions) -> WhnfContext d n ->
|
pushCoe : {n, d : Nat} -> (ns : Mods) -> (defs : Definitions) ->
|
||||||
|
WhnfContext d n ->
|
||||||
BaseName ->
|
BaseName ->
|
||||||
(ty : Term (S d) n) -> (0 tynf : No (isRedexT defs ty)) =>
|
(ty : Term (S d) n) -> (0 tynf : No (isRedexT ns defs ty)) =>
|
||||||
Dim d -> Dim d ->
|
Dim d -> Dim d ->
|
||||||
(s : Term d n) -> (0 snf : No (isRedexT defs s)) =>
|
(s : Term d n) -> (0 snf : No (isRedexT ns defs s)) =>
|
||||||
Either Error (NonRedex Elim d n defs)
|
Either Error (NonRedex Elim d n ns defs)
|
||||||
pushCoe defs ctx i ty p q s =
|
pushCoe ns defs ctx i ty p q s =
|
||||||
if p == q then whnf defs ctx $ s :# (ty // one q) else
|
if p == q then whnf ns defs ctx $ s :# (ty // one q) else
|
||||||
case s of
|
case s of
|
||||||
-- (coe [_ ⇒ ★ᵢ] @_ @_ ty) ⇝ (ty ∷ ★ᵢ)
|
-- (coe [_ ⇒ ★ᵢ] @_ @_ ty) ⇝ (ty ∷ ★ᵢ)
|
||||||
TYPE {} => pure $ nred $ s :# TYPE !(unwrapTYPE ty)
|
TYPE {} => pure $ nred $ s :# TYPE !(unwrapTYPE ty)
|
||||||
|
@ -644,7 +654,7 @@ mutual
|
||||||
let body' = CoeT i ty p q $ Lam body
|
let body' = CoeT i ty p q $ Lam body
|
||||||
term' = [< "y"] :\\ E (weakE 1 body' :@ BVT 0)
|
term' = [< "y"] :\\ E (weakE 1 body' :@ BVT 0)
|
||||||
type' = ty // one q
|
type' = ty // one q
|
||||||
whnf defs ctx $ term' :# type'
|
whnf ns defs ctx $ term' :# type'
|
||||||
|
|
||||||
{-
|
{-
|
||||||
-- maybe:
|
-- maybe:
|
||||||
|
@ -682,7 +692,7 @@ mutual
|
||||||
let body' = CoeT i ty p q $ DLam body
|
let body' = CoeT i ty p q $ DLam body
|
||||||
term' = [< "j"] :\\% E (dweakE 1 body' :% BV 0)
|
term' = [< "j"] :\\% E (dweakE 1 body' :% BV 0)
|
||||||
type' = ty // one q
|
type' = ty // one q
|
||||||
whnf defs ctx $ term' :# type'
|
whnf ns defs ctx $ term' :# type'
|
||||||
|
|
||||||
-- (coe [_ ⇒ {⋯}] @_ @_ t) ⇝ (t ∷ {⋯})
|
-- (coe [_ ⇒ {⋯}] @_ @_ t) ⇝ (t ∷ {⋯})
|
||||||
Tag tag => do
|
Tag tag => do
|
||||||
|
|
|
@ -13,15 +13,16 @@ import Quox.EffExtra
|
||||||
|
|
||||||
public export
|
public export
|
||||||
0 TCEff : List (Type -> Type)
|
0 TCEff : List (Type -> Type)
|
||||||
TCEff = [ErrorEff, DefsReader]
|
TCEff = [ErrorEff, DefsReader, CurNSReader]
|
||||||
|
|
||||||
public export
|
public export
|
||||||
0 TC : Type -> Type
|
0 TC : Type -> Type
|
||||||
TC = Eff TCEff
|
TC = Eff TCEff
|
||||||
|
|
||||||
export
|
export
|
||||||
runTC : Definitions -> TC a -> Either Error a
|
runTC : Mods -> Definitions -> TC a -> Either Error a
|
||||||
runTC defs = extract . runExcept . runReader defs
|
runTC ns defs =
|
||||||
|
extract . runExcept . runReaderAt DEFS defs . runReaderAt NS ns
|
||||||
|
|
||||||
|
|
||||||
export
|
export
|
||||||
|
@ -148,7 +149,7 @@ mutual
|
||||||
(subj : Term d n) -> (0 nc : NotClo subj) => Term d n ->
|
(subj : Term d n) -> (0 nc : NotClo subj) => Term d n ->
|
||||||
TC (CheckResult' n)
|
TC (CheckResult' n)
|
||||||
toCheckType ctx sg t ty = do
|
toCheckType ctx sg t ty = do
|
||||||
u <- expectTYPE !ask ctx ty
|
u <- expectTYPE !ns !defs ctx ty
|
||||||
expectEqualQ Zero sg.fst
|
expectEqualQ Zero sg.fst
|
||||||
checkTypeNoWrap ctx t (Just u)
|
checkTypeNoWrap ctx t (Just u)
|
||||||
pure $ zeroFor ctx
|
pure $ zeroFor ctx
|
||||||
|
@ -163,7 +164,7 @@ mutual
|
||||||
check' ctx sg t@(Pi {}) ty = toCheckType ctx sg t ty
|
check' ctx sg t@(Pi {}) ty = toCheckType ctx sg t ty
|
||||||
|
|
||||||
check' ctx sg (Lam body) ty = do
|
check' ctx sg (Lam body) ty = do
|
||||||
(qty, arg, res) <- expectPi !ask ctx ty
|
(qty, arg, res) <- expectPi !ns !defs ctx ty
|
||||||
-- if Ψ | Γ, x : A ⊢ σ · t ⇐ B ⊳ Σ, ρ·x
|
-- if Ψ | Γ, x : A ⊢ σ · t ⇐ B ⊳ Σ, ρ·x
|
||||||
-- with ρ ≤ σπ
|
-- with ρ ≤ σπ
|
||||||
let qty' = sg.fst * qty
|
let qty' = sg.fst * qty
|
||||||
|
@ -174,7 +175,7 @@ mutual
|
||||||
check' ctx sg t@(Sig {}) ty = toCheckType ctx sg t ty
|
check' ctx sg t@(Sig {}) ty = toCheckType ctx sg t ty
|
||||||
|
|
||||||
check' ctx sg (Pair fst snd) ty = do
|
check' ctx sg (Pair fst snd) ty = do
|
||||||
(tfst, tsnd) <- expectSig !ask ctx ty
|
(tfst, tsnd) <- expectSig !ns !defs ctx ty
|
||||||
-- if Ψ | Γ ⊢ σ · s ⇐ A ⊳ Σ₁
|
-- if Ψ | Γ ⊢ σ · s ⇐ A ⊳ Σ₁
|
||||||
qfst <- checkC ctx sg fst tfst
|
qfst <- checkC ctx sg fst tfst
|
||||||
let tsnd = sub1 tsnd (fst :# tfst)
|
let tsnd = sub1 tsnd (fst :# tfst)
|
||||||
|
@ -186,7 +187,7 @@ mutual
|
||||||
check' ctx sg t@(Enum _) ty = toCheckType ctx sg t ty
|
check' ctx sg t@(Enum _) ty = toCheckType ctx sg t ty
|
||||||
|
|
||||||
check' ctx sg (Tag t) ty = do
|
check' ctx sg (Tag t) ty = do
|
||||||
tags <- expectEnum !ask ctx ty
|
tags <- expectEnum !ns !defs ctx ty
|
||||||
-- if t ∈ ts
|
-- if t ∈ ts
|
||||||
unless (t `elem` tags) $ throw $ TagNotIn t tags
|
unless (t `elem` tags) $ throw $ TagNotIn t tags
|
||||||
-- then Ψ | Γ ⊢ σ · t ⇐ {ts} ⊳ 𝟎
|
-- then Ψ | Γ ⊢ σ · t ⇐ {ts} ⊳ 𝟎
|
||||||
|
@ -195,7 +196,7 @@ mutual
|
||||||
check' ctx sg t@(Eq {}) ty = toCheckType ctx sg t ty
|
check' ctx sg t@(Eq {}) ty = toCheckType ctx sg t ty
|
||||||
|
|
||||||
check' ctx sg (DLam body) ty = do
|
check' ctx sg (DLam body) ty = do
|
||||||
(ty, l, r) <- expectEq !ask ctx ty
|
(ty, l, r) <- expectEq !ns !defs ctx ty
|
||||||
let ctx' = extendDim body.name ctx
|
let ctx' = extendDim body.name ctx
|
||||||
ty = ty.term
|
ty = ty.term
|
||||||
body = body.term
|
body = body.term
|
||||||
|
@ -211,17 +212,17 @@ mutual
|
||||||
check' ctx sg Nat ty = toCheckType ctx sg Nat ty
|
check' ctx sg Nat ty = toCheckType ctx sg Nat ty
|
||||||
|
|
||||||
check' ctx sg Zero ty = do
|
check' ctx sg Zero ty = do
|
||||||
expectNat !ask ctx ty
|
expectNat !ns !defs ctx ty
|
||||||
pure $ zeroFor ctx
|
pure $ zeroFor ctx
|
||||||
|
|
||||||
check' ctx sg (Succ n) ty = do
|
check' ctx sg (Succ n) ty = do
|
||||||
expectNat !ask ctx ty
|
expectNat !ns !defs ctx ty
|
||||||
checkC ctx sg n Nat
|
checkC ctx sg n Nat
|
||||||
|
|
||||||
check' ctx sg t@(BOX {}) ty = toCheckType ctx sg t ty
|
check' ctx sg t@(BOX {}) ty = toCheckType ctx sg t ty
|
||||||
|
|
||||||
check' ctx sg (Box val) ty = do
|
check' ctx sg (Box val) ty = do
|
||||||
(q, ty) <- expectBOX !ask ctx ty
|
(q, ty) <- expectBOX !ns !defs ctx ty
|
||||||
-- if Ψ | Γ ⊢ σ · s ⇐ A ⊳ Σ
|
-- if Ψ | Γ ⊢ σ · s ⇐ A ⊳ Σ
|
||||||
valout <- checkC ctx sg val ty
|
valout <- checkC ctx sg val ty
|
||||||
-- then Ψ | Γ ⊢ σ · [s] ⇐ [π.A] ⊳ πΣ
|
-- then Ψ | Γ ⊢ σ · [s] ⇐ [π.A] ⊳ πΣ
|
||||||
|
@ -299,7 +300,8 @@ mutual
|
||||||
-- if Ψ | Γ ⊢ Type ℓ <: Type 𝓀
|
-- if Ψ | Γ ⊢ Type ℓ <: Type 𝓀
|
||||||
case u of
|
case u of
|
||||||
Just u => subtype ctx infres.type (TYPE u)
|
Just u => subtype ctx infres.type (TYPE u)
|
||||||
Nothing => ignore $ expectTYPE !ask ctx infres.type
|
Nothing => ignore $
|
||||||
|
expectTYPE !ns !defs ctx infres.type
|
||||||
-- then Ψ | Γ ⊢₀ E ⇐ Type 𝓀
|
-- then Ψ | Γ ⊢₀ E ⇐ Type 𝓀
|
||||||
|
|
||||||
private covering
|
private covering
|
||||||
|
@ -336,7 +338,7 @@ mutual
|
||||||
|
|
||||||
infer' ctx sg (F x) = do
|
infer' ctx sg (F x) = do
|
||||||
-- if π·x : A {≔ s} in global context
|
-- if π·x : A {≔ s} in global context
|
||||||
g <- lookupFree x !ask
|
g <- lookupFree !ns x !defs
|
||||||
-- if σ ≤ π
|
-- if σ ≤ π
|
||||||
expectCompatQ sg.fst g.qty.fst
|
expectCompatQ sg.fst g.qty.fst
|
||||||
-- then Ψ | Γ ⊢ σ · x ⇒ A ⊳ 𝟎
|
-- then Ψ | Γ ⊢ σ · x ⇒ A ⊳ 𝟎
|
||||||
|
@ -358,7 +360,7 @@ mutual
|
||||||
infer' ctx sg (fun :@ arg) = do
|
infer' ctx sg (fun :@ arg) = do
|
||||||
-- if Ψ | Γ ⊢ σ · f ⇒ (π·x : A) → B ⊳ Σ₁
|
-- if Ψ | Γ ⊢ σ · f ⇒ (π·x : A) → B ⊳ Σ₁
|
||||||
funres <- inferC ctx sg fun
|
funres <- inferC ctx sg fun
|
||||||
(qty, argty, res) <- expectPi !ask ctx funres.type
|
(qty, argty, res) <- expectPi !ns !defs ctx funres.type
|
||||||
-- if Ψ | Γ ⊢ σ ⨴ π · s ⇐ A ⊳ Σ₂
|
-- if Ψ | Γ ⊢ σ ⨴ π · s ⇐ A ⊳ Σ₂
|
||||||
argout <- checkC ctx (subjMult sg qty) arg argty
|
argout <- checkC ctx (subjMult sg qty) arg argty
|
||||||
-- then Ψ | Γ ⊢ σ · f s ⇒ B[s] ⊳ Σ₁ + Σ₂
|
-- then Ψ | Γ ⊢ σ · f s ⇒ B[s] ⊳ Σ₁ + Σ₂
|
||||||
|
@ -375,7 +377,7 @@ mutual
|
||||||
pairres <- inferC ctx sg pair
|
pairres <- inferC ctx sg pair
|
||||||
-- if Ψ | Γ, p : (x : A) × B ⊢₀ ret ⇐ Type
|
-- if Ψ | Γ, p : (x : A) × B ⊢₀ ret ⇐ Type
|
||||||
checkTypeC (extendTy Zero ret.name pairres.type ctx) ret.term Nothing
|
checkTypeC (extendTy Zero ret.name pairres.type ctx) ret.term Nothing
|
||||||
(tfst, tsnd) <- expectSig !ask ctx pairres.type
|
(tfst, tsnd) <- expectSig !ns !defs ctx pairres.type
|
||||||
-- if Ψ | Γ, x : A, y : B ⊢ σ · body ⇐
|
-- if Ψ | Γ, x : A, y : B ⊢ σ · body ⇐
|
||||||
-- ret[(x, y) ∷ (x : A) × B/p] ⊳ Σ₂, ρ₁·x, ρ₂·y
|
-- ret[(x, y) ∷ (x : A) × B/p] ⊳ Σ₂, ρ₁·x, ρ₂·y
|
||||||
-- with ρ₁, ρ₂ ≤ πσ
|
-- with ρ₁, ρ₂ ≤ πσ
|
||||||
|
@ -393,7 +395,7 @@ mutual
|
||||||
infer' ctx sg (CaseEnum pi t ret arms) {d, n} = do
|
infer' ctx sg (CaseEnum pi t ret arms) {d, n} = do
|
||||||
-- if Ψ | Γ ⊢ σ · t ⇒ {ts} ⊳ Σ₁
|
-- if Ψ | Γ ⊢ σ · t ⇒ {ts} ⊳ Σ₁
|
||||||
tres <- inferC ctx sg t
|
tres <- inferC ctx sg t
|
||||||
ttags <- expectEnum !ask ctx tres.type
|
ttags <- expectEnum !ns !defs ctx tres.type
|
||||||
-- if 1 ≤ π, OR there is only zero or one option
|
-- if 1 ≤ π, OR there is only zero or one option
|
||||||
unless (length (SortedSet.toList ttags) <= 1) $ expectCompatQ One pi
|
unless (length (SortedSet.toList ttags) <= 1) $ expectCompatQ One pi
|
||||||
-- if Ψ | Γ, x : {ts} ⊢₀ A ⇐ Type
|
-- if Ψ | Γ, x : {ts} ⊢₀ A ⇐ Type
|
||||||
|
@ -419,7 +421,7 @@ mutual
|
||||||
expectCompatQ One pi
|
expectCompatQ One pi
|
||||||
-- if Ψ | Γ ⊢ σ · n ⇒ ℕ ⊳ Σn
|
-- if Ψ | Γ ⊢ σ · n ⇒ ℕ ⊳ Σn
|
||||||
nres <- inferC ctx sg n
|
nres <- inferC ctx sg n
|
||||||
expectNat !ask ctx nres.type
|
expectNat !ns !defs ctx nres.type
|
||||||
-- if Ψ | Γ, n : ℕ ⊢₀ A ⇐ Type
|
-- if Ψ | Γ, n : ℕ ⊢₀ A ⇐ Type
|
||||||
checkTypeC (extendTy Zero ret.name Nat ctx) ret.term Nothing
|
checkTypeC (extendTy Zero ret.name Nat ctx) ret.term Nothing
|
||||||
-- if Ψ | Γ ⊢ σ · zer ⇐ A[0 ∷ ℕ/n] ⊳ Σz
|
-- if Ψ | Γ ⊢ σ · zer ⇐ A[0 ∷ ℕ/n] ⊳ Σz
|
||||||
|
@ -443,7 +445,7 @@ mutual
|
||||||
infer' ctx sg (CaseBox pi box ret body) = do
|
infer' ctx sg (CaseBox pi box ret body) = do
|
||||||
-- if Ψ | Γ ⊢ σ · b ⇒ [ρ.A] ⊳ Σ₁
|
-- if Ψ | Γ ⊢ σ · b ⇒ [ρ.A] ⊳ Σ₁
|
||||||
boxres <- inferC ctx sg box
|
boxres <- inferC ctx sg box
|
||||||
(q, ty) <- expectBOX !ask ctx boxres.type
|
(q, ty) <- expectBOX !ns !defs ctx boxres.type
|
||||||
-- if Ψ | Γ, x : [ρ.A] ⊢₀ R ⇐ Type
|
-- if Ψ | Γ, x : [ρ.A] ⊢₀ R ⇐ Type
|
||||||
checkTypeC (extendTy Zero ret.name boxres.type ctx) ret.term Nothing
|
checkTypeC (extendTy Zero ret.name boxres.type ctx) ret.term Nothing
|
||||||
-- if Ψ | Γ, x : A ⊢ t ⇐ R[[x] ∷ [ρ.A/x]] ⊳ Σ₂, ς·x
|
-- if Ψ | Γ, x : A ⊢ t ⇐ R[[x] ∷ [ρ.A/x]] ⊳ Σ₂, ς·x
|
||||||
|
@ -461,7 +463,7 @@ mutual
|
||||||
infer' ctx sg (fun :% dim) = do
|
infer' ctx sg (fun :% dim) = do
|
||||||
-- if Ψ | Γ ⊢ σ · f ⇒ Eq [𝑖 ⇒ A] l r ⊳ Σ
|
-- if Ψ | Γ ⊢ σ · f ⇒ Eq [𝑖 ⇒ A] l r ⊳ Σ
|
||||||
InfRes {type, qout} <- inferC ctx sg fun
|
InfRes {type, qout} <- inferC ctx sg fun
|
||||||
ty <- fst <$> expectEq !ask ctx type
|
ty <- fst <$> expectEq !ns !defs ctx type
|
||||||
-- then Ψ | Γ ⊢ σ · f p ⇒ A‹p/𝑖› ⊳ Σ
|
-- then Ψ | Γ ⊢ σ · f p ⇒ A‹p/𝑖› ⊳ Σ
|
||||||
pure $ InfRes {type = dsub1 ty dim, qout}
|
pure $ InfRes {type = dsub1 ty dim, qout}
|
||||||
|
|
||||||
|
@ -494,7 +496,7 @@ mutual
|
||||||
-- if σ = 0
|
-- if σ = 0
|
||||||
expectEqualQ Zero sg.fst
|
expectEqualQ Zero sg.fst
|
||||||
-- if Ψ, Γ ⊢₀ e ⇒ Type u
|
-- if Ψ, Γ ⊢₀ e ⇒ Type u
|
||||||
u <- expectTYPE !ask ctx . type =<< inferC ctx szero ty
|
u <- expectTYPE !ns !defs ctx . type =<< inferC ctx szero ty
|
||||||
-- if Ψ, Γ ⊢₀ C ⇐ Type (non-dependent return type)
|
-- if Ψ, Γ ⊢₀ C ⇐ Type (non-dependent return type)
|
||||||
checkTypeC ctx ret Nothing
|
checkTypeC ctx ret Nothing
|
||||||
-- if Ψ, Γ' ⊢₀ A ⇐ C for each rhs A
|
-- if Ψ, Γ' ⊢₀ A ⇐ C for each rhs A
|
||||||
|
|
|
@ -39,8 +39,8 @@ InferResult eqs d n = IfConsistent eqs $ InferResult' d n
|
||||||
|
|
||||||
|
|
||||||
export
|
export
|
||||||
lookupFree : Has ErrorEff fs => Name -> Definitions -> Eff fs Definition
|
lookupFree : Has ErrorEff fs => Mods -> Name -> Definitions -> Eff fs Definition
|
||||||
lookupFree x defs = maybe (throw $ NotInScope x) pure $ lookup x defs
|
lookupFree ns x defs = maybe (throw $ NotInScope x) pure $ lookupNS ns x defs
|
||||||
|
|
||||||
|
|
||||||
public export
|
public export
|
||||||
|
@ -59,14 +59,14 @@ substCaseBoxRet dty retty =
|
||||||
retty.term // (Box (BVT 0) :# weakT 1 dty ::: shift 1)
|
retty.term // (Box (BVT 0) :# weakT 1 dty ::: shift 1)
|
||||||
|
|
||||||
|
|
||||||
parameters (defs : Definitions) {auto _ : Has ErrorEff fs}
|
parameters (ns : Mods) (defs : Definitions) {auto _ : Has ErrorEff fs}
|
||||||
namespace TyContext
|
namespace TyContext
|
||||||
parameters (ctx : TyContext d n)
|
parameters (ctx : TyContext d n)
|
||||||
export covering
|
export covering
|
||||||
whnf : {0 isRedex : RedexTest tm} -> Whnf tm isRedex =>
|
whnf : {0 isRedex : RedexTest tm} -> Whnf tm isRedex =>
|
||||||
tm d n -> Eff fs (NonRedex tm d n defs)
|
tm d n -> Eff fs (NonRedex tm d n ns defs)
|
||||||
whnf = let Val n = ctx.termLen; Val d = ctx.dimLen in
|
whnf = let Val n = ctx.termLen; Val d = ctx.dimLen in
|
||||||
rethrow . whnf defs (toWhnfContext ctx)
|
rethrow . whnf ns defs (toWhnfContext ctx)
|
||||||
|
|
||||||
private covering %macro
|
private covering %macro
|
||||||
expect : (forall d, n. NameContexts d n -> Term d n -> Error) ->
|
expect : (forall d, n. NameContexts d n -> Term d n -> Error) ->
|
||||||
|
@ -108,8 +108,8 @@ parameters (defs : Definitions) {auto _ : Has ErrorEff fs}
|
||||||
parameters (ctx : EqContext n)
|
parameters (ctx : EqContext n)
|
||||||
export covering
|
export covering
|
||||||
whnf : {0 isRedex : RedexTest tm} -> Whnf tm isRedex =>
|
whnf : {0 isRedex : RedexTest tm} -> Whnf tm isRedex =>
|
||||||
tm 0 n -> Eff fs (NonRedex tm 0 n defs)
|
tm 0 n -> Eff fs (NonRedex tm 0 n ns defs)
|
||||||
whnf = let Val n = ctx.termLen in rethrow . whnf defs (toWhnfContext ctx)
|
whnf = let Val n = ctx.termLen in rethrow . whnf ns defs (toWhnfContext ctx)
|
||||||
|
|
||||||
private covering %macro
|
private covering %macro
|
||||||
expect : (forall d, n. NameContexts d n -> Term d n -> Error) ->
|
expect : (forall d, n. NameContexts d n -> Term d n -> Error) ->
|
||||||
|
|
|
@ -21,10 +21,10 @@ defGlobals = fromList
|
||||||
parameters (label : String) (act : Lazy (TC ()))
|
parameters (label : String) (act : Lazy (TC ()))
|
||||||
{default defGlobals globals : Definitions}
|
{default defGlobals globals : Definitions}
|
||||||
testEq : Test
|
testEq : Test
|
||||||
testEq = test label $ runTC globals act
|
testEq = test label $ runTC [<] globals act
|
||||||
|
|
||||||
testNeq : Test
|
testNeq : Test
|
||||||
testNeq = testThrows label (const True) $ runTC globals act $> "()"
|
testNeq = testThrows label (const True) $ runTC [<] globals act $> "()"
|
||||||
|
|
||||||
|
|
||||||
parameters (0 d : Nat) (ctx : TyContext d n)
|
parameters (0 d : Nat) (ctx : TyContext d n)
|
||||||
|
|
|
@ -13,7 +13,7 @@ parameters {0 isRedex : RedexTest tm} {auto _ : Whnf tm isRedex} {d, n : Nat}
|
||||||
private
|
private
|
||||||
testWhnf : String -> WhnfContext d n -> tm d n -> tm d n -> Test
|
testWhnf : String -> WhnfContext d n -> tm d n -> tm d n -> Test
|
||||||
testWhnf label ctx from to = test "\{label} (whnf)" $ do
|
testWhnf label ctx from to = test "\{label} (whnf)" $ do
|
||||||
result <- bimap toInfo fst $ whnf defs ctx from
|
result <- bimap toInfo fst $ whnf [<] defs ctx from
|
||||||
unless (result == to) $ Left [("exp", show to), ("got", show result)]
|
unless (result == to) $ Left [("exp", show to), ("got", show result)]
|
||||||
|
|
||||||
private
|
private
|
||||||
|
|
|
@ -28,7 +28,7 @@ ToInfo Error' where
|
||||||
M = Eff [Except Error', DefsReader]
|
M = Eff [Except Error', DefsReader]
|
||||||
|
|
||||||
inj : TC a -> M a
|
inj : TC a -> M a
|
||||||
inj = rethrow . mapFst TCError <=< lift . runExcept
|
inj = rethrow . mapFst TCError <=< lift . runExcept . runReaderAt NS [<]
|
||||||
|
|
||||||
|
|
||||||
reflTy : Term d n
|
reflTy : Term d n
|
||||||
|
@ -90,11 +90,11 @@ parameters (label : String) (act : Lazy (M ()))
|
||||||
{default defGlobals globals : Definitions}
|
{default defGlobals globals : Definitions}
|
||||||
testTC : Test
|
testTC : Test
|
||||||
testTC = test label {e = Error', a = ()} $
|
testTC = test label {e = Error', a = ()} $
|
||||||
extract $ runExcept $ runReader globals act
|
extract $ runExcept $ runReaderAt DEFS globals act
|
||||||
|
|
||||||
testTCFail : Test
|
testTCFail : Test
|
||||||
testTCFail = testThrows label (const True) $
|
testTCFail = testThrows label (const True) $
|
||||||
(extract $ runExcept $ runReader globals act) $> "()"
|
(extract $ runExcept $ runReaderAt DEFS globals act) $> "()"
|
||||||
|
|
||||||
|
|
||||||
anys : {n : Nat} -> QContext n
|
anys : {n : Nat} -> QContext n
|
||||||
|
|
Loading…
Reference in a new issue