some more typechecker tests

This commit is contained in:
rhiannon morris 2023-02-23 10:04:16 +01:00
parent 4b814d7502
commit 3d9b730803

View file

@ -43,6 +43,35 @@ reflTy =
reflDef : IsQty q => Term q d n reflDef : IsQty q => Term q d n
reflDef = ["A","x"] :\\ ["i"] :\\% BVT 0 reflDef = ["A","x"] :\\ ["i"] :\\% BVT 0
fstTy : Term Three d n
fstTy =
(Pi Zero (TYPE 1) $ S ["A"] $ Y $
Pi Zero (Arr Any (BVT 0) (TYPE 1)) $ S ["B"] $ Y $
Arr Any (Sig (BVT 1) $ S ["x"] $ Y $ E $ BV 1 :@ BVT 0)
(BVT 1))
fstDef : Term Three d n
fstDef =
(["A","B","p"] :\\
E (CasePair Any (BV 0) (S ["_"] $ N $ BVT 2)
(S ["x","y"] $ Y $ BVT 1)))
sndTy : Term Three d n
sndTy =
(Pi Zero (TYPE 1) $ S ["A"] $ Y $
Pi Zero (Arr Any (BVT 0) (TYPE 1)) $ S ["B"] $ Y $
Pi Any (Sig (BVT 1) $ S ["x"] $ Y $ E $ BV 1 :@ BVT 0) $ S ["p"] $ Y $
E (BV 1 :@ E (F "fst" :@@ [BVT 2, BVT 1, BVT 0])))
sndDef : Term Three d n
sndDef =
(["A","B","p"] :\\
E (CasePair Any (BV 0)
(S ["p"] $ Y $ E $ BV 2 :@ E (F "fst" :@@ [BVT 3, BVT 2, BVT 0]))
(S ["x","y"] $ Y $ BVT 0)))
defGlobals : Definitions Three defGlobals : Definitions Three
defGlobals = fromList defGlobals = fromList
[("A", mkAbstract Zero $ TYPE 0), [("A", mkAbstract Zero $ TYPE 0),
@ -55,10 +84,12 @@ defGlobals = fromList
("b", mkAbstract Any $ FT "B"), ("b", mkAbstract Any $ FT "B"),
("f", mkAbstract Any $ Arr One (FT "A") (FT "A")), ("f", mkAbstract Any $ Arr One (FT "A") (FT "A")),
("g", mkAbstract Any $ Arr One (FT "A") (FT "B")), ("g", mkAbstract Any $ Arr One (FT "A") (FT "B")),
("f2", mkAbstract Any $ Arr One (FT "A") $ Arr One (FT "A") (FT "A")), ("f2", mkAbstract Any $ Arr One (FT "A") $ Arr One (FT "A") (FT "B")),
("p", mkAbstract Any $ Pi One (FT "A") $ S ["x"] $ Y $ E $ F "P" :@ BVT 0), ("p", mkAbstract Any $ Pi One (FT "A") $ S ["x"] $ Y $ E $ F "P" :@ BVT 0),
("q", mkAbstract Any $ Pi One (FT "A") $ S ["x"] $ Y $ E $ F "P" :@ BVT 0), ("q", mkAbstract Any $ Pi One (FT "A") $ S ["x"] $ Y $ E $ F "P" :@ BVT 0),
("refl", mkDef Any reflTy reflDef)] ("refl", mkDef Any reflTy reflDef),
("fst", mkDef Any fstTy fstDef),
("snd", mkDef Any sndTy sndDef)]
parameters (label : String) (act : Lazy (M ())) parameters (label : String) (act : Lazy (M ()))
{default defGlobals globals : Definitions Three} {default defGlobals globals : Definitions Three}
@ -69,8 +100,9 @@ parameters (label : String) (act : Lazy (M ()))
testTCFail = testThrows label (const True) $ runReaderT globals act testTCFail = testThrows label (const True) $ runReaderT globals act
ctx : TContext Three 0 n -> TyContext Three 0 n ctx, ctx01 : TContext Three 0 n -> TyContext Three 0 n
ctx = MkTyContext new ctx = MkTyContext new
ctx01 = MkTyContext ZeroIsOne
inferredTypeEq : TyContext Three d n -> (exp, got : Term Three d n) -> M () inferredTypeEq : TyContext Three d n -> (exp, got : Term Three d n) -> M ()
inferredTypeEq ctx exp got = inferredTypeEq ctx exp got =
@ -111,6 +143,16 @@ check_ : TyContext Three d n -> SQty Three ->
Term Three d n -> Term Three d n -> M () Term Three d n -> Term Three d n -> M ()
check_ ctx sg s ty = ignore $ inj $ check ctx sg s ty check_ ctx sg s ty = ignore $ inj $ check ctx sg s ty
-- ω is not a subject qty
failing "Can't find an implementation"
sany : SQty Three
sany = Element Any %search
enum : List TagVal -> Term q d n
enum = Enum . SortedSet.fromList
export export
tests : Test tests : Test
tests = "typechecker" :- [ tests = "typechecker" :- [
@ -122,8 +164,7 @@ tests = "typechecker" :- [
testTCFail "0 · ★₀ ⇍ ★₀" $ check_ (ctx [<]) szero (TYPE 0) (TYPE 0), testTCFail "0 · ★₀ ⇍ ★₀" $ check_ (ctx [<]) szero (TYPE 0) (TYPE 0),
testTCFail "0 · ★_ ⇍ ★_" $ check_ (ctx [<]) szero (TYPE UAny) (TYPE UAny), testTCFail "0 · ★_ ⇍ ★_" $ check_ (ctx [<]) szero (TYPE UAny) (TYPE UAny),
testTCFail "1 · ★₀ ⇍ ★₁" $ check_ (ctx [<]) sone (TYPE 0) (TYPE 1), testTCFail "1 · ★₀ ⇍ ★₁" $ check_ (ctx [<]) sone (TYPE 0) (TYPE 1),
testTC "0=1 ⊢ 0 · ★₁ ⇐ ★₀" $ testTC "0=1 ⊢ 0 · ★₁ ⇐ ★₀" $ check_ (ctx01 [<]) szero (TYPE 1) (TYPE 0)
check_ (MkTyContext (ZeroIsOne {d = 0}) [<]) szero (TYPE 1) (TYPE 0)
], ],
"function types" :- [ "function types" :- [
@ -144,18 +185,59 @@ tests = "typechecker" :- [
testTCFail "0 · A ⊸ P ⇍ ★₀" $ testTCFail "0 · A ⊸ P ⇍ ★₀" $
check_ (ctx [<]) szero (Arr One (FT "A") $ FT "P") (TYPE 0), check_ (ctx [<]) szero (Arr One (FT "A") $ FT "P") (TYPE 0),
testTC "0=1 ⊢ 0 · A ⊸ P ⇐ ★₀" $ testTC "0=1 ⊢ 0 · A ⊸ P ⇐ ★₀" $
check_ (MkTyContext (ZeroIsOne {d = 0}) [<]) szero check_ (ctx01 [<]) szero (Arr One (FT "A") $ FT "P") (TYPE 0)
(Arr One (FT "A") $ FT "P") (TYPE 0)
], ],
"pair types" :- [ "pair types" :- [
note #""A × B" for "(_ : A) × B""#, note #""A × B" for "(_ : A) × B""#,
testTC "0 · A × A ⇐ ★₀" $ testTC "0 · A × A ⇐ ★₀" $
check_ (ctx [<]) szero (FT "A" `And` FT "A") (TYPE 0), check_ (ctx [<]) szero (FT "A" `And` FT "A") (TYPE 0),
testTCFail "0 · A × P ⇍ ★₀" $
check_ (ctx [<]) szero (FT "A" `And` FT "P") (TYPE 0),
testTC "0 · (x : A) × P x ⇐ ★₀" $
check_ (ctx [<]) szero
(Sig (FT "A") $ S ["x"] $ Y $ E $ F "P" :@ BVT 0) (TYPE 0),
testTC "0 · (x : A) × P x ⇐ ★₁" $
check_ (ctx [<]) szero
(Sig (FT "A") $ S ["x"] $ Y $ E $ F "P" :@ BVT 0) (TYPE 1),
testTC "0 · (A : ★₀) × A ⇐ ★₁" $
check_ (ctx [<]) szero (Sig (TYPE 0) $ S ["A"] $ Y $ BVT 0) (TYPE 1),
testTCFail "0 · (A : ★₀) × A ⇍ ★₀" $
check_ (ctx [<]) szero (Sig (TYPE 0) $ S ["A"] $ Y $ BVT 0) (TYPE 0),
testTCFail "1 · A × A ⇍ ★₀" $ testTCFail "1 · A × A ⇍ ★₀" $
check_ (ctx [<]) sone (FT "A" `And` FT "A") (TYPE 0) check_ (ctx [<]) sone (FT "A" `And` FT "A") (TYPE 0)
], ],
"enum types" :- [
testTC "0 · {} ⇐ ★₀" $ check_ (ctx [<]) szero (enum []) (TYPE 0),
testTC "0 · {} ⇐ ★₃" $ check_ (ctx [<]) szero (enum []) (TYPE 3),
testTC "0 · {a,b,c} ⇐ ★₀" $
check_ (ctx [<]) szero (enum ["a", "b", "c"]) (TYPE 0),
testTC "0 · {a,b,c} ⇐ ★₃" $
check_ (ctx [<]) szero
(Sig (FT "A") $ S ["x"] $ Y $ E $ F "P" :@ BVT 0) (TYPE 0),
testTC "0 · (x : A) × P x ⇐ ★₁" $
check_ (ctx [<]) szero
(Sig (FT "A") $ S ["x"] $ Y $ E $ F "P" :@ BVT 0) (TYPE 1),
testTC "0 · (A : ★₀) × A ⇐ ★₁" $
check_ (ctx [<]) szero (Sig (TYPE 0) $ S ["A"] $ Y $ BVT 0) (TYPE 1),
testTCFail "0 · (A : ★₀) × A ⇍ ★₀" $
check_ (ctx [<]) szero (Sig (TYPE 0) $ S ["A"] $ Y $ BVT 0) (TYPE 0),
testTCFail "1 · A × A ⇍ ★₀" $
check_ (ctx [<]) sone (FT "A" `And` FT "A") (TYPE 0)
],
"enum types" :- [
testTC "0 · {} ⇐ ★₀" $ check_ (ctx [<]) szero (enum []) (TYPE 0),
testTC "0 · {} ⇐ ★₃" $ check_ (ctx [<]) szero (enum []) (TYPE 3),
testTC "0 · {a,b,c} ⇐ ★₀" $
check_ (ctx [<]) szero (enum ["a", "b", "c"]) (TYPE 0),
testTC "0 · {a,b,c} ⇐ ★₃" $
check_ (ctx [<]) szero (enum ["a", "b", "c"]) (TYPE 3),
testTCFail "1 · {} ⇍ ★₀" $ check_ (ctx [<]) sone (enum []) (TYPE 0),
testTC "0=1 ⊢ 1 · {} ⇐ ★₀" $ check_ (ctx01 [<]) sone (enum []) (TYPE 0)
],
"free vars" :- [ "free vars" :- [
note "A : ★₀", note "A : ★₀",
testTC "0 · A ⇒ ★₀" $ testTC "0 · A ⇒ ★₀" $
@ -179,10 +261,10 @@ tests = "typechecker" :- [
(BV 0) (FT "A") [< one], (BV 0) (FT "A") [< one],
testTC "x : A ⊢ 1 · [x] ⇐ A ⊳ 1·x" $ testTC "x : A ⊢ 1 · [x] ⇐ A ⊳ 1·x" $
checkQ {n = 1} (ctx [< FT "A"]) sone (BVT 0) (FT "A") [< one], checkQ {n = 1} (ctx [< FT "A"]) sone (BVT 0) (FT "A") [< one],
note "f2 : A ⊸ A ⊸ A", note "f2 : A ⊸ A ⊸ B",
testTC "x : A ⊢ 1 · f2 [x] [x] ⇒ A ⊳ ω·x" $ testTC "x : A ⊢ 1 · f2 [x] [x] ⇒ B ⊳ ω·x" $
inferAsQ {n = 1} (ctx [< FT "A"]) sone inferAsQ {n = 1} (ctx [< FT "A"]) sone
(F "f2" :@@ [BVT 0, BVT 0]) (FT "A") [< Any] (F "f2" :@@ [BVT 0, BVT 0]) (FT "B") [< Any]
], ],
"lambda" :- [ "lambda" :- [
@ -205,6 +287,90 @@ tests = "typechecker" :- [
check_ (ctx [<]) sone reflDef reflTy check_ (ctx [<]) sone reflDef reflTy
], ],
"pairs" :- [
testTC "1 · (a, a) ⇐ A × A" $
check_ (ctx [<]) sone (Pair (FT "a") (FT "a")) (FT "A" `And` FT "A"),
testTC "x : A ⊢ 1 · (x, x) ⇐ A × A ⊳ ω·x" $
checkQ (ctx [< FT "A"]) sone
(Pair (BVT 0) (BVT 0)) (FT "A" `And` FT "A") [< Any],
testTC "1 · (a, λᴰ i ⇒ a) ⇐ (x : A) × (x ≡ a)" $
check_ (ctx [<]) sone
(Pair (FT "a") (["i"] :\\% FT "a"))
(Sig (FT "A") $ S ["x"] $ Y $
Eq0 (FT "A") (BVT 0) (FT "a"))
],
"unpairing" :- [
testTC "x : A × A ⊢ 1 · (case1 x return B of (l,r) ⇒ f2 l r) ⇒ B ⊳ 1·x" $
inferAsQ (ctx [< FT "A" `And` FT "A"]) sone
(CasePair One (BV 0)
(S ["_"] $ N $ FT "B")
(S ["l", "r"] $ Y $ E $ F "f2" :@@ [BVT 1, BVT 0]))
(FT "B") [< One],
testTC "x : A × A ⊢ 1 · (caseω x return B of (l,r) ⇒ f2 l r) ⇒ B ⊳ ω·x" $
inferAsQ (ctx [< FT "A" `And` FT "A"]) sone
(CasePair Any (BV 0)
(S ["_"] $ N $ FT "B")
(S ["l", "r"] $ Y $ E $ F "f2" :@@ [BVT 1, BVT 0]))
(FT "B") [< Any],
testTC "x : A × A ⊢ 0 · (caseω x return B of (l,r) ⇒ f2 l r) ⇒ B ⊳ 0·x" $
inferAsQ (ctx [< FT "A" `And` FT "A"]) szero
(CasePair Any (BV 0)
(S ["_"] $ N $ FT "B")
(S ["l", "r"] $ Y $ E $ F "f2" :@@ [BVT 1, BVT 0]))
(FT "B") [< Zero],
testTCFail "x : A × A ⊢ 1 · (case0 x return B of (l,r) ⇒ f2 l r) ⇏" $
infer_ (ctx [< FT "A" `And` FT "A"]) sone
(CasePair Zero (BV 0)
(S ["_"] $ N $ FT "B")
(S ["l", "r"] $ Y $ E $ F "f2" :@@ [BVT 1, BVT 0])),
testTC "x : A × B ⊢ 1 · (caseω x return A of (l,r) ⇒ l) ⇒ A ⊳ ω·x" $
inferAsQ (ctx [< FT "A" `And` FT "B"]) sone
(CasePair Any (BV 0)
(S ["_"] $ N $ FT "A")
(S ["l", "r"] $ Y $ BVT 1))
(FT "A") [< Any],
testTC "x : A × B ⊢ 0 · (case1 x return A of (l,r) ⇒ l) ⇒ A ⊳ 0·x" $
inferAsQ (ctx [< FT "A" `And` FT "B"]) szero
(CasePair One (BV 0)
(S ["_"] $ N $ FT "A")
(S ["l", "r"] $ Y $ BVT 1))
(FT "A") [< Zero],
testTCFail "x : A × B ⊢ 1 · (case1 x return A of (l,r) ⇒ l) ⇏" $
infer_ (ctx [< FT "A" `And` FT "B"]) sone
(CasePair One (BV 0)
(S ["_"] $ N $ FT "A")
(S ["l", "r"] $ Y $ BVT 1)),
note "fst : (0·A : ★₁) → (0·B : A ↠ ★₁) → ((x : A) × B x) ↠ A",
note " ≔ (λ A B p ⇒ caseω p return A of (x, y) ⇒ x)",
testTC "0 · type of fst ⇐ ★₂" $
check_ (ctx [<]) szero fstTy (TYPE 2),
testTC "1 · def of fsttype of fst" $
check_ (ctx [<]) sone fstDef fstTy,
note "snd : (0·A : ★₁) → (0·B : A ↠ ★₁) → (ω·p : (x : A) × B x) → B (fst A B p)",
note " ≔ (λ A B p ⇒ caseω p return p ⇒ B (fst A B p) of (x, y) ⇒ y)",
testTC "0 · type of snd ⇐ ★₂" $
check_ (ctx [<]) szero sndTy (TYPE 2),
testTC "1 · def of sndtype of snd" $
check_ (ctx [<]) sone sndDef sndTy,
testTC "0 · snd ★₀ (λ x ⇒ x) ⇒ (ω·p : (A : ★₀) × A) → fst ★₀ (λ x ⇒ x) p" $
inferAs (ctx [<]) szero
(F "snd" :@@ [TYPE 0, ["x"] :\\ BVT 0])
(Pi Any (Sig (TYPE 0) $ S ["A"] $ Y $ BVT 0) $ S ["p"] $ Y $
(E $ F "fst" :@@ [TYPE 0, ["x"] :\\ BVT 0, BVT 0]))
],
"enums" :- [
testTC "1 · `a ⇐ {a}" $
check_ (ctx [<]) sone (Tag "a") (enum ["a"]),
testTC "1 · `a ⇐ {a, b, c}" $
check_ (ctx [<]) sone (Tag "a") (enum ["a", "b", "c"]),
testTCFail "1 · `a ⇍ {b, c}" $
check_ (ctx [<]) sone (Tag "a") (enum ["b", "c"]),
testTC "0=1 ⊢ 1 · `a ⇐ {b, c}" $
check_ (ctx01 [<]) sone (Tag "a") (enum ["b", "c"])
],
"equalities" :- [ "equalities" :- [
testTC "1 · (λᴰ i ⇒ a) ⇐ a ≡ a" $ testTC "1 · (λᴰ i ⇒ a) ⇐ a ≡ a" $
check_ (ctx [<]) sone (DLam $ S ["i"] $ N $ FT "a") check_ (ctx [<]) sone (DLam $ S ["i"] $ N $ FT "a")