merge Quox.{Syntax.Term.}Reduce
This commit is contained in:
parent
b0692c15b9
commit
3cf246b4dc
4 changed files with 132 additions and 132 deletions
|
@ -1,7 +1,6 @@
|
|||
module Quox.Equal
|
||||
|
||||
import public Quox.Syntax
|
||||
import public Quox.Reduce
|
||||
import Control.Monad.Either
|
||||
import Generics.Derive
|
||||
|
||||
|
|
|
@ -1,130 +0,0 @@
|
|||
module Quox.Reduce
|
||||
|
||||
import public Quox.Syntax
|
||||
|
||||
%default total
|
||||
|
||||
|
||||
public export
|
||||
data IsRedexT : Term d n -> Type where
|
||||
IsUpsilonT : IsRedexT $ E (_ :# _)
|
||||
IsCloT : IsRedexT $ CloT {}
|
||||
IsDCloT : IsRedexT $ DCloT {}
|
||||
|
||||
public export %inline
|
||||
NotRedexT : Term d n -> Type
|
||||
NotRedexT = Not . IsRedexT
|
||||
|
||||
public export
|
||||
data IsRedexE : Elim d n -> Type where
|
||||
IsUpsilonE : IsRedexE $ E _ :# _
|
||||
IsBetaLam : IsRedexE $ (Lam {} :# Pi {}) :@ _
|
||||
IsCloE : IsRedexE $ CloE {}
|
||||
IsDCloE : IsRedexE $ DCloE {}
|
||||
|
||||
public export %inline
|
||||
NotRedexE : Elim d n -> Type
|
||||
NotRedexE = Not . IsRedexE
|
||||
|
||||
|
||||
export %inline
|
||||
isRedexT : (t : Term d n) -> Dec (IsRedexT t)
|
||||
isRedexT (E (_ :# _)) = Yes IsUpsilonT
|
||||
isRedexT (CloT {}) = Yes IsCloT
|
||||
isRedexT (DCloT {}) = Yes IsDCloT
|
||||
isRedexT (TYPE _) = No $ \x => case x of {}
|
||||
isRedexT (Pi {}) = No $ \x => case x of {}
|
||||
isRedexT (Lam {}) = No $ \x => case x of {}
|
||||
isRedexT (E (F _)) = No $ \x => case x of {}
|
||||
isRedexT (E (B _)) = No $ \x => case x of {}
|
||||
isRedexT (E (_ :@ _)) = No $ \x => case x of {}
|
||||
isRedexT (E (CloE {})) = No $ \x => case x of {}
|
||||
isRedexT (E (DCloE {})) = No $ \x => case x of {}
|
||||
|
||||
export %inline
|
||||
isRedexE : (e : Elim d n) -> Dec (IsRedexE e)
|
||||
isRedexE (E _ :# _) = Yes IsUpsilonE
|
||||
isRedexE ((Lam {} :# Pi {}) :@ _) = Yes IsBetaLam
|
||||
isRedexE (CloE {}) = Yes IsCloE
|
||||
isRedexE (DCloE {}) = Yes IsDCloE
|
||||
isRedexE (F x) = No $ \x => case x of {}
|
||||
isRedexE (B i) = No $ \x => case x of {}
|
||||
isRedexE (F _ :@ _) = No $ \x => case x of {}
|
||||
isRedexE (B _ :@ _) = No $ \x => case x of {}
|
||||
isRedexE (_ :@ _ :@ _) = No $ \x => case x of {}
|
||||
isRedexE ((TYPE _ :# _) :@ _) = No $ \x => case x of {}
|
||||
isRedexE ((Pi {} :# _) :@ _) = No $ \x => case x of {}
|
||||
isRedexE ((Lam {} :# TYPE _) :@ _) = No $ \x => case x of {}
|
||||
isRedexE ((Lam {} :# Lam {}) :@ _) = No $ \x => case x of {}
|
||||
isRedexE ((Lam {} :# E _) :@ _) = No $ \x => case x of {}
|
||||
isRedexE ((Lam {} :# CloT {}) :@ _) = No $ \x => case x of {}
|
||||
isRedexE ((Lam {} :# DCloT {}) :@ _) = No $ \x => case x of {}
|
||||
isRedexE ((E _ :# _) :@ _) = No $ \x => case x of {}
|
||||
isRedexE ((CloT {} :# _) :@ _) = No $ \x => case x of {}
|
||||
isRedexE ((DCloT {} :# _) :@ _) = No $ \x => case x of {}
|
||||
isRedexE (CloE {} :@ _) = No $ \x => case x of {}
|
||||
isRedexE (DCloE {} :@ _) = No $ \x => case x of {}
|
||||
isRedexE (TYPE _ :# _) = No $ \x => case x of {}
|
||||
isRedexE (Pi {} :# _) = No $ \x => case x of {}
|
||||
isRedexE (Lam {} :# _) = No $ \x => case x of {}
|
||||
isRedexE (CloT {} :# _) = No $ \x => case x of {}
|
||||
isRedexE (DCloT {} :# _) = No $ \x => case x of {}
|
||||
|
||||
|
||||
public export %inline
|
||||
RedexTerm : Nat -> Nat -> Type
|
||||
RedexTerm d n = Subset (Term d n) IsRedexT
|
||||
|
||||
public export %inline
|
||||
NonRedexTerm : Nat -> Nat -> Type
|
||||
NonRedexTerm d n = Subset (Term d n) NotRedexT
|
||||
|
||||
|
||||
public export %inline
|
||||
RedexElim : Nat -> Nat -> Type
|
||||
RedexElim d n = Subset (Elim d n) IsRedexE
|
||||
|
||||
public export %inline
|
||||
NonRedexElim : Nat -> Nat -> Type
|
||||
NonRedexElim d n = Subset (Elim d n) NotRedexE
|
||||
|
||||
|
||||
||| substitute a term with annotation for the bound variable of a `ScopeTerm`
|
||||
export %inline
|
||||
substScope : (arg, argTy : Term d n) -> (body : ScopeTerm d n) -> Term d n
|
||||
substScope arg argTy (TUsed body) = body // one (arg :# argTy)
|
||||
substScope arg argTy (TUnused body) = body
|
||||
|
||||
export %inline
|
||||
stepT' : (s : Term d n) -> IsRedexT s -> Term d n
|
||||
stepT' (E (s :# _)) IsUpsilonT = s
|
||||
stepT' (CloT s th) IsCloT = pushSubstsTWith' id th s
|
||||
stepT' (DCloT s th) IsDCloT = pushSubstsTWith' th id s
|
||||
|
||||
export %inline
|
||||
stepT : (s : Term d n) -> Either (NotRedexT s) (Term d n)
|
||||
stepT s = case isRedexT s of Yes y => Right $ stepT' s y; No n => Left n
|
||||
|
||||
export %inline
|
||||
stepE' : (e : Elim d n) -> IsRedexE e -> Elim d n
|
||||
stepE' (E e :# _) IsUpsilonE = e
|
||||
stepE' ((Lam {body, _} :# Pi {arg, res, _}) :@ s) IsBetaLam =
|
||||
substScope s arg body :# substScope s arg res
|
||||
stepE' (CloE e th) IsCloE = pushSubstsEWith' id th e
|
||||
stepE' (DCloE e th) IsDCloE = pushSubstsEWith' th id e
|
||||
|
||||
export %inline
|
||||
stepE : (e : Elim d n) -> Either (NotRedexE e) (Elim d n)
|
||||
stepE e = case isRedexE e of Yes y => Right $ stepE' e y; No n => Left n
|
||||
|
||||
export covering
|
||||
whnfT : Term d n -> NonRedexTerm d n
|
||||
whnfT s = case stepT s of
|
||||
Right s' => whnfT s'
|
||||
Left done => Element s done
|
||||
|
||||
export covering
|
||||
whnfE : Elim d n -> NonRedexElim d n
|
||||
whnfE e = case stepE e of
|
||||
Right e' => whnfE e'
|
||||
Left done => Element e done
|
|
@ -162,3 +162,135 @@ weakT t = t //. shift 1
|
|||
public export %inline
|
||||
weakE : Elim d n -> Elim d (S n)
|
||||
weakE t = t //. shift 1
|
||||
|
||||
|
||||
mutual
|
||||
public export
|
||||
data IsRedexT : Term d n -> Type where
|
||||
IsUpsilonT : IsRedexT $ E (_ :# _)
|
||||
IsCloT : IsRedexT $ CloT {}
|
||||
IsDCloT : IsRedexT $ DCloT {}
|
||||
IsERedex : IsRedexE e -> IsRedexT $ E e
|
||||
|
||||
public export %inline
|
||||
NotRedexT : Term d n -> Type
|
||||
NotRedexT = Not . IsRedexT
|
||||
|
||||
public export
|
||||
data IsRedexE : Elim d n -> Type where
|
||||
IsUpsilonE : IsRedexE $ E _ :# _
|
||||
IsBetaLam : IsRedexE $ (Lam {} :# Pi {}) :@ _
|
||||
IsCloE : IsRedexE $ CloE {}
|
||||
IsDCloE : IsRedexE $ DCloE {}
|
||||
|
||||
public export %inline
|
||||
NotRedexE : Elim d n -> Type
|
||||
NotRedexE = Not . IsRedexE
|
||||
|
||||
|
||||
mutual
|
||||
export %inline
|
||||
isRedexT : (t : Term d n) -> Dec (IsRedexT t)
|
||||
isRedexT (E (tm :# ty)) = Yes IsUpsilonT
|
||||
isRedexT (CloT {}) = Yes IsCloT
|
||||
isRedexT (DCloT {}) = Yes IsDCloT
|
||||
isRedexT (E (CloE {})) = Yes $ IsERedex IsCloE
|
||||
isRedexT (E (DCloE {})) = Yes $ IsERedex IsDCloE
|
||||
isRedexT (E e@(_ :@ _)) with (isRedexE e)
|
||||
_ | Yes yes = Yes $ IsERedex yes
|
||||
_ | No no = No \case IsERedex p => no p
|
||||
isRedexT (TYPE {}) = No $ \x => case x of {}
|
||||
isRedexT (Pi {}) = No $ \x => case x of {}
|
||||
isRedexT (Lam {}) = No $ \x => case x of {}
|
||||
isRedexT (E (F _)) = No $ \x => case x of IsERedex _ impossible
|
||||
isRedexT (E (B _)) = No $ \x => case x of IsERedex _ impossible
|
||||
|
||||
export %inline
|
||||
isRedexE : (e : Elim d n) -> Dec (IsRedexE e)
|
||||
isRedexE (E _ :# _) = Yes IsUpsilonE
|
||||
isRedexE ((Lam {} :# Pi {}) :@ _) = Yes IsBetaLam
|
||||
isRedexE (CloE {}) = Yes IsCloE
|
||||
isRedexE (DCloE {}) = Yes IsDCloE
|
||||
isRedexE (F x) = No $ \x => case x of {}
|
||||
isRedexE (B i) = No $ \x => case x of {}
|
||||
isRedexE (F _ :@ _) = No $ \x => case x of {}
|
||||
isRedexE (B _ :@ _) = No $ \x => case x of {}
|
||||
isRedexE (_ :@ _ :@ _) = No $ \x => case x of {}
|
||||
isRedexE ((TYPE _ :# _) :@ _) = No $ \x => case x of {}
|
||||
isRedexE ((Pi {} :# _) :@ _) = No $ \x => case x of {}
|
||||
isRedexE ((Lam {} :# TYPE _) :@ _) = No $ \x => case x of {}
|
||||
isRedexE ((Lam {} :# Lam {}) :@ _) = No $ \x => case x of {}
|
||||
isRedexE ((Lam {} :# E _) :@ _) = No $ \x => case x of {}
|
||||
isRedexE ((Lam {} :# CloT {}) :@ _) = No $ \x => case x of {}
|
||||
isRedexE ((Lam {} :# DCloT {}) :@ _) = No $ \x => case x of {}
|
||||
isRedexE ((E _ :# _) :@ _) = No $ \x => case x of {}
|
||||
isRedexE ((CloT {} :# _) :@ _) = No $ \x => case x of {}
|
||||
isRedexE ((DCloT {} :# _) :@ _) = No $ \x => case x of {}
|
||||
isRedexE (CloE {} :@ _) = No $ \x => case x of {}
|
||||
isRedexE (DCloE {} :@ _) = No $ \x => case x of {}
|
||||
isRedexE (TYPE _ :# _) = No $ \x => case x of {}
|
||||
isRedexE (Pi {} :# _) = No $ \x => case x of {}
|
||||
isRedexE (Lam {} :# _) = No $ \x => case x of {}
|
||||
isRedexE (CloT {} :# _) = No $ \x => case x of {}
|
||||
isRedexE (DCloT {} :# _) = No $ \x => case x of {}
|
||||
|
||||
|
||||
public export %inline
|
||||
RedexTerm : Nat -> Nat -> Type
|
||||
RedexTerm d n = Subset (Term d n) IsRedexT
|
||||
|
||||
public export %inline
|
||||
NonRedexTerm : Nat -> Nat -> Type
|
||||
NonRedexTerm d n = Subset (Term d n) NotRedexT
|
||||
|
||||
|
||||
public export %inline
|
||||
RedexElim : Nat -> Nat -> Type
|
||||
RedexElim d n = Subset (Elim d n) IsRedexE
|
||||
|
||||
public export %inline
|
||||
NonRedexElim : Nat -> Nat -> Type
|
||||
NonRedexElim d n = Subset (Elim d n) NotRedexE
|
||||
|
||||
|
||||
||| substitute a term with annotation for the bound variable of a `ScopeTerm`
|
||||
export %inline
|
||||
substScope : (arg, argTy : Term d n) -> (body : ScopeTerm d n) -> Term d n
|
||||
substScope arg argTy (TUsed body) = body // one (arg :# argTy)
|
||||
substScope arg argTy (TUnused body) = body
|
||||
|
||||
mutual
|
||||
export %inline
|
||||
stepT' : (s : Term d n) -> IsRedexT s -> Term d n
|
||||
stepT' (E (s :# _)) IsUpsilonT = s
|
||||
stepT' (CloT s th) IsCloT = pushSubstsTWith' id th s
|
||||
stepT' (DCloT s th) IsDCloT = pushSubstsTWith' th id s
|
||||
stepT' (E e) (IsERedex p) = E $ stepE' e p
|
||||
|
||||
export %inline
|
||||
stepE' : (e : Elim d n) -> IsRedexE e -> Elim d n
|
||||
stepE' (E e :# _) IsUpsilonE = e
|
||||
stepE' ((Lam {body, _} :# Pi {arg, res, _}) :@ s) IsBetaLam =
|
||||
substScope s arg body :# substScope s arg res
|
||||
stepE' (CloE e th) IsCloE = pushSubstsEWith' id th e
|
||||
stepE' (DCloE e th) IsDCloE = pushSubstsEWith' th id e
|
||||
|
||||
export %inline
|
||||
stepT : (s : Term d n) -> Either (NotRedexT s) (Term d n)
|
||||
stepT s = case isRedexT s of Yes y => Right $ stepT' s y; No n => Left n
|
||||
|
||||
export %inline
|
||||
stepE : (e : Elim d n) -> Either (NotRedexE e) (Elim d n)
|
||||
stepE e = case isRedexE e of Yes y => Right $ stepE' e y; No n => Left n
|
||||
|
||||
export covering
|
||||
whnfT : Term d n -> NonRedexTerm d n
|
||||
whnfT s = case stepT s of
|
||||
Right s' => whnfT s'
|
||||
Left done => Element s done
|
||||
|
||||
export covering
|
||||
whnfE : Elim d n -> NonRedexElim d n
|
||||
whnfE e = case stepE e of
|
||||
Right e' => whnfE e'
|
||||
Left done => Element e done
|
||||
|
|
|
@ -32,6 +32,5 @@ modules =
|
|||
Quox.Context,
|
||||
Quox.Equal,
|
||||
Quox.Name,
|
||||
Quox.Reduce,
|
||||
Quox.Typing,
|
||||
Quox.Typechecker
|
||||
|
|
Loading…
Reference in a new issue