improve equality somewhat
This commit is contained in:
parent
981f543509
commit
2c1ca7e19b
1 changed files with 47 additions and 58 deletions
|
@ -7,8 +7,8 @@ import Quox.Error
|
|||
|
||||
|
||||
public export
|
||||
data Error =
|
||||
Clash SomeTerm SomeTerm
|
||||
data Error
|
||||
= Clash SomeTerm SomeTerm
|
||||
| ClashU Universe Universe
|
||||
| ClashQ Qty Qty
|
||||
|
||||
|
@ -35,92 +35,81 @@ parameters {auto _ : MonadThrow Error m}
|
|||
|
||||
mutual
|
||||
private covering
|
||||
equalTN' : DSubst d 0 -> (s, t : Term d n) ->
|
||||
equalTN' : (s, t : Term 0 n) ->
|
||||
(0 _ : NotRedexT s) -> (0 _ : NotRedexT t) -> m ()
|
||||
|
||||
equalTN' _ (TYPE k) (TYPE l) _ _ =
|
||||
equalTN' (TYPE k) (TYPE l) _ _ =
|
||||
eq ClashU k l
|
||||
equalTN' _ s@(TYPE _) t _ _ = clashT s t
|
||||
equalTN' s@(TYPE _) t _ _ = clashT s t
|
||||
|
||||
equalTN' th (Pi qtm1 qty1 _ arg1 res1) (Pi qtm2 qty2 _ arg2 res2) _ _ = do
|
||||
equalTN' (Pi qtm1 qty1 _ arg1 res1) (Pi qtm2 qty2 _ arg2 res2) _ _ = do
|
||||
eq ClashQ qtm1 qtm2
|
||||
eq ClashQ qty1 qty2
|
||||
equalTS th arg1 arg2
|
||||
equalTS th res1 res2
|
||||
equalTN' _ s@(Pi {}) t _ _ = clashT s t
|
||||
equalT0 arg1 arg2
|
||||
equalT0 res1 res2
|
||||
equalTN' s@(Pi {}) t _ _ = clashT s t
|
||||
|
||||
-- [todo] eta
|
||||
equalTN' th (Lam _ body1) (Lam _ body2) _ _ =
|
||||
equalTS th body1 body2
|
||||
equalTN' _ s@(Lam {}) t _ _ = clashT s t
|
||||
equalTN' (Lam _ body1) (Lam _ body2) _ _ =
|
||||
equalT0 body1 body2
|
||||
equalTN' s@(Lam {}) t _ _ = clashT s t
|
||||
|
||||
equalTN' th (E e) (E f) ps pt = equalES th e f
|
||||
equalTN' _ s@(E _) t _ _ = clashT s t
|
||||
equalTN' (E e) (E f) ps pt = equalE0 e f
|
||||
equalTN' s@(E _) t _ _ = clashT s t
|
||||
|
||||
equalTN' _ (CloT {}) _ ps _ = void $ ps IsCloT
|
||||
equalTN' _ (DCloT {}) _ ps _ = void $ ps IsDCloT
|
||||
equalTN' (CloT {}) _ ps _ = void $ ps IsCloT
|
||||
equalTN' (DCloT {}) _ ps _ = void $ ps IsDCloT
|
||||
|
||||
private covering
|
||||
equalEN' : DSubst d 0 -> (e, f : Elim d n) ->
|
||||
equalEN' : (e, f : Elim 0 n) ->
|
||||
(0 _ : NotRedexE e) -> (0 _ : NotRedexE f) -> m ()
|
||||
|
||||
equalEN' _ (F x) (F y) _ _ = do
|
||||
equalEN' (F x) (F y) _ _ = do
|
||||
eq (clashE' `on` F {d = 0, n = 0}) x y
|
||||
equalEN' _ e@(F _) f _ _ = clashE e f
|
||||
equalEN' e@(F _) f _ _ = clashE e f
|
||||
|
||||
equalEN' _ (B i) (B j) _ _ = do
|
||||
equalEN' (B i) (B j) _ _ = do
|
||||
eq (clashE' `on` B {d = 0}) i j
|
||||
equalEN' _ e@(B _) f _ _ = clashE e f
|
||||
equalEN' e@(B _) f _ _ = clashE e f
|
||||
|
||||
equalEN' th (fun1 :@ arg1) (fun2 :@ arg2) _ _ = do
|
||||
equalES th fun1 fun2
|
||||
equalTS th arg1 arg2
|
||||
equalEN' _ e@(_ :@ _) f _ _ = clashE e f
|
||||
equalEN' (fun1 :@ arg1) (fun2 :@ arg2) _ _ = do
|
||||
equalE0 fun1 fun2
|
||||
equalT0 arg1 arg2
|
||||
equalEN' e@(_ :@ _) f _ _ = clashE e f
|
||||
|
||||
equalEN' th (tm1 :# ty1) (tm2 :# ty2) _ _ = do
|
||||
equalTS th tm1 tm2
|
||||
equalTS th ty1 ty2
|
||||
equalEN' _ e@(_ :# _) f _ _ = clashE e f
|
||||
equalEN' (tm1 :# ty1) (tm2 :# ty2) _ _ = do
|
||||
equalT0 tm1 tm2
|
||||
equalT0 ty1 ty2
|
||||
equalEN' e@(_ :# _) f _ _ = clashE e f
|
||||
|
||||
equalEN' _ (CloE {}) _ pe _ = void $ pe IsCloE
|
||||
equalEN' _ (DCloE {}) _ pe _ = void $ pe IsDCloE
|
||||
equalEN' (CloE {}) _ pe _ = void $ pe IsCloE
|
||||
equalEN' (DCloE {}) _ pe _ = void $ pe IsDCloE
|
||||
|
||||
|
||||
private covering %inline
|
||||
equalTN : DSubst d 0 -> NonRedexTerm d n -> NonRedexTerm d n -> m ()
|
||||
equalTN th s t = equalTN' th s.fst t.fst s.snd t.snd
|
||||
equalTN : NonRedexTerm 0 n -> NonRedexTerm 0 n -> m ()
|
||||
equalTN s t = equalTN' s.fst t.fst s.snd t.snd
|
||||
|
||||
private covering %inline
|
||||
equalEN : DSubst d 0 -> NonRedexElim d n -> NonRedexElim d n -> m ()
|
||||
equalEN th e f = equalEN' th e.fst f.fst e.snd f.snd
|
||||
equalEN : NonRedexElim 0 n -> NonRedexElim 0 n -> m ()
|
||||
equalEN e f = equalEN' e.fst f.fst e.snd f.snd
|
||||
|
||||
|
||||
export covering %inline
|
||||
equalTS : DSubst d 0 -> Term d n -> Term d n -> m ()
|
||||
equalTS th s t = equalTN th (whnfT s) (whnfT t)
|
||||
equalT : DimEq d -> Term d n -> Term d n -> m ()
|
||||
equalT eqs s t =
|
||||
for_ (splits eqs) $ \th => (s /// th) `equalT0` (t /// th)
|
||||
|
||||
export covering %inline
|
||||
equalES : DSubst d 0 -> Elim d n -> Elim d n -> m ()
|
||||
equalES th e f = equalEN th (whnfE e) (whnfE f)
|
||||
equalE : DimEq d -> Elim d n -> Elim d n -> m ()
|
||||
equalE eqs e f =
|
||||
for_ (splits eqs) $ \th => (e /// th) `equalE0` (f /// th)
|
||||
|
||||
|
||||
export covering %inline
|
||||
equalT : DimEq d -> Term d n -> Term d n -> m ()
|
||||
equalT eqs s t =
|
||||
let s' = whnfT s; t' = whnfT t in
|
||||
for_ (splits eqs) $ \th => equalTN th s' t'
|
||||
export covering %inline
|
||||
equalT0 : Term 0 n -> Term 0 n -> m ()
|
||||
equalT0 s t = whnfT s `equalTN` whnfT t
|
||||
|
||||
export covering %inline
|
||||
equalE : DimEq d -> Elim d n -> Elim d n -> m ()
|
||||
equalE eqs e f =
|
||||
let e' = whnfE e; f' = whnfE f in
|
||||
for_ (splits eqs) $ \th => equalEN th e' f'
|
||||
|
||||
|
||||
export covering %inline
|
||||
equalT0 : Term 0 n -> Term 0 n -> m ()
|
||||
equalT0 = equalT zeroEq
|
||||
|
||||
export covering %inline
|
||||
equalE0 : Elim 0 n -> Elim 0 n -> m ()
|
||||
equalE0 = equalE zeroEq
|
||||
export covering %inline
|
||||
equalE0 : Elim 0 n -> Elim 0 n -> m ()
|
||||
equalE0 e f = whnfE e `equalEN` whnfE f
|
||||
|
|
Loading…
Reference in a new issue