untangle big mutual block in Equal
This commit is contained in:
parent
d5d30ee198
commit
1e8932690b
1 changed files with 486 additions and 470 deletions
|
@ -103,6 +103,7 @@ isSubSing defs ctx ty0 = do
|
|||
Box {} => pure False
|
||||
|
||||
|
||||
||| the left argument if the current mode is `Super`; otherwise the right one.
|
||||
private %inline
|
||||
bigger : Has EqModeState fs => (left, right : Lazy a) -> Eff fs a
|
||||
bigger l r = gets $ \case Super => l; _ => r
|
||||
|
@ -127,23 +128,31 @@ computeElimTypeE defs ectx e =
|
|||
let Val n = ectx.termLen in
|
||||
lift $ computeElimType defs (toWhnfContext ectx) e
|
||||
|
||||
parameters (defs : Definitions)
|
||||
mutual
|
||||
|
||||
namespace Term
|
||||
||| `compare0 ctx ty s t` compares `s` and `t` at type `ty`, according to
|
||||
||| the current variance `mode`.
|
||||
|||
|
||||
||| ⚠ **assumes that `s`, `t` have already been checked against `ty`**. ⚠
|
||||
export covering %inline
|
||||
compare0 : EqContext n -> (ty, s, t : Term 0 n) -> Eff EqualInner ()
|
||||
compare0 ctx ty s t =
|
||||
wrapErr (WhileComparingT ctx !mode ty s t) $ do
|
||||
let Val n = ctx.termLen
|
||||
Element ty' _ <- whnf defs ctx ty.loc ty
|
||||
Element s' _ <- whnf defs ctx s.loc s
|
||||
Element t' _ <- whnf defs ctx t.loc t
|
||||
tty <- ensureTyCon ty.loc ctx ty'
|
||||
compare0' ctx ty' s' t'
|
||||
compare0 : Definitions -> EqContext n -> (ty, s, t : Term 0 n) ->
|
||||
Eff EqualInner ()
|
||||
|
||||
namespace Elim
|
||||
||| compare two eliminations according to the given variance `mode`.
|
||||
|||
|
||||
||| ⚠ **assumes that they have both been typechecked, and have
|
||||
||| equal types.** ⚠
|
||||
export covering %inline
|
||||
compare0 : Definitions -> EqContext n -> (e, f : Elim 0 n) ->
|
||||
Eff EqualInner (Term 0 n)
|
||||
|
||||
||| compares two types, using the current variance `mode` for universes.
|
||||
||| fails if they are not types, even if they would happen to be equal.
|
||||
export covering %inline
|
||||
compareType : Definitions -> EqContext n -> (s, t : Term 0 n) ->
|
||||
Eff EqualInner ()
|
||||
|
||||
|
||||
||| converts an elim "Γ ⊢ e" to "Γ, x ⊢ e x", for comparing with
|
||||
||| a lambda "Γ ⊢ λx ⇒ t" that has been converted to "Γ, x ⊢ t".
|
||||
|
@ -151,21 +160,22 @@ parameters (defs : Definitions)
|
|||
toLamBody : Elim d n -> Term d (S n)
|
||||
toLamBody e = E $ App (weakE 1 e) (BVT 0 e.loc) e.loc
|
||||
|
||||
namespace Term
|
||||
private covering
|
||||
compare0' : EqContext n ->
|
||||
compare0' : (defs : Definitions) -> EqContext n ->
|
||||
(ty, s, t : Term 0 n) ->
|
||||
(0 _ : NotRedex defs ty) => (0 _ : So (isTyConE ty)) =>
|
||||
(0 _ : NotRedex defs s) => (0 _ : NotRedex defs t) =>
|
||||
Eff EqualInner ()
|
||||
compare0' ctx (TYPE {}) s t = compareType ctx s t
|
||||
compare0' defs ctx (TYPE {}) s t = compareType defs ctx s t
|
||||
|
||||
compare0' ctx ty@(Pi {qty, arg, res, _}) s t {n} = local_ Equal $
|
||||
compare0' defs ctx ty@(Pi {qty, arg, res, _}) s t {n} = local_ Equal $
|
||||
case (s, t) of
|
||||
-- Γ, x : A ⊢ s = t : B
|
||||
-- -------------------------------------------
|
||||
-- Γ ⊢ (λ x ⇒ s) = (λ x ⇒ t) : (π·x : A) → B
|
||||
(Lam b1 {}, Lam b2 {}) =>
|
||||
compare0 ctx' res.term b1.term b2.term
|
||||
compare0 defs ctx' res.term b1.term b2.term
|
||||
|
||||
-- Γ, x : A ⊢ s = e x : B
|
||||
-- -----------------------------------
|
||||
|
@ -173,7 +183,7 @@ parameters (defs : Definitions)
|
|||
(E e, Lam b {}) => eta s.loc e b
|
||||
(Lam b {}, E e) => eta s.loc e b
|
||||
|
||||
(E e, E f) => ignore $ Elim.compare0 ctx e f
|
||||
(E e, E f) => ignore $ Elim.compare0 defs ctx e f
|
||||
|
||||
(Lam {}, t) => wrongType t.loc ctx ty t
|
||||
(E _, t) => wrongType t.loc ctx ty t
|
||||
|
@ -183,10 +193,10 @@ parameters (defs : Definitions)
|
|||
ctx' = extendTy qty res.name arg ctx
|
||||
|
||||
eta : Loc -> Elim 0 n -> ScopeTerm 0 n -> Eff EqualInner ()
|
||||
eta _ e (S _ (Y b)) = compare0 ctx' res.term (toLamBody e) b
|
||||
eta _ e (S _ (Y b)) = compare0 defs ctx' res.term (toLamBody e) b
|
||||
eta loc e (S _ (N _)) = clashT loc ctx ty s t
|
||||
|
||||
compare0' ctx ty@(Sig {fst, snd, _}) s t = local_ Equal $
|
||||
compare0' defs ctx ty@(Sig {fst, snd, _}) s t = local_ Equal $
|
||||
case (s, t) of
|
||||
-- Γ ⊢ s₁ = t₁ : A Γ ⊢ s₂ = t₂ : B{s₁/x}
|
||||
-- --------------------------------------------
|
||||
|
@ -194,10 +204,10 @@ parameters (defs : Definitions)
|
|||
--
|
||||
-- [todo] η for π ≥ 0 maybe
|
||||
(Pair sFst sSnd {}, Pair tFst tSnd {}) => do
|
||||
compare0 ctx fst sFst tFst
|
||||
compare0 ctx (sub1 snd (Ann sFst fst fst.loc)) sSnd tSnd
|
||||
compare0 defs ctx fst sFst tFst
|
||||
compare0 defs ctx (sub1 snd (Ann sFst fst fst.loc)) sSnd tSnd
|
||||
|
||||
(E e, E f) => ignore $ Elim.compare0 ctx e f
|
||||
(E e, E f) => ignore $ Elim.compare0 defs ctx e f
|
||||
|
||||
(Pair {}, E _) => clashT s.loc ctx ty s t
|
||||
(E _, Pair {}) => clashT s.loc ctx ty s t
|
||||
|
@ -206,7 +216,7 @@ parameters (defs : Definitions)
|
|||
(E _, t) => wrongType t.loc ctx ty t
|
||||
(s, _) => wrongType s.loc ctx ty s
|
||||
|
||||
compare0' ctx ty@(Enum {}) s t = local_ Equal $
|
||||
compare0' defs ctx ty@(Enum {}) s t = local_ Equal $
|
||||
case (s, t) of
|
||||
-- --------------------
|
||||
-- Γ ⊢ `t = `t : {ts}
|
||||
|
@ -214,7 +224,7 @@ parameters (defs : Definitions)
|
|||
-- t ∈ ts is in the typechecker, not here, ofc
|
||||
(Tag t1 {}, Tag t2 {}) =>
|
||||
unless (t1 == t2) $ clashT s.loc ctx ty s t
|
||||
(E e, E f) => ignore $ Elim.compare0 ctx e f
|
||||
(E e, E f) => ignore $ Elim.compare0 defs ctx e f
|
||||
|
||||
(Tag {}, E _) => clashT s.loc ctx ty s t
|
||||
(E _, Tag {}) => clashT s.loc ctx ty s t
|
||||
|
@ -223,14 +233,14 @@ parameters (defs : Definitions)
|
|||
(E _, t) => wrongType t.loc ctx ty t
|
||||
(s, _) => wrongType s.loc ctx ty s
|
||||
|
||||
compare0' _ (Eq {}) _ _ =
|
||||
compare0' _ _ (Eq {}) _ _ =
|
||||
-- ✨ uip ✨
|
||||
--
|
||||
-- ----------------------------
|
||||
-- Γ ⊢ e = f : Eq [i ⇒ A] s t
|
||||
pure ()
|
||||
|
||||
compare0' ctx nat@(Nat {}) s t = local_ Equal $
|
||||
compare0' defs ctx nat@(Nat {}) s t = local_ Equal $
|
||||
case (s, t) of
|
||||
-- ---------------
|
||||
-- Γ ⊢ 0 = 0 : ℕ
|
||||
|
@ -239,9 +249,9 @@ parameters (defs : Definitions)
|
|||
-- Γ ⊢ s = t : ℕ
|
||||
-- -------------------------
|
||||
-- Γ ⊢ succ s = succ t : ℕ
|
||||
(Succ s' {}, Succ t' {}) => compare0 ctx nat s' t'
|
||||
(Succ s' {}, Succ t' {}) => compare0 defs ctx nat s' t'
|
||||
|
||||
(E e, E f) => ignore $ Elim.compare0 ctx e f
|
||||
(E e, E f) => ignore $ Elim.compare0 defs ctx e f
|
||||
|
||||
(Zero {}, Succ {}) => clashT s.loc ctx nat s t
|
||||
(Zero {}, E _) => clashT s.loc ctx nat s t
|
||||
|
@ -255,85 +265,72 @@ parameters (defs : Definitions)
|
|||
(E _, t) => wrongType t.loc ctx nat t
|
||||
(s, _) => wrongType s.loc ctx nat s
|
||||
|
||||
compare0' ctx ty@(BOX q ty' {}) s t = local_ Equal $
|
||||
compare0' defs ctx ty@(BOX q ty' {}) s t = local_ Equal $
|
||||
case (s, t) of
|
||||
-- Γ ⊢ s = t : A
|
||||
-- -----------------------
|
||||
-- Γ ⊢ [s] = [t] : [π.A]
|
||||
(Box s' {}, Box t' {}) => compare0 ctx ty' s' t'
|
||||
(Box s' {}, Box t' {}) => compare0 defs ctx ty' s' t'
|
||||
|
||||
(E e, E f) => ignore $ Elim.compare0 ctx e f
|
||||
(E e, E f) => ignore $ Elim.compare0 defs ctx e f
|
||||
|
||||
(Box {}, t) => wrongType t.loc ctx ty t
|
||||
(E _, t) => wrongType t.loc ctx ty t
|
||||
(s, _) => wrongType s.loc ctx ty s
|
||||
|
||||
compare0' ctx ty@(E _) s t = do
|
||||
compare0' defs ctx ty@(E _) s t = do
|
||||
-- a neutral type can only be inhabited by neutral values
|
||||
-- e.g. an abstract value in an abstract type, bound variables, …
|
||||
let E e = s | _ => wrongType s.loc ctx ty s
|
||||
E f = t | _ => wrongType t.loc ctx ty t
|
||||
ignore $ Elim.compare0 ctx e f
|
||||
ignore $ Elim.compare0 defs ctx e f
|
||||
|
||||
||| compares two types, using the current variance `mode` for universes.
|
||||
||| fails if they are not types, even if they would happen to be equal.
|
||||
export covering %inline
|
||||
compareType : EqContext n -> (s, t : Term 0 n) -> Eff EqualInner ()
|
||||
compareType ctx s t = do
|
||||
let Val n = ctx.termLen
|
||||
Element s' _ <- whnf defs ctx s.loc s
|
||||
Element t' _ <- whnf defs ctx t.loc t
|
||||
ts <- ensureTyCon s.loc ctx s'
|
||||
tt <- ensureTyCon t.loc ctx t'
|
||||
st <- either pure (const $ clashTy s.loc ctx s' t') $
|
||||
nchoose $ sameTyCon s' t'
|
||||
compareType' ctx s' t'
|
||||
|
||||
private covering
|
||||
compareType' : EqContext n -> (s, t : Term 0 n) ->
|
||||
compareType' : (defs : Definitions) -> EqContext n -> (s, t : Term 0 n) ->
|
||||
(0 _ : NotRedex defs s) => (0 _ : So (isTyConE s)) =>
|
||||
(0 _ : NotRedex defs t) => (0 _ : So (isTyConE t)) =>
|
||||
(0 _ : So (sameTyCon s t)) =>
|
||||
Eff EqualInner ()
|
||||
-- equality is the same as subtyping, except with the
|
||||
-- "≤" in the TYPE rule being replaced with "="
|
||||
compareType' ctx a@(TYPE k {}) (TYPE l {}) =
|
||||
compareType' defs ctx a@(TYPE k {}) (TYPE l {}) =
|
||||
-- 𝓀 ≤ ℓ
|
||||
-- ----------------------
|
||||
-- Γ ⊢ Type 𝓀 <: Type ℓ
|
||||
expectModeU a.loc !mode k l
|
||||
|
||||
compareType' ctx a@(Pi {qty = sQty, arg = sArg, res = sRes, _})
|
||||
compareType' defs ctx (Pi {qty = sQty, arg = sArg, res = sRes, loc})
|
||||
(Pi {qty = tQty, arg = tArg, res = tRes, _}) = do
|
||||
-- Γ ⊢ A₁ :> A₂ Γ, x : A₁ ⊢ B₁ <: B₂
|
||||
-- ----------------------------------------
|
||||
-- Γ ⊢ (π·x : A₁) → B₁ <: (π·x : A₂) → B₂
|
||||
expectEqualQ a.loc sQty tQty
|
||||
local flip $ compareType ctx sArg tArg -- contra
|
||||
compareType (extendTy Zero sRes.name sArg ctx) sRes.term tRes.term
|
||||
expectEqualQ loc sQty tQty
|
||||
local flip $ compareType defs ctx sArg tArg -- contra
|
||||
compareType defs (extendTy Zero sRes.name sArg ctx) sRes.term tRes.term
|
||||
|
||||
compareType' ctx (Sig {fst = sFst, snd = sSnd, _})
|
||||
compareType' defs ctx (Sig {fst = sFst, snd = sSnd, _})
|
||||
(Sig {fst = tFst, snd = tSnd, _}) = do
|
||||
-- Γ ⊢ A₁ <: A₂ Γ, x : A₁ ⊢ B₁ <: B₂
|
||||
-- --------------------------------------
|
||||
-- Γ ⊢ (x : A₁) × B₁ <: (x : A₂) × B₂
|
||||
compareType ctx sFst tFst
|
||||
compareType (extendTy Zero sSnd.name sFst ctx) sSnd.term tSnd.term
|
||||
compareType defs ctx sFst tFst
|
||||
compareType defs (extendTy Zero sSnd.name sFst ctx) sSnd.term tSnd.term
|
||||
|
||||
compareType' ctx (Eq {ty = sTy, l = sl, r = sr, _})
|
||||
compareType' defs ctx (Eq {ty = sTy, l = sl, r = sr, _})
|
||||
(Eq {ty = tTy, l = tl, r = tr, _}) = do
|
||||
-- Γ ⊢ A₁‹ε/i› <: A₂‹ε/i›
|
||||
-- Γ ⊢ l₁ = l₂ : A₁‹𝟎/i› Γ ⊢ r₁ = r₂ : A₁‹𝟏/i›
|
||||
-- ------------------------------------------------
|
||||
-- Γ ⊢ Eq [i ⇒ A₁] l₁ r₂ <: Eq [i ⇒ A₂] l₂ r₂
|
||||
compareType (extendDim sTy.name Zero ctx) sTy.zero tTy.zero
|
||||
compareType (extendDim sTy.name One ctx) sTy.one tTy.one
|
||||
compareType defs (extendDim sTy.name Zero ctx) sTy.zero tTy.zero
|
||||
compareType defs (extendDim sTy.name One ctx) sTy.one tTy.one
|
||||
ty <- bigger sTy tTy
|
||||
local_ Equal $ do
|
||||
Term.compare0 ctx ty.zero sl tl
|
||||
Term.compare0 ctx ty.one sr tr
|
||||
Term.compare0 defs ctx ty.zero sl tl
|
||||
Term.compare0 defs ctx ty.one sr tr
|
||||
|
||||
compareType' ctx s@(Enum tags1 {}) t@(Enum tags2 {}) = do
|
||||
compareType' defs ctx s@(Enum tags1 {}) t@(Enum tags2 {}) = do
|
||||
-- ------------------
|
||||
-- Γ ⊢ {ts} <: {ts}
|
||||
--
|
||||
|
@ -341,84 +338,123 @@ parameters (defs : Definitions)
|
|||
-- a runtime coercion
|
||||
unless (tags1 == tags2) $ clashTy s.loc ctx s t
|
||||
|
||||
compareType' ctx (Nat {}) (Nat {}) =
|
||||
compareType' defs ctx (Nat {}) (Nat {}) =
|
||||
-- ------------
|
||||
-- Γ ⊢ ℕ <: ℕ
|
||||
pure ()
|
||||
|
||||
compareType' ctx (BOX pi a loc) (BOX rh b {}) = do
|
||||
compareType' defs ctx (BOX pi a loc) (BOX rh b {}) = do
|
||||
expectEqualQ loc pi rh
|
||||
compareType ctx a b
|
||||
compareType defs ctx a b
|
||||
|
||||
compareType' ctx (E e) (E f) = do
|
||||
compareType' defs ctx (E e) (E f) = do
|
||||
-- no fanciness needed here cos anything other than a neutral
|
||||
-- has been inlined by whnf
|
||||
ignore $ Elim.compare0 ctx e f
|
||||
ignore $ Elim.compare0 defs ctx e f
|
||||
|
||||
|
||||
namespace Elim
|
||||
||| compare two eliminations according to the given variance `mode`.
|
||||
|||
|
||||
||| ⚠ **assumes that they have both been typechecked, and have
|
||||
||| equal types.** ⚠
|
||||
export covering %inline
|
||||
compare0 : EqContext n -> (e, f : Elim 0 n) -> Eff EqualInner (Term 0 n)
|
||||
compare0 ctx e f = do
|
||||
(err, ty) <- compare0Inner ctx e f
|
||||
maybe (pure ty) throw err
|
||||
|
||||
private covering
|
||||
compare0Inner : EqContext n -> (e, f : Elim 0 n) ->
|
||||
Eff EqualInner (Maybe Error, Term 0 n)
|
||||
compare0Inner ctx e f =
|
||||
wrapErr (WhileComparingE ctx !mode e f) $ do
|
||||
let Val n = ctx.termLen
|
||||
Element e ne <- whnf defs ctx e.loc e
|
||||
Element f nf <- whnf defs ctx f.loc f
|
||||
(err, ty) <- compare0' ctx e f ne nf
|
||||
if !(isSubSing defs ctx ty)
|
||||
then pure (Nothing, ty)
|
||||
else pure (err, ty)
|
||||
|
||||
private
|
||||
try_ : Eff EqualInner () -> Eff EqualInner (Maybe Error)
|
||||
try_ act = lift $ catch (pure . Just) $ act $> Nothing
|
||||
|
||||
private
|
||||
lookupFree : EqContext n -> Name -> Universe -> Loc ->
|
||||
lookupFree : Definitions -> EqContext n -> Name -> Universe -> Loc ->
|
||||
Eff EqualInner (Term 0 n)
|
||||
lookupFree ctx x u loc =
|
||||
lookupFree defs ctx x u loc =
|
||||
let Val n = ctx.termLen in
|
||||
maybe (throw $ NotInScope loc x) (\d => pure $ d.typeAt u) $
|
||||
lookup x defs
|
||||
|
||||
|
||||
namespace Elim
|
||||
||| compare two type-case branches, which came from the arms of the given
|
||||
||| kind. `ret` is the return type of the case expression, and `u` is the
|
||||
||| universe the head is in.
|
||||
private covering
|
||||
compare0' : EqContext n ->
|
||||
compareArm : Definitions -> EqContext n -> (k : TyConKind) ->
|
||||
(ret : Term 0 n) -> (u : Universe) ->
|
||||
(b1, b2 : Maybe (TypeCaseArmBody k 0 n)) ->
|
||||
(def : Term 0 n) ->
|
||||
Eff EqualInner ()
|
||||
compareArm {b1 = Nothing, b2 = Nothing, _} = pure ()
|
||||
compareArm defs ctx k ret u b1 b2 def =
|
||||
let def = SN def in
|
||||
compareArm_ defs ctx k ret u (fromMaybe def b1) (fromMaybe def b2)
|
||||
where
|
||||
compareArm_ : Definitions -> EqContext n -> (k : TyConKind) ->
|
||||
(ret : Term 0 n) -> (u : Universe) ->
|
||||
(b1, b2 : TypeCaseArmBody k 0 n) ->
|
||||
Eff EqualInner ()
|
||||
compareArm_ defs ctx KTYPE ret u b1 b2 =
|
||||
compare0 defs ctx ret b1.term b2.term
|
||||
|
||||
compareArm_ defs ctx KPi ret u b1 b2 = do
|
||||
let [< a, b] = b1.names
|
||||
ctx = extendTyN
|
||||
[< (Zero, a, TYPE u a.loc),
|
||||
(Zero, b, Arr Zero (BVT 0 b.loc) (TYPE u b.loc) b.loc)] ctx
|
||||
compare0 defs ctx (weakT 2 ret) b1.term b2.term
|
||||
|
||||
compareArm_ defs ctx KSig ret u b1 b2 = do
|
||||
let [< a, b] = b1.names
|
||||
ctx = extendTyN
|
||||
[< (Zero, a, TYPE u a.loc),
|
||||
(Zero, b, Arr Zero (BVT 0 b.loc) (TYPE u b.loc) b.loc)] ctx
|
||||
compare0 defs ctx (weakT 2 ret) b1.term b2.term
|
||||
|
||||
compareArm_ defs ctx KEnum ret u b1 b2 =
|
||||
compare0 defs ctx ret b1.term b2.term
|
||||
|
||||
compareArm_ defs ctx KEq ret u b1 b2 = do
|
||||
let [< a0, a1, a, l, r] = b1.names
|
||||
ctx = extendTyN
|
||||
[< (Zero, a0, TYPE u a0.loc),
|
||||
(Zero, a1, TYPE u a1.loc),
|
||||
(Zero, a, Eq0 (TYPE u a.loc)
|
||||
(BVT 1 a0.loc) (BVT 0 a1.loc) a.loc),
|
||||
(Zero, l, BVT 2 a0.loc),
|
||||
(Zero, r, BVT 2 a1.loc)] ctx
|
||||
compare0 defs ctx (weakT 5 ret) b1.term b2.term
|
||||
|
||||
compareArm_ defs ctx KNat ret u b1 b2 =
|
||||
compare0 defs ctx ret b1.term b2.term
|
||||
|
||||
compareArm_ defs ctx KBOX ret u b1 b2 = do
|
||||
let ctx = extendTy Zero b1.name (TYPE u b1.name.loc) ctx
|
||||
compare0 defs ctx (weakT 1 ret) b1.term b1.term
|
||||
|
||||
|
||||
private covering
|
||||
compare0Inner : Definitions -> EqContext n -> (e, f : Elim 0 n) ->
|
||||
Eff EqualInner (Maybe Error, Term 0 n)
|
||||
|
||||
private covering
|
||||
compare0Inner' : (defs : Definitions) -> EqContext n ->
|
||||
(e, f : Elim 0 n) ->
|
||||
(0 ne : NotRedex defs e) -> (0 nf : NotRedex defs f) ->
|
||||
Eff EqualInner (Maybe Error, Term 0 n)
|
||||
|
||||
compare0' ctx e@(F x u loc) f@(F y v _) _ _ = do
|
||||
compare0Inner' defs ctx e@(F x u loc) f@(F y v _) _ _ = do
|
||||
pure (guard (x /= y || u /= v) $> ClashE loc ctx !mode e f,
|
||||
!(lookupFree ctx x u loc))
|
||||
compare0' ctx e@(F {}) f _ _ = clashE e.loc ctx e f
|
||||
!(lookupFree defs ctx x u loc))
|
||||
compare0Inner' defs ctx e@(F {}) f _ _ = clashE e.loc ctx e f
|
||||
|
||||
compare0' ctx e@(B i loc) f@(B j _) _ _ =
|
||||
compare0Inner' defs ctx e@(B i loc) f@(B j _) _ _ =
|
||||
pure (guard (i /= j) $> ClashE loc ctx !mode e f,
|
||||
ctx.tctx !! i)
|
||||
compare0' ctx e@(B {}) f _ _ = clashE e.loc ctx e f
|
||||
compare0Inner' defs ctx e@(B {}) f _ _ = clashE e.loc ctx e f
|
||||
|
||||
-- Ψ | Γ ⊢ e = f ⇒ π.(x : A) → B
|
||||
-- Ψ | Γ ⊢ s = t ⇐ A
|
||||
-- -------------------------------
|
||||
-- Ψ | Γ ⊢ e s = f t ⇒ B[s∷A/x]
|
||||
compare0' ctx (App e s eloc) (App f t floc) ne nf =
|
||||
compare0Inner' defs ctx (App e s eloc) (App f t floc) ne nf =
|
||||
local_ Equal $ do
|
||||
(err1, ety) <- compare0Inner ctx e f
|
||||
(err1, ety) <- compare0Inner defs ctx e f
|
||||
(_, arg, res) <- expectPi defs ctx eloc ety
|
||||
err2 <- try_ $ Term.compare0 ctx arg s t
|
||||
err2 <- try_ $ Term.compare0 defs ctx arg s t
|
||||
pure (err1 <|> err2, sub1 res $ Ann s arg s.loc)
|
||||
compare0' ctx e@(App {}) f _ _ = clashE e.loc ctx e f
|
||||
compare0Inner' defs ctx e@(App {}) f _ _ = clashE e.loc ctx e f
|
||||
|
||||
-- Ψ | Γ ⊢ e = f ⇒ (x : A) × B
|
||||
-- Ψ | Γ, 0.p : (x : A) × B ⊢ Q = R
|
||||
|
@ -426,20 +462,21 @@ parameters (defs : Definitions)
|
|||
-- -----------------------------------------------------------
|
||||
-- Ψ | Γ ⊢ caseπ e return Q of { (x, y) ⇒ s }
|
||||
-- = caseπ f return R of { (x, y) ⇒ t } ⇒ Q[e/p]
|
||||
compare0' ctx (CasePair epi e eret ebody eloc)
|
||||
compare0Inner' defs ctx (CasePair epi e eret ebody eloc)
|
||||
(CasePair fpi f fret fbody {}) ne nf =
|
||||
local_ Equal $ do
|
||||
(err1, ety) <- compare0Inner ctx e f
|
||||
compareType (extendTy Zero eret.name ety ctx) eret.term fret.term
|
||||
(err1, ety) <- compare0Inner defs ctx e f
|
||||
compareType defs (extendTy Zero eret.name ety ctx) eret.term fret.term
|
||||
(fst, snd) <- expectSig defs ctx eloc ety
|
||||
let [< x, y] = ebody.names
|
||||
err2 <- try_ $
|
||||
Term.compare0 (extendTyN [< (epi, x, fst), (epi, y, snd.term)] ctx)
|
||||
Term.compare0 defs
|
||||
(extendTyN [< (epi, x, fst), (epi, y, snd.term)] ctx)
|
||||
(substCasePairRet ebody.names ety eret)
|
||||
ebody.term fbody.term
|
||||
err3 <- try_ $ expectEqualQ e.loc epi fpi
|
||||
pure (concat [err1, err2, err3], sub1 eret e)
|
||||
compare0' ctx e@(CasePair {}) f _ _ = clashE e.loc ctx e f
|
||||
compare0Inner' defs ctx e@(CasePair {}) f _ _ = clashE e.loc ctx e f
|
||||
|
||||
-- Ψ | Γ ⊢ e = f ⇒ {𝐚s}
|
||||
-- Ψ | Γ, x : {𝐚s} ⊢ Q = R
|
||||
|
@ -447,18 +484,18 @@ parameters (defs : Definitions)
|
|||
-- --------------------------------------------------
|
||||
-- Ψ | Γ ⊢ caseπ e return Q of { '𝐚ᵢ ⇒ sᵢ }
|
||||
-- = caseπ f return R of { '𝐚ᵢ ⇒ tᵢ } ⇒ Q[e/x]
|
||||
compare0' ctx (CaseEnum epi e eret earms eloc)
|
||||
compare0Inner' defs ctx (CaseEnum epi e eret earms eloc)
|
||||
(CaseEnum fpi f fret farms floc) ne nf =
|
||||
local_ Equal $ do
|
||||
(err1, ety) <- compare0Inner ctx e f
|
||||
(err1, ety) <- compare0Inner defs ctx e f
|
||||
err2 <- try_ $
|
||||
compareType (extendTy Zero eret.name ety ctx) eret.term fret.term
|
||||
compareType defs (extendTy Zero eret.name ety ctx) eret.term fret.term
|
||||
cases <- SortedSet.toList <$> expectEnum defs ctx eloc ety
|
||||
exs <- for cases $ \t => do
|
||||
l <- lookupArm eloc t earms
|
||||
r <- lookupArm floc t farms
|
||||
try_ $
|
||||
Term.compare0 ctx (sub1 eret $ Ann (Tag t l.loc) ety l.loc) l r
|
||||
Term.compare0 defs ctx (sub1 eret $ Ann (Tag t l.loc) ety l.loc) l r
|
||||
err3 <- try_ $ expectEqualQ eloc epi fpi
|
||||
pure (concat $ [err1, err2, err3] ++ exs, sub1 eret e)
|
||||
where
|
||||
|
@ -467,7 +504,7 @@ parameters (defs : Definitions)
|
|||
lookupArm loc t arms = case lookup t arms of
|
||||
Just arm => pure arm
|
||||
Nothing => throw $ TagNotIn loc t (fromList $ keys arms)
|
||||
compare0' ctx e@(CaseEnum {}) f _ _ = clashE e.loc ctx e f
|
||||
compare0Inner' defs ctx e@(CaseEnum {}) f _ _ = clashE e.loc ctx e f
|
||||
|
||||
-- Ψ | Γ ⊢ e = f ⇒ ℕ
|
||||
-- Ψ | Γ, x : ℕ ⊢ Q = R
|
||||
|
@ -477,25 +514,25 @@ parameters (defs : Definitions)
|
|||
-- Ψ | Γ ⊢ caseπ e return Q of { 0 ⇒ s₀; x, π.y ⇒ s₁ }
|
||||
-- = caseπ f return R of { 0 ⇒ t₀; x, π.y ⇒ t₁ }
|
||||
-- ⇒ Q[e/x]
|
||||
compare0' ctx (CaseNat epi epi' e eret ezer esuc eloc)
|
||||
compare0Inner' defs ctx (CaseNat epi epi' e eret ezer esuc eloc)
|
||||
(CaseNat fpi fpi' f fret fzer fsuc floc) ne nf =
|
||||
local_ Equal $ do
|
||||
(err1, ety) <- compare0Inner ctx e f
|
||||
(err1, ety) <- compare0Inner defs ctx e f
|
||||
err2 <- try_ $
|
||||
compareType (extendTy Zero eret.name ety ctx) eret.term fret.term
|
||||
compareType defs (extendTy Zero eret.name ety ctx) eret.term fret.term
|
||||
err3 <- try_ $
|
||||
Term.compare0 ctx
|
||||
Term.compare0 defs ctx
|
||||
(sub1 eret (Ann (Zero ezer.loc) (Nat ezer.loc) ezer.loc))
|
||||
ezer fzer
|
||||
let [< p, ih] = esuc.names
|
||||
err4 <- try_ $
|
||||
Term.compare0
|
||||
Term.compare0 defs
|
||||
(extendTyN [< (epi, p, Nat p.loc), (epi', ih, eret.term)] ctx)
|
||||
(substCaseSuccRet esuc.names eret) esuc.term fsuc.term
|
||||
err5 <- try_ $ expectEqualQ e.loc epi fpi
|
||||
err6 <- try_ $ expectEqualQ e.loc epi' fpi'
|
||||
pure (concat [err1, err2, err3, err4, err5, err6], sub1 eret e)
|
||||
compare0' ctx e@(CaseNat {}) f _ _ = clashE e.loc ctx e f
|
||||
compare0Inner' defs ctx e@(CaseNat {}) f _ _ = clashE e.loc ctx e f
|
||||
|
||||
-- Ψ | Γ ⊢ e = f ⇒ [ρ. A]
|
||||
-- Ψ | Γ, x : [ρ. A] ⊢ Q = R
|
||||
|
@ -503,33 +540,33 @@ parameters (defs : Definitions)
|
|||
-- --------------------------------------------------
|
||||
-- Ψ | Γ ⊢ caseπ e return Q of { [x] ⇒ s }
|
||||
-- = caseπ f return R of { [x] ⇒ t } ⇒ Q[e/x]
|
||||
compare0' ctx (CaseBox epi e eret ebody eloc)
|
||||
compare0Inner' defs ctx (CaseBox epi e eret ebody eloc)
|
||||
(CaseBox fpi f fret fbody floc) ne nf =
|
||||
local_ Equal $ do
|
||||
(err1, ety) <- compare0Inner ctx e f
|
||||
(err1, ety) <- compare0Inner defs ctx e f
|
||||
err2 <- try_ $
|
||||
compareType (extendTy Zero eret.name ety ctx) eret.term fret.term
|
||||
compareType defs (extendTy Zero eret.name ety ctx) eret.term fret.term
|
||||
(q, ty) <- expectBOX defs ctx eloc ety
|
||||
err3 <- try_ $
|
||||
Term.compare0 (extendTy (epi * q) ebody.name ty ctx)
|
||||
Term.compare0 defs (extendTy (epi * q) ebody.name ty ctx)
|
||||
(substCaseBoxRet ebody.name ety eret)
|
||||
ebody.term fbody.term
|
||||
err4 <- try_ $ expectEqualQ eloc epi fpi
|
||||
pure (concat [err1, err2, err3, err4], sub1 eret e)
|
||||
compare0' ctx e@(CaseBox {}) f _ _ = clashE e.loc ctx e f
|
||||
compare0Inner' defs ctx e@(CaseBox {}) f _ _ = clashE e.loc ctx e f
|
||||
|
||||
-- all dim apps replaced with ends by whnf
|
||||
compare0' _ (DApp _ (K {}) _) _ ne _ = void $ absurd $ noOr2 $ noOr2 ne
|
||||
compare0' _ _ (DApp _ (K {}) _) _ nf = void $ absurd $ noOr2 $ noOr2 nf
|
||||
compare0Inner' _ _ (DApp _ (K {}) _) _ ne _ = void $ absurd $ noOr2 $ noOr2 ne
|
||||
compare0Inner' _ _ _ (DApp _ (K {}) _) _ nf = void $ absurd $ noOr2 $ noOr2 nf
|
||||
|
||||
-- Ψ | Γ ⊢ s <: t : B
|
||||
-- --------------------------------
|
||||
-- Ψ | Γ ⊢ (s ∷ A) <: (t ∷ B) ⇒ B
|
||||
--
|
||||
-- and similar for :> and A
|
||||
compare0' ctx (Ann s a _) (Ann t b _) _ _ = do
|
||||
compare0Inner' defs ctx (Ann s a _) (Ann t b _) _ _ = do
|
||||
ty <- bigger a b
|
||||
err <- try_ $ Term.compare0 ctx ty s t
|
||||
err <- try_ $ Term.compare0 defs ctx ty s t
|
||||
pure (err, ty)
|
||||
|
||||
-- Ψ | Γ ⊢ A‹p₁/𝑖› <: B‹p₂/𝑖›
|
||||
|
@ -538,108 +575,87 @@ parameters (defs : Definitions)
|
|||
-- -----------------------------------------------------------
|
||||
-- Ψ | Γ ⊢ coe [𝑖 ⇒ A] @p₁ @q₁ s
|
||||
-- <: coe [𝑖 ⇒ B] @p₂ @q₂ t ⇒ B‹q₂/𝑖›
|
||||
compare0' ctx (Coe ty1 p1 q1 val1 _)
|
||||
compare0Inner' defs ctx (Coe ty1 p1 q1 val1 _)
|
||||
(Coe ty2 p2 q2 val2 _) ne nf = do
|
||||
let ty1p = dsub1 ty1 p1; ty2p = dsub1 ty2 p2
|
||||
ty1q = dsub1 ty1 q1; ty2q = dsub1 ty2 q2
|
||||
err1 <- try_ $ compareType ctx ty1p ty2p
|
||||
err2 <- try_ $ compareType ctx ty1q ty2q
|
||||
err1 <- try_ $ compareType defs ctx ty1p ty2p
|
||||
err2 <- try_ $ compareType defs ctx ty1q ty2q
|
||||
(ty_p, ty_q) <- bigger (ty1p, ty1q) (ty2p, ty2q)
|
||||
err3 <- try_ $ Term.compare0 ctx ty_p val1 val2
|
||||
err3 <- try_ $ Term.compare0 defs ctx ty_p val1 val2
|
||||
pure (concat [err1, err2, err3], ty_q)
|
||||
compare0' ctx e@(Coe {}) f _ _ = clashE e.loc ctx e f
|
||||
compare0Inner' defs ctx e@(Coe {}) f _ _ = clashE e.loc ctx e f
|
||||
|
||||
-- (no neutral compositions in a closed dctx)
|
||||
compare0' _ (Comp {r = K e _, _}) _ ne _ = void $ absurd $ noOr2 ne
|
||||
compare0' _ (Comp {r = B i _, _}) _ _ _ = absurd i
|
||||
compare0' _ _ (Comp {r = K _ _, _}) _ nf = void $ absurd $ noOr2 nf
|
||||
compare0Inner' _ _ (Comp {r = K e _, _}) _ ne _ = void $ absurd $ noOr2 ne
|
||||
compare0Inner' _ _ (Comp {r = B i _, _}) _ _ _ = absurd i
|
||||
compare0Inner' _ _ _ (Comp {r = K _ _, _}) _ nf = void $ absurd $ noOr2 nf
|
||||
|
||||
-- (type case equality purely structural)
|
||||
compare0' ctx (TypeCase ty1 ret1 arms1 def1 eloc)
|
||||
compare0Inner' defs ctx (TypeCase ty1 ret1 arms1 def1 eloc)
|
||||
(TypeCase ty2 ret2 arms2 def2 floc) ne _ =
|
||||
local_ Equal $ do
|
||||
-- try
|
||||
(err1, ety) <- compare0Inner ctx ty1 ty2
|
||||
(err1, ety) <- compare0Inner defs ctx ty1 ty2
|
||||
u <- expectTYPE defs ctx eloc ety
|
||||
err2 <- try_ $ compareType ctx ret1 ret2
|
||||
err3 <- try_ $ compareType ctx def1 def2
|
||||
err2 <- try_ $ compareType defs ctx ret1 ret2
|
||||
err3 <- try_ $ compareType defs ctx def1 def2
|
||||
exs <- for allKinds $ \k =>
|
||||
try_ $
|
||||
compareArm ctx k ret1 u
|
||||
compareArm defs ctx k ret1 u
|
||||
(lookupPrecise k arms1) (lookupPrecise k arms2) def1
|
||||
pure (concat $ [err1, err2, err3] ++ exs, ret1)
|
||||
compare0' ctx e@(TypeCase {}) f _ _ = clashE e.loc ctx e f
|
||||
compare0Inner' defs ctx e@(TypeCase {}) f _ _ = clashE e.loc ctx e f
|
||||
|
||||
-- Ψ | Γ ⊢ s <: f ⇐ A
|
||||
-- --------------------------
|
||||
-- Ψ | Γ ⊢ (s ∷ A) <: f ⇒ A
|
||||
--
|
||||
-- and vice versa
|
||||
compare0' ctx (Ann s a _) f _ _ = do
|
||||
err <- try_ $ Term.compare0 ctx a s (E f)
|
||||
compare0Inner' defs ctx (Ann s a _) f _ _ = do
|
||||
err <- try_ $ Term.compare0 defs ctx a s (E f)
|
||||
pure (err, a)
|
||||
compare0' ctx e (Ann t b _) _ _ = do
|
||||
err <- try_ $ Term.compare0 ctx b (E e) t
|
||||
compare0Inner' defs ctx e (Ann t b _) _ _ = do
|
||||
err <- try_ $ Term.compare0 defs ctx b (E e) t
|
||||
pure (err, b)
|
||||
compare0' ctx e@(Ann {}) f _ _ =
|
||||
compare0Inner' defs ctx e@(Ann {}) f _ _ =
|
||||
clashE e.loc ctx e f
|
||||
|
||||
||| compare two type-case branches, which came from the arms of the given
|
||||
||| kind. `ret` is the return type of the case expression, and `u` is the
|
||||
||| universe the head is in.
|
||||
private covering
|
||||
compareArm : EqContext n -> (k : TyConKind) ->
|
||||
(ret : Term 0 n) -> (u : Universe) ->
|
||||
(b1, b2 : Maybe (TypeCaseArmBody k 0 n)) ->
|
||||
(def : Term 0 n) ->
|
||||
Eff EqualInner ()
|
||||
compareArm {b1 = Nothing, b2 = Nothing, _} = pure ()
|
||||
compareArm ctx k ret u b1 b2 def =
|
||||
let def = SN def in
|
||||
compareArm_ ctx k ret u (fromMaybe def b1) (fromMaybe def b2)
|
||||
compare0Inner defs ctx e f =
|
||||
wrapErr (WhileComparingE ctx !mode e f) $ do
|
||||
let Val n = ctx.termLen
|
||||
Element e ne <- whnf defs ctx e.loc e
|
||||
Element f nf <- whnf defs ctx f.loc f
|
||||
(err, ty) <- compare0Inner' defs ctx e f ne nf
|
||||
if !(isSubSing defs ctx ty)
|
||||
then pure (Nothing, ty)
|
||||
else pure (err, ty)
|
||||
|
||||
private covering
|
||||
compareArm_ : EqContext n -> (k : TyConKind) ->
|
||||
(ret : Term 0 n) -> (u : Universe) ->
|
||||
(b1, b2 : TypeCaseArmBody k 0 n) ->
|
||||
Eff EqualInner ()
|
||||
compareArm_ ctx KTYPE ret u b1 b2 =
|
||||
compare0 ctx ret b1.term b2.term
|
||||
|
||||
compareArm_ ctx KPi ret u b1 b2 = do
|
||||
let [< a, b] = b1.names
|
||||
ctx = extendTyN
|
||||
[< (Zero, a, TYPE u a.loc),
|
||||
(Zero, b, Arr Zero (BVT 0 b.loc) (TYPE u b.loc) b.loc)] ctx
|
||||
compare0 ctx (weakT 2 ret) b1.term b2.term
|
||||
namespace Term
|
||||
compare0 defs ctx ty s t =
|
||||
wrapErr (WhileComparingT ctx !mode ty s t) $ do
|
||||
let Val n = ctx.termLen
|
||||
Element ty' _ <- whnf defs ctx ty.loc ty
|
||||
Element s' _ <- whnf defs ctx s.loc s
|
||||
Element t' _ <- whnf defs ctx t.loc t
|
||||
tty <- ensureTyCon ty.loc ctx ty'
|
||||
compare0' defs ctx ty' s' t'
|
||||
|
||||
compareArm_ ctx KSig ret u b1 b2 = do
|
||||
let [< a, b] = b1.names
|
||||
ctx = extendTyN
|
||||
[< (Zero, a, TYPE u a.loc),
|
||||
(Zero, b, Arr Zero (BVT 0 b.loc) (TYPE u b.loc) b.loc)] ctx
|
||||
compare0 ctx (weakT 2 ret) b1.term b2.term
|
||||
namespace Elim
|
||||
compare0 defs ctx e f = do
|
||||
(err, ty) <- compare0Inner defs ctx e f
|
||||
maybe (pure ty) throw err
|
||||
|
||||
compareArm_ ctx KEnum ret u b1 b2 =
|
||||
compare0 ctx ret b1.term b2.term
|
||||
compareType defs ctx s t = do
|
||||
let Val n = ctx.termLen
|
||||
Element s' _ <- whnf defs ctx s.loc s
|
||||
Element t' _ <- whnf defs ctx t.loc t
|
||||
ts <- ensureTyCon s.loc ctx s'
|
||||
tt <- ensureTyCon t.loc ctx t'
|
||||
st <- either pure (const $ clashTy s.loc ctx s' t') $
|
||||
nchoose $ sameTyCon s' t'
|
||||
compareType' defs ctx s' t'
|
||||
|
||||
compareArm_ ctx KEq ret u b1 b2 = do
|
||||
let [< a0, a1, a, l, r] = b1.names
|
||||
ctx = extendTyN
|
||||
[< (Zero, a0, TYPE u a0.loc),
|
||||
(Zero, a1, TYPE u a1.loc),
|
||||
(Zero, a, Eq0 (TYPE u a.loc)
|
||||
(BVT 1 a0.loc) (BVT 0 a1.loc) a.loc),
|
||||
(Zero, l, BVT 2 a0.loc),
|
||||
(Zero, r, BVT 2 a1.loc)] ctx
|
||||
compare0 ctx (weakT 5 ret) b1.term b2.term
|
||||
|
||||
compareArm_ ctx KNat ret u b1 b2 =
|
||||
compare0 ctx ret b1.term b2.term
|
||||
|
||||
compareArm_ ctx KBOX ret u b1 b2 = do
|
||||
let ctx = extendTy Zero b1.name (TYPE u b1.name.loc) ctx
|
||||
compare0 ctx (weakT 1 ret) b1.term b1.term
|
||||
|
||||
|
||||
parameters (loc : Loc) (ctx : TyContext d n)
|
||||
|
|
Loading…
Reference in a new issue