fix nat elim quantities
This commit is contained in:
parent
036e2bd4a5
commit
15f6f4c8a4
4 changed files with 41 additions and 9 deletions
|
@ -10,7 +10,8 @@ import Data.DPair
|
|||
|
||||
public export
|
||||
interface Eq q => IsQty q where
|
||||
zero, one : q
|
||||
zero, one, any : q
|
||||
|
||||
(+), (*) : q -> q -> q
|
||||
lub : q -> q -> Maybe q
|
||||
|
||||
|
@ -20,6 +21,12 @@ interface Eq q => IsQty q where
|
|||
isZero : Dec1 IsZero
|
||||
zeroIsZero : IsZero zero
|
||||
|
||||
||| true if bindings of this quantity can be used any number of times.
|
||||
||| this is needed for natural elimination
|
||||
IsAny : Pred q
|
||||
isAny : Dec1 IsAny
|
||||
anyIsAny : IsAny any
|
||||
|
||||
||| ``p `Compat` q`` if it is ok for a binding of quantity `q` to be used
|
||||
||| exactly `p` times. e.g. ``1 `Compat` 1``, ``1 `Compat` ω``.
|
||||
||| if ``π `lub` ρ`` exists, then both `π` and `ρ` must be compatible with it
|
||||
|
@ -38,7 +45,8 @@ interface Eq q => IsQty q where
|
|||
||| quantity. so not exact usage counts, maybe.
|
||||
IsGlobal : Pred q
|
||||
isGlobal : Dec1 IsGlobal
|
||||
zeroIsGlobal : forall pi. IsZero pi -> IsGlobal zero
|
||||
zeroIsGlobal : forall pi. IsZero pi -> IsGlobal pi
|
||||
anyIsGlobal : forall pi. IsAny pi -> IsGlobal pi
|
||||
|
||||
||| prints in a form that can be a suffix of "case"
|
||||
prettySuffix : Pretty.HasEnv m => q -> m (Doc HL)
|
||||
|
@ -74,6 +82,10 @@ public export %inline
|
|||
gzero : IsQty q => GQty q
|
||||
gzero = Element zero $ zeroIsGlobal zeroIsZero
|
||||
|
||||
public export %inline
|
||||
gany : IsQty q => GQty q
|
||||
gany = Element any $ anyIsGlobal anyIsAny
|
||||
|
||||
export %inline
|
||||
globalToSubj : IsQty q => GQty q -> SQty q
|
||||
globalToSubj q = if isYes $ isZero q.fst then szero else sone
|
||||
|
|
|
@ -106,6 +106,7 @@ public export
|
|||
IsQty Three where
|
||||
zero = Zero
|
||||
one = One
|
||||
any = Any
|
||||
|
||||
(+) = plus
|
||||
(*) = times
|
||||
|
@ -116,6 +117,10 @@ IsQty Three where
|
|||
isZero = decEq Zero
|
||||
zeroIsZero = Refl
|
||||
|
||||
IsAny = Equal Three.Any
|
||||
isAny = decEq Any
|
||||
anyIsAny = Refl
|
||||
|
||||
Compat = Compat3
|
||||
compat = compat3
|
||||
|
||||
|
@ -128,6 +133,7 @@ IsQty Three where
|
|||
IsGlobal = IsGlobal3
|
||||
isGlobal = isGlobal3
|
||||
zeroIsGlobal = \Refl => GZero
|
||||
anyIsGlobal = \Refl => GAny
|
||||
|
||||
prettySuffix = pretty0M
|
||||
|
||||
|
|
|
@ -386,16 +386,13 @@ parameters {auto _ : IsQty q}
|
|||
sucCtx = extendTyN [< (pisg, p, Nat), (pi', ih, ret.term)] ctx
|
||||
sucType = substCaseSuccRet ret
|
||||
sucout :< qp :< qih <- checkC sucCtx sg suc.term sucType
|
||||
let Just armout = lubs ctx [zerout, sucout]
|
||||
| _ => throw $ BadCaseQtys ctx $
|
||||
[(zerout, Zero), (sucout, Succ $ FT $ unq p)]
|
||||
expectCompatQ qih (pi' * sg.fst)
|
||||
-- [fixme] better error here
|
||||
expectCompatQ (qp + qih) pisg
|
||||
-- then Ψ | Γ ⊢ case ⋯ ⇒ A[n] ⊳ πΣn + (Σz ∧ Σs)
|
||||
-- then Ψ | Γ ⊢ case ⋯ ⇒ A[n] ⊳ πΣn + Σz + ωΣs
|
||||
pure $ InfRes {
|
||||
type = sub1 ret n,
|
||||
qout = pi * nres.qout + armout
|
||||
qout = pi * nres.qout + zerout + any * sucout
|
||||
}
|
||||
|
||||
infer' ctx sg (CaseBox pi box ret body) = do
|
||||
|
|
|
@ -401,6 +401,23 @@ tests = "typechecker" :- [
|
|||
todo "nat elim"
|
||||
],
|
||||
|
||||
"natural elim" :- [
|
||||
note "1 · λ n ⇒ case1 n return ℕ of { zero ⇒ 0; succ n ⇒ n }",
|
||||
note " ⇐ 1.ℕ → ℕ",
|
||||
testTC "pred" $
|
||||
check_ empty sone
|
||||
([< "n"] :\\ E (CaseNat One Zero (BV 0) (SN Nat)
|
||||
Zero (SY [< "n", Unused] $ BVT 1)))
|
||||
(Arr One Nat Nat),
|
||||
note "1 · λ m n ⇒ case1 m return ℕ of { zero ⇒ n; succ _, 1.p ⇒ succ p }",
|
||||
note " ⇐ 1.ℕ → 1.ℕ → 1.ℕ",
|
||||
testTC "plus" $
|
||||
check_ empty sone
|
||||
([< "m", "n"] :\\ E (CaseNat One One (BV 1) (SN Nat)
|
||||
(BVT 0) (SY [< Unused, "p"] $ Succ $ BVT 0)))
|
||||
(Arr One Nat $ Arr One Nat Nat)
|
||||
],
|
||||
|
||||
"box types" :- [
|
||||
testTC "0 · [0.ℕ] ⇐ ★₀" $
|
||||
check_ empty szero (BOX Zero Nat) (TYPE 0),
|
||||
|
|
Loading…
Reference in a new issue