add local bindings to context
- without this, inside the body of `let x = e in …`, the typechecker would forget that `x = e` - now bound variables can reduce, if they have a definition, so RedexTest needs to take the context too
This commit is contained in:
parent
cdf1ec6deb
commit
03c197bd04
13 changed files with 300 additions and 211 deletions
|
@ -164,7 +164,7 @@ private
|
|||
liftFromParser : Eff FromParserIO a -> Eff CompileStop a
|
||||
liftFromParser act =
|
||||
runEff act $ with Union.(::)
|
||||
[handleExcept (\err => throw $ FromParserError err),
|
||||
[handleExcept $ \err => throw $ FromParserError err,
|
||||
handleStateIORef !(asksAt STATE defs),
|
||||
handleStateIORef !(asksAt STATE ns),
|
||||
handleStateIORef !(asksAt STATE suf),
|
||||
|
@ -174,8 +174,7 @@ private
|
|||
liftErase : Q.Definitions -> Eff Erase a -> Eff CompileStop a
|
||||
liftErase defs act =
|
||||
runEff act
|
||||
[\case Err e => throw $ EraseError e,
|
||||
\case Ask => pure defs,
|
||||
[handleExcept $ \err => throw $ EraseError err,
|
||||
handleStateIORef !(asksAt STATE suf)]
|
||||
|
||||
private
|
||||
|
@ -207,7 +206,7 @@ processFile file = withEarlyStop $ do
|
|||
traverse (uncurry Q.prettyDef) defList
|
||||
let defs = SortedMap.fromList defList
|
||||
erased <- liftErase defs $
|
||||
traverse (\(x, d) => (x,) <$> eraseDef x d) defList
|
||||
traverse (\(x, d) => (x,) <$> eraseDef defs x d) defList
|
||||
outputDocStopIf Erase $
|
||||
traverse (uncurry U.prettyDef) erased
|
||||
(scheme, mains) <- liftScheme $ map catMaybes $
|
||||
|
|
|
@ -170,12 +170,19 @@ compareType : Definitions -> EqContext n -> (s, t : Term 0 n) ->
|
|||
Eff EqualInner ()
|
||||
|
||||
|
||||
private
|
||||
0 NotRedexEq : {isRedex : RedexTest tm} -> CanWhnf tm isRedex =>
|
||||
Definitions -> EqContext n -> SQty -> Pred (tm 0 n)
|
||||
NotRedexEq defs ctx sg t = NotRedex defs (toWhnfContext ctx) sg t
|
||||
|
||||
namespace Term
|
||||
private covering
|
||||
compare0' : (defs : Definitions) -> EqContext n -> (sg : SQty) ->
|
||||
compare0' : (defs : Definitions) -> (ctx : EqContext n) -> (sg : SQty) ->
|
||||
(ty, s, t : Term 0 n) ->
|
||||
(0 _ : NotRedex defs SZero ty) => (0 _ : So (isTyConE ty)) =>
|
||||
(0 _ : NotRedex defs sg s) => (0 _ : NotRedex defs sg t) =>
|
||||
(0 _ : NotRedexEq defs ctx SZero ty) =>
|
||||
(0 _ : So (isTyConE ty)) =>
|
||||
(0 _ : NotRedexEq defs ctx sg s) =>
|
||||
(0 _ : NotRedexEq defs ctx sg t) =>
|
||||
Eff EqualInner ()
|
||||
compare0' defs ctx sg (TYPE {}) s t = compareType defs ctx s t
|
||||
|
||||
|
@ -350,9 +357,10 @@ namespace Term
|
|||
|
||||
|
||||
private covering
|
||||
compareType' : (defs : Definitions) -> EqContext n -> (s, t : Term 0 n) ->
|
||||
(0 _ : NotRedex defs SZero s) => (0 _ : So (isTyConE s)) =>
|
||||
(0 _ : NotRedex defs SZero t) => (0 _ : So (isTyConE t)) =>
|
||||
compareType' : (defs : Definitions) -> (ctx : EqContext n) ->
|
||||
(s, t : Term 0 n) ->
|
||||
(0 _ : NotRedexEq defs ctx SZero s) => (0 _ : So (isTyConE s)) =>
|
||||
(0 _ : NotRedexEq defs ctx SZero t) => (0 _ : So (isTyConE t)) =>
|
||||
(0 _ : So (sameTyCon s t)) =>
|
||||
Eff EqualInner ()
|
||||
-- equality is the same as subtyping, except with the
|
||||
|
@ -477,8 +485,9 @@ namespace Elim
|
|||
EqualElim = InnerErrEff :: EqualInner
|
||||
|
||||
private covering
|
||||
computeElimTypeE : (defs : Definitions) -> EqContext n -> (sg : SQty) ->
|
||||
(e : Elim 0 n) -> (0 ne : NotRedex defs sg e) =>
|
||||
computeElimTypeE : (defs : Definitions) -> (ctx : EqContext n) ->
|
||||
(sg : SQty) ->
|
||||
(e : Elim 0 n) -> (0 ne : NotRedexEq defs ctx sg e) =>
|
||||
Eff EqualElim (Term 0 n)
|
||||
computeElimTypeE defs ectx sg e = lift $
|
||||
computeElimType defs (toWhnfContext ectx) sg e
|
||||
|
@ -492,8 +501,8 @@ namespace Elim
|
|||
try act = lift $ catch putError $ lift act {fs' = EqualElim}
|
||||
|
||||
private covering %inline
|
||||
clashE : (defs : Definitions) -> EqContext n -> (sg : SQty) ->
|
||||
(e, f : Elim 0 n) -> (0 nf : NotRedex defs sg f) =>
|
||||
clashE : (defs : Definitions) -> (ctx : EqContext n) -> (sg : SQty) ->
|
||||
(e, f : Elim 0 n) -> (0 nf : NotRedexEq defs ctx sg f) =>
|
||||
Eff EqualElim (Term 0 n)
|
||||
clashE defs ctx sg e f = do
|
||||
putError $ ClashE e.loc ctx !mode e f
|
||||
|
@ -522,9 +531,10 @@ namespace Elim
|
|||
(e, f : Elim 0 n) -> Eff EqualElim (Term 0 n)
|
||||
|
||||
private covering
|
||||
compare0Inner' : (defs : Definitions) -> EqContext n -> (sg : SQty) ->
|
||||
compare0Inner' : (defs : Definitions) -> (ctx : EqContext n) -> (sg : SQty) ->
|
||||
(e, f : Elim 0 n) ->
|
||||
(0 ne : NotRedex defs sg e) -> (0 nf : NotRedex defs sg f) ->
|
||||
(0 ne : NotRedexEq defs ctx sg e) ->
|
||||
(0 nf : NotRedexEq defs ctx sg f) ->
|
||||
Eff EqualElim (Term 0 n)
|
||||
|
||||
compare0Inner' defs ctx sg e@(F {}) f _ _ = do
|
||||
|
|
|
@ -215,8 +215,8 @@ mutual
|
|||
|
||||
check' ctx sg (Let qty rhs body loc) ty = do
|
||||
eres <- inferC ctx (subjMult sg qty) rhs
|
||||
qout <- checkC (extendTy (qty * sg.qty) body.name eres.type ctx) sg
|
||||
body.term (weakT 1 ty)
|
||||
qout <- checkC (extendTyLet (qty * sg.qty) body.name eres.type (E rhs) ctx)
|
||||
sg body.term (weakT 1 ty)
|
||||
>>= popQ loc qty
|
||||
pure $ qty * eres.qout + qout
|
||||
|
||||
|
@ -338,8 +338,8 @@ mutual
|
|||
pure $ lookupBound sg.qty i ctx.tctx
|
||||
where
|
||||
lookupBound : forall n. Qty -> Var n -> TContext d n -> InferResult' d n
|
||||
lookupBound pi VZ (ctx :< type) =
|
||||
InfRes {type = weakT 1 type, qout = zeroFor ctx :< pi}
|
||||
lookupBound pi VZ (ctx :< var) =
|
||||
InfRes {type = weakT 1 var.type, qout = zeroFor ctx :< pi}
|
||||
lookupBound pi (VS i) (ctx :< _) =
|
||||
let InfRes {type, qout} = lookupBound pi i ctx in
|
||||
InfRes {type = weakT 1 type, qout = qout :< Zero}
|
||||
|
|
|
@ -70,7 +70,7 @@ parameters (defs : Definitions) {auto _ : (Has ErrorEff fs, Has NameGen fs)}
|
|||
parameters (ctx : TyContext d n) (sg : SQty) (loc : Loc)
|
||||
export covering
|
||||
whnf : {0 isRedex : RedexTest tm} -> CanWhnf tm isRedex =>
|
||||
tm d n -> Eff fs (NonRedex tm d n defs sg)
|
||||
tm d n -> Eff fs (NonRedex tm d n defs ? sg)
|
||||
whnf tm = do
|
||||
let Val n = ctx.termLen; Val d = ctx.dimLen
|
||||
res <- lift $ runExcept $ whnf defs (toWhnfContext ctx) sg tm
|
||||
|
@ -120,7 +120,7 @@ parameters (defs : Definitions) {auto _ : (Has ErrorEff fs, Has NameGen fs)}
|
|||
parameters (ctx : EqContext n) (sg : SQty) (loc : Loc)
|
||||
export covering
|
||||
whnf : {0 isRedex : RedexTest tm} -> CanWhnf tm isRedex =>
|
||||
tm 0 n -> Eff fs (NonRedex tm 0 n defs sg)
|
||||
tm 0 n -> Eff fs (NonRedex tm 0 n defs ? sg)
|
||||
whnf tm = do
|
||||
res <- lift $ runExcept $ whnf defs (toWhnfContext ctx) sg tm
|
||||
rethrow res
|
||||
|
|
|
@ -14,9 +14,27 @@ public export
|
|||
QContext : Nat -> Type
|
||||
QContext = Context' Qty
|
||||
|
||||
public export
|
||||
record LocalVar d n where
|
||||
constructor MkLocal
|
||||
type : Term d n
|
||||
term : Maybe (Term d n) -- if from a `let`
|
||||
%runElab deriveIndexed "LocalVar" [Show]
|
||||
|
||||
export
|
||||
CanShift (LocalVar d) where
|
||||
l // by = {type $= (// by), term $= map (// by)} l
|
||||
|
||||
namespace LocalVar
|
||||
subD : DSubst d1 d2 -> LocalVar d1 n -> LocalVar d2 n
|
||||
subD th = {type $= (// th), term $= map (// th)}
|
||||
|
||||
weakD : LocalVar d n -> LocalVar (S d) n
|
||||
weakD = subD $ shift 1
|
||||
|
||||
public export
|
||||
TContext : TermLike
|
||||
TContext d = Context (Term d)
|
||||
TContext d = Context (\n => LocalVar d n)
|
||||
|
||||
public export
|
||||
QOutput : Nat -> Type
|
||||
|
@ -67,10 +85,6 @@ record WhnfContext d n where
|
|||
%runElab deriveIndexed "WhnfContext" [Show]
|
||||
|
||||
namespace TContext
|
||||
export %inline
|
||||
pushD : TContext d n -> TContext (S d) n
|
||||
pushD tel = map (// shift 1) tel
|
||||
|
||||
export %inline
|
||||
zeroFor : Context tm n -> QOutput n
|
||||
zeroFor ctx = Zero <$ ctx
|
||||
|
@ -89,6 +103,14 @@ public export
|
|||
CtxExtension0 : Nat -> Nat -> Nat -> Type
|
||||
CtxExtension0 d = Telescope ((BindName,) . Term d)
|
||||
|
||||
public export
|
||||
CtxExtensionLet : Nat -> Nat -> Nat -> Type
|
||||
CtxExtensionLet d = Telescope ((Qty, BindName,) . LocalVar d)
|
||||
|
||||
public export
|
||||
CtxExtensionLet0 : Nat -> Nat -> Nat -> Type
|
||||
CtxExtensionLet0 d = Telescope ((BindName,) . LocalVar d)
|
||||
|
||||
namespace TyContext
|
||||
public export %inline
|
||||
empty : TyContext 0 0
|
||||
|
@ -100,21 +122,34 @@ namespace TyContext
|
|||
null ctx = null ctx.dnames && null ctx.tnames
|
||||
|
||||
export %inline
|
||||
extendTyN : CtxExtension d n1 n2 -> TyContext d n1 -> TyContext d n2
|
||||
extendTyN xss (MkTyContext {termLen, dctx, dnames, tctx, tnames, qtys}) =
|
||||
let (qs, xs, ss) = unzip3 xss in
|
||||
extendTyLetN : CtxExtensionLet d n1 n2 -> TyContext d n1 -> TyContext d n2
|
||||
extendTyLetN xss (MkTyContext {termLen, dctx, dnames, tctx, tnames, qtys}) =
|
||||
let (qs, xs, ls) = unzip3 xss in
|
||||
MkTyContext {
|
||||
dctx, dnames,
|
||||
termLen = extendLen xss termLen,
|
||||
tctx = tctx . ss,
|
||||
tctx = tctx . ls,
|
||||
tnames = tnames . xs,
|
||||
qtys = qtys . qs
|
||||
}
|
||||
|
||||
export %inline
|
||||
extendTyN : CtxExtension d n1 n2 -> TyContext d n1 -> TyContext d n2
|
||||
extendTyN = extendTyLetN . map (\(q, x, s) => (q, x, MkLocal s Nothing))
|
||||
|
||||
export %inline
|
||||
extendTyLetN0 : CtxExtensionLet0 d n1 n2 -> TyContext d n1 -> TyContext d n2
|
||||
extendTyLetN0 xss = extendTyLetN (map (Zero,) xss)
|
||||
|
||||
export %inline
|
||||
extendTyN0 : CtxExtension0 d n1 n2 -> TyContext d n1 -> TyContext d n2
|
||||
extendTyN0 xss = extendTyN (map (Zero,) xss)
|
||||
|
||||
export %inline
|
||||
extendTyLet : Qty -> BindName -> Term d n -> Term d n ->
|
||||
TyContext d n -> TyContext d (S n)
|
||||
extendTyLet q x s e = extendTyLetN [< (q, x, MkLocal s (Just e))]
|
||||
|
||||
export %inline
|
||||
extendTy : Qty -> BindName -> Term d n -> TyContext d n -> TyContext d (S n)
|
||||
extendTy q x s = extendTyN [< (q, x, s)]
|
||||
|
@ -130,7 +165,7 @@ namespace TyContext
|
|||
dctx = dctx :<? Nothing,
|
||||
dnames = dnames :< x,
|
||||
dimLen = [|S dimLen|],
|
||||
tctx = pushD tctx,
|
||||
tctx = map weakD tctx,
|
||||
tnames, qtys
|
||||
}
|
||||
|
||||
|
@ -169,7 +204,7 @@ makeEqContext' ctx th = MkEqContext {
|
|||
termLen = ctx.termLen,
|
||||
dassign = makeDAssign th,
|
||||
dnames = ctx.dnames,
|
||||
tctx = map (// th) ctx.tctx,
|
||||
tctx = map (subD th) ctx.tctx,
|
||||
tnames = ctx.tnames,
|
||||
qtys = ctx.qtys
|
||||
}
|
||||
|
@ -191,21 +226,34 @@ namespace EqContext
|
|||
null ctx = null ctx.dnames && null ctx.tnames
|
||||
|
||||
export %inline
|
||||
extendTyN : CtxExtension 0 n1 n2 -> EqContext n1 -> EqContext n2
|
||||
extendTyN xss (MkEqContext {termLen, dassign, dnames, tctx, tnames, qtys}) =
|
||||
let (qs, xs, ss) = unzip3 xss in
|
||||
extendTyLetN : CtxExtensionLet 0 n1 n2 -> EqContext n1 -> EqContext n2
|
||||
extendTyLetN xss (MkEqContext {termLen, dassign, dnames, tctx, tnames, qtys}) =
|
||||
let (qs, xs, ls) = unzip3 xss in
|
||||
MkEqContext {
|
||||
termLen = extendLen xss termLen,
|
||||
tctx = tctx . ss,
|
||||
tctx = tctx . ls,
|
||||
tnames = tnames . xs,
|
||||
qtys = qtys . qs,
|
||||
dassign, dnames
|
||||
}
|
||||
|
||||
export %inline
|
||||
extendTyN : CtxExtension 0 n1 n2 -> EqContext n1 -> EqContext n2
|
||||
extendTyN = extendTyLetN . map (\(q, x, s) => (q, x, MkLocal s Nothing))
|
||||
|
||||
export %inline
|
||||
extendTyLetN0 : CtxExtensionLet0 0 n1 n2 -> EqContext n1 -> EqContext n2
|
||||
extendTyLetN0 xss = extendTyLetN (map (Zero,) xss)
|
||||
|
||||
export %inline
|
||||
extendTyN0 : CtxExtension0 0 n1 n2 -> EqContext n1 -> EqContext n2
|
||||
extendTyN0 xss = extendTyN (map (Zero,) xss)
|
||||
|
||||
export %inline
|
||||
extendTyLet : Qty -> BindName -> Term 0 n -> Term 0 n ->
|
||||
EqContext n -> EqContext (S n)
|
||||
extendTyLet q x s e = extendTyLetN [< (q, x, MkLocal s (Just e))]
|
||||
|
||||
export %inline
|
||||
extendTy : Qty -> BindName -> Term 0 n -> EqContext n -> EqContext (S n)
|
||||
extendTy q x s = extendTyN [< (q, x, s)]
|
||||
|
@ -225,7 +273,7 @@ namespace EqContext
|
|||
toTyContext (MkEqContext {dimLen, dassign, dnames, tctx, tnames, qtys}) =
|
||||
MkTyContext {
|
||||
dctx = fromGround dassign,
|
||||
tctx = map (// shift0 dimLen) tctx,
|
||||
tctx = map (subD $ shift0 dimLen) tctx,
|
||||
dnames, tnames, qtys
|
||||
}
|
||||
|
||||
|
@ -252,7 +300,7 @@ namespace WhnfContext
|
|||
MkWhnfContext {
|
||||
dimLen = [|Val s + dimLen|],
|
||||
dnames = dnames ++ toSnocVect' ns,
|
||||
tctx = dweakT s <$> tctx,
|
||||
tctx = map (subD $ shift s) tctx,
|
||||
tnames
|
||||
}
|
||||
|
||||
|
@ -264,10 +312,20 @@ namespace WhnfContext
|
|||
private
|
||||
prettyTContextElt : {opts : _} ->
|
||||
BContext d -> BContext n ->
|
||||
Qty -> BindName -> Term d n -> Eff Pretty (Doc opts)
|
||||
prettyTContextElt dnames tnames q x s =
|
||||
pure $ hsep [hcat [!(prettyQty q), !dotD, !(prettyTBind x)], !colonD,
|
||||
!(withPrec Outer $ prettyTerm dnames tnames s)]
|
||||
Qty -> BindName -> LocalVar d n -> Eff Pretty (Doc opts)
|
||||
prettyTContextElt dnames tnames q x s = do
|
||||
q <- prettyQty q; dot <- dotD
|
||||
x <- prettyTBind x; colon <- colonD
|
||||
ty <- withPrec Outer $ prettyTerm dnames tnames s.type; eq <- cstD
|
||||
tm <- traverse (withPrec Outer . prettyTerm dnames tnames) s.term
|
||||
d <- askAt INDENT
|
||||
let qx = hcat [q, dot, x]
|
||||
pure $ case tm of
|
||||
Nothing =>
|
||||
ifMultiline (hsep [qx, colon, ty]) (vsep [qx, indent d $ colon <++> ty])
|
||||
Just tm =>
|
||||
ifMultiline (hsep [qx, colon, ty, eq, tm])
|
||||
(vsep [qx, indent d $ colon <++> ty, indent d $ eq <++> tm])
|
||||
|
||||
private
|
||||
prettyTContext' : {opts : _} ->
|
||||
|
|
|
@ -88,16 +88,16 @@ parameters {opts : LayoutOpts} (showContext : Bool)
|
|||
|
||||
public export
|
||||
Erase : List (Type -> Type)
|
||||
Erase = [Except Error, DefsReader, NameGen]
|
||||
Erase = [Except Error, NameGen]
|
||||
|
||||
export
|
||||
liftWhnf : Eff Whnf a -> Eff Erase a
|
||||
liftWhnf act = lift $ wrapErr WrapTypeError act
|
||||
|
||||
export covering
|
||||
computeElimType : ErasureContext d n -> SQty -> Elim d n -> Eff Erase (Term d n)
|
||||
computeElimType ctx sg e = do
|
||||
defs <- askAt DEFS
|
||||
computeElimType : Q.Definitions -> ErasureContext d n -> SQty ->
|
||||
Elim d n -> Eff Erase (Term d n)
|
||||
computeElimType defs ctx sg e = do
|
||||
let ctx = toWhnfContext ctx
|
||||
liftWhnf $ do
|
||||
Element e _ <- whnf defs ctx sg e
|
||||
|
@ -106,10 +106,11 @@ computeElimType ctx sg e = do
|
|||
|
||||
private %macro
|
||||
wrapExpect : TTImp ->
|
||||
Elab (TyContext d n -> Loc -> Term d n -> Eff Erase a)
|
||||
Elab (Q.Definitions -> TyContext d n -> Loc ->
|
||||
Term d n -> Eff Erase a)
|
||||
wrapExpect f_ = do
|
||||
f <- check `(\x => ~(f_) x)
|
||||
pure $ \ctx, loc, s => liftWhnf $ f !(askAt DEFS) ctx SZero loc s
|
||||
pure $ \defs, ctx, loc, s => liftWhnf $ f defs ctx SZero loc s
|
||||
|
||||
|
||||
public export
|
||||
|
@ -119,27 +120,36 @@ record EraseElimResult d n where
|
|||
term : U.Term n
|
||||
|
||||
|
||||
export covering
|
||||
eraseTerm' : (defs : Q.Definitions) -> (ctx : ErasureContext d n) ->
|
||||
(ty, tm : Q.Term d n) ->
|
||||
(0 _ : NotRedex defs (toWhnfContext ctx) SZero ty) =>
|
||||
Eff Erase (U.Term n)
|
||||
|
||||
-- "Ψ | Γ | Σ ⊢ s ⤋ s' ⇐ A" for `s' <- eraseTerm (Ψ,Γ,Σ) A s`
|
||||
--
|
||||
-- in the below comments, Ψ, Γ, Σ are implicit and
|
||||
-- only their extensions are written
|
||||
export covering
|
||||
eraseTerm : ErasureContext d n ->
|
||||
eraseTerm : Q.Definitions -> ErasureContext d n ->
|
||||
(ty, tm : Q.Term d n) -> Eff Erase (U.Term n)
|
||||
eraseTerm defs ctx ty tm = do
|
||||
Element ty _ <- liftWhnf $ Interface.whnf defs (toWhnfContext ctx) SZero ty
|
||||
eraseTerm' defs ctx ty tm
|
||||
|
||||
|
||||
-- "Ψ | Γ | Σ ⊢ e ⤋ e' ⇒ A" for `EraRes A e' <- eraseElim (Ψ,Γ,Σ) e`
|
||||
export covering
|
||||
eraseElim : ErasureContext d n -> (tm : Q.Elim d n) ->
|
||||
eraseElim : Q.Definitions -> ErasureContext d n -> (tm : Q.Elim d n) ->
|
||||
Eff Erase (EraseElimResult d n)
|
||||
|
||||
eraseTerm ctx _ s@(TYPE {}) =
|
||||
eraseTerm' defs ctx _ s@(TYPE {}) =
|
||||
throw $ CompileTimeOnly ctx s
|
||||
|
||||
eraseTerm ctx _ s@(IOState {}) =
|
||||
eraseTerm' defs ctx _ s@(IOState {}) =
|
||||
throw $ CompileTimeOnly ctx s
|
||||
|
||||
eraseTerm ctx _ s@(Pi {}) =
|
||||
eraseTerm' defs ctx _ s@(Pi {}) =
|
||||
throw $ CompileTimeOnly ctx s
|
||||
|
||||
-- x : A | 0.x ⊢ s ⤋ s' ⇐ B
|
||||
|
@ -149,66 +159,66 @@ eraseTerm ctx _ s@(Pi {}) =
|
|||
-- x : A | π.x ⊢ s ⤋ s' ⇐ B π ≠ 0
|
||||
-- ----------------------------------------
|
||||
-- (λ x ⇒ s) ⤋ (λ x ⇒ s') ⇐ π.(x : A) → B
|
||||
eraseTerm ctx ty (Lam body loc) = do
|
||||
eraseTerm' defs ctx ty (Lam body loc) = do
|
||||
let x = body.name
|
||||
(qty, arg, res) <- wrapExpect `(expectPi) ctx loc ty
|
||||
body <- eraseTerm (extendTy qty x arg ctx) res.term body.term
|
||||
(qty, arg, res) <- wrapExpect `(expectPi) defs ctx loc ty
|
||||
body <- eraseTerm defs (extendTy qty x arg ctx) res.term body.term
|
||||
pure $ case isErased qty of
|
||||
Kept => U.Lam x body loc
|
||||
Erased => sub1 (Erased loc) body
|
||||
|
||||
eraseTerm ctx _ s@(Sig {}) =
|
||||
eraseTerm' defs ctx _ s@(Sig {}) =
|
||||
throw $ CompileTimeOnly ctx s
|
||||
|
||||
-- s ⤋ s' ⇐ A t ⤋ t' ⇐ B[s/x]
|
||||
-- ---------------------------------
|
||||
-- (s, t) ⤋ (s', t') ⇐ (x : A) × B
|
||||
eraseTerm ctx ty (Pair fst snd loc) = do
|
||||
(a, b) <- wrapExpect `(expectSig) ctx loc ty
|
||||
eraseTerm' defs ctx ty (Pair fst snd loc) = do
|
||||
(a, b) <- wrapExpect `(expectSig) defs ctx loc ty
|
||||
let b = sub1 b (Ann fst a a.loc)
|
||||
fst <- eraseTerm ctx a fst
|
||||
snd <- eraseTerm ctx b snd
|
||||
fst <- eraseTerm defs ctx a fst
|
||||
snd <- eraseTerm defs ctx b snd
|
||||
pure $ Pair fst snd loc
|
||||
|
||||
eraseTerm ctx _ s@(Enum {}) =
|
||||
eraseTerm' defs ctx _ s@(Enum {}) =
|
||||
throw $ CompileTimeOnly ctx s
|
||||
|
||||
-- '𝐚 ⤋ '𝐚 ⇐ {⋯}
|
||||
eraseTerm ctx _ (Tag tag loc) =
|
||||
eraseTerm' defs ctx _ (Tag tag loc) =
|
||||
pure $ Tag tag loc
|
||||
|
||||
eraseTerm ctx ty s@(Eq {}) =
|
||||
eraseTerm' defs ctx ty s@(Eq {}) =
|
||||
throw $ CompileTimeOnly ctx s
|
||||
|
||||
-- 𝑖 ⊢ s ⤋ s' ⇐ A
|
||||
-- ---------------------------------
|
||||
-- (δ 𝑖 ⇒ s) ⤋ s' ⇐ Eq (𝑖 ⇒ A) l r
|
||||
eraseTerm ctx ty (DLam body loc) = do
|
||||
a <- fst <$> wrapExpect `(expectEq) ctx loc ty
|
||||
eraseTerm (extendDim body.name ctx) a.term body.term
|
||||
eraseTerm' defs ctx ty (DLam body loc) = do
|
||||
a <- fst <$> wrapExpect `(expectEq) defs ctx loc ty
|
||||
eraseTerm defs (extendDim body.name ctx) a.term body.term
|
||||
|
||||
eraseTerm ctx _ s@(NAT {}) =
|
||||
eraseTerm' defs ctx _ s@(NAT {}) =
|
||||
throw $ CompileTimeOnly ctx s
|
||||
|
||||
-- n ⤋ n ⇐ ℕ
|
||||
eraseTerm _ _ (Nat n loc) =
|
||||
eraseTerm' _ _ _ (Nat n loc) =
|
||||
pure $ Nat n loc
|
||||
|
||||
-- s ⤋ s' ⇐ ℕ
|
||||
-- -----------------------
|
||||
-- succ s ⤋ succ s' ⇐ ℕ
|
||||
eraseTerm ctx ty (Succ p loc) = do
|
||||
p <- eraseTerm ctx ty p
|
||||
eraseTerm' defs ctx ty (Succ p loc) = do
|
||||
p <- eraseTerm defs ctx ty p
|
||||
pure $ Succ p loc
|
||||
|
||||
eraseTerm ctx ty s@(STRING {}) =
|
||||
eraseTerm' defs ctx ty s@(STRING {}) =
|
||||
throw $ CompileTimeOnly ctx s
|
||||
|
||||
-- s ⤋ s ⇐ String
|
||||
eraseTerm _ _ (Str s loc) =
|
||||
eraseTerm' _ _ _ (Str s loc) =
|
||||
pure $ Str s loc
|
||||
|
||||
eraseTerm ctx ty s@(BOX {}) =
|
||||
eraseTerm' defs ctx ty s@(BOX {}) =
|
||||
throw $ CompileTimeOnly ctx s
|
||||
|
||||
-- [s] ⤋ ⌷ ⇐ [0.A]
|
||||
|
@ -216,48 +226,49 @@ eraseTerm ctx ty s@(BOX {}) =
|
|||
-- π ≠ 0 s ⤋ s' ⇐ A
|
||||
-- --------------------
|
||||
-- [s] ⤋ s' ⇐ [π.A]
|
||||
eraseTerm ctx ty (Box val loc) = do
|
||||
(qty, a) <- wrapExpect `(expectBOX) ctx loc ty
|
||||
eraseTerm' defs ctx ty (Box val loc) = do
|
||||
(qty, a) <- wrapExpect `(expectBOX) defs ctx loc ty
|
||||
case isErased qty of
|
||||
Erased => pure $ Erased loc
|
||||
Kept => eraseTerm ctx a val
|
||||
Kept => eraseTerm defs ctx a val
|
||||
|
||||
-- s ⤋ s' ⇐ A
|
||||
-- ---------------------------------
|
||||
-- let0 x = e in s ⤋ s'[⌷/x] ⇐ A
|
||||
--
|
||||
-- e ⤋ e' s ⤋ s' ⇐ A π ≠ 0
|
||||
-- e ⤋ e' ⇒ E π ≠ 0
|
||||
-- x : E ≔ e ⊢ s ⤋ s' ⇐ A
|
||||
-- -------------------------------------
|
||||
-- letπ x = e in s ⤋ let x = e' in s'
|
||||
eraseTerm ctx ty (Let pi e s loc) = do
|
||||
eraseTerm' defs ctx ty (Let pi e s loc) = do
|
||||
let x = s.name
|
||||
case isErased pi of
|
||||
Erased => do
|
||||
ety <- computeElimType ctx SZero e
|
||||
s' <- eraseTerm (extendTy pi x ety ctx) (weakT 1 ty) s.term
|
||||
ety <- computeElimType defs ctx SZero e
|
||||
s' <- eraseTerm defs (extendTyLet pi x ety (E e) ctx) (weakT 1 ty) s.term
|
||||
pure $ sub1 (Erased e.loc) s'
|
||||
Kept => do
|
||||
EraRes ety e' <- eraseElim ctx e
|
||||
s' <- eraseTerm (extendTy pi x ety ctx) (weakT 1 ty) s.term
|
||||
EraRes ety e' <- eraseElim defs ctx e
|
||||
s' <- eraseTerm defs (extendTyLet pi x ety (E e) ctx) (weakT 1 ty) s.term
|
||||
pure $ Let x e' s' loc
|
||||
|
||||
-- e ⤋ e' ⇒ B
|
||||
-- ------------
|
||||
-- e ⤋ e' ⇐ A
|
||||
eraseTerm ctx ty (E e) =
|
||||
term <$> eraseElim ctx e
|
||||
eraseTerm' defs ctx ty (E e) =
|
||||
term <$> eraseElim defs ctx e
|
||||
|
||||
eraseTerm ctx ty (CloT (Sub term th)) =
|
||||
eraseTerm ctx ty $ pushSubstsWith' id th term
|
||||
eraseTerm' defs ctx ty (CloT (Sub term th)) =
|
||||
eraseTerm defs ctx ty $ pushSubstsWith' id th term
|
||||
|
||||
eraseTerm ctx ty (DCloT (Sub term th)) =
|
||||
eraseTerm ctx ty $ pushSubstsWith' th id term
|
||||
eraseTerm' defs ctx ty (DCloT (Sub term th)) =
|
||||
eraseTerm defs ctx ty $ pushSubstsWith' th id term
|
||||
|
||||
-- defω x : A = s
|
||||
-- ----------------
|
||||
-- x ⤋ x ⇒ A
|
||||
eraseElim ctx e@(F x u loc) = do
|
||||
Just def <- asksAt DEFS $ lookup x
|
||||
eraseElim defs ctx e@(F x u loc) = do
|
||||
let Just def = lookup x defs
|
||||
| Nothing => throw $ notInScope loc x
|
||||
case isErased def.qty.qty of
|
||||
Erased => throw $ CompileTimeOnly ctx $ E e
|
||||
|
@ -266,10 +277,10 @@ eraseElim ctx e@(F x u loc) = do
|
|||
-- π.x ∈ Σ π ≠ 0
|
||||
-- -----------------
|
||||
-- x ⤋ x ⇒ A
|
||||
eraseElim ctx e@(B i loc) = do
|
||||
eraseElim defs ctx e@(B i loc) = do
|
||||
case isErased $ ctx.qtys !!! i of
|
||||
Erased => throw $ CompileTimeOnly ctx $ E e
|
||||
Kept => pure $ EraRes (ctx.tctx !! i) $ B i loc
|
||||
Kept => pure $ EraRes (ctx.tctx !! i).type $ B i loc
|
||||
|
||||
-- f ⤋ f' ⇒ π.(x : A) → B s ⤋ s' ⇒ A π ≠ 0
|
||||
-- ---------------------------------------------
|
||||
|
@ -278,13 +289,13 @@ eraseElim ctx e@(B i loc) = do
|
|||
-- f ⤋ f' ⇒ 0.(x : A) → B
|
||||
-- -------------------------
|
||||
-- f s ⤋ f' ⇒ B[s/x]
|
||||
eraseElim ctx (App fun arg loc) = do
|
||||
efun <- eraseElim ctx fun
|
||||
(qty, targ, tres) <- wrapExpect `(expectPi) ctx loc efun.type
|
||||
eraseElim defs ctx (App fun arg loc) = do
|
||||
efun <- eraseElim defs ctx fun
|
||||
(qty, targ, tres) <- wrapExpect `(expectPi) defs ctx loc efun.type
|
||||
let ty = sub1 tres (Ann arg targ arg.loc)
|
||||
case isErased qty of
|
||||
Erased => pure $ EraRes ty efun.term
|
||||
Kept => do arg <- eraseTerm ctx targ arg
|
||||
Kept => do arg <- eraseTerm defs ctx targ arg
|
||||
pure $ EraRes ty $ App efun.term arg loc
|
||||
|
||||
-- e ⇒ (x : A) × B
|
||||
|
@ -298,16 +309,16 @@ eraseElim ctx (App fun arg loc) = do
|
|||
-- (caseρ e return z ⇒ R of {(x, y) ⇒ s}) ⤋
|
||||
-- ⤋
|
||||
-- let xy = e' in let x = fst xy in let y = snd xy in s' ⇒ R[e/z]
|
||||
eraseElim ctx (CasePair qty pair ret body loc) = do
|
||||
eraseElim defs ctx (CasePair qty pair ret body loc) = do
|
||||
let [< x, y] = body.names
|
||||
case isErased qty of
|
||||
Kept => do
|
||||
EraRes ety eterm <- eraseElim ctx pair
|
||||
EraRes ety eterm <- eraseElim defs ctx pair
|
||||
let ty = sub1 (ret // shift 2) $
|
||||
Ann (Pair (BVT 0 loc) (BVT 1 loc) loc) (weakT 2 ety) loc
|
||||
(tfst, tsnd) <- wrapExpect `(expectSig) ctx loc ety
|
||||
(tfst, tsnd) <- wrapExpect `(expectSig) defs ctx loc ety
|
||||
let ctx' = extendTyN [< (qty, x, tfst), (qty, y, tsnd.term)] ctx
|
||||
body' <- eraseTerm ctx' ty body.term
|
||||
body' <- eraseTerm defs ctx' ty body.term
|
||||
p <- mnb "p" loc
|
||||
pure $ EraRes (sub1 ret pair) $
|
||||
Let p eterm
|
||||
|
@ -316,28 +327,28 @@ eraseElim ctx (CasePair qty pair ret body loc) = do
|
|||
(body' // (B VZ loc ::: B (VS VZ) loc ::: shift 3))
|
||||
loc) loc) loc
|
||||
Erased => do
|
||||
ety <- computeElimType ctx SOne pair
|
||||
ety <- computeElimType defs ctx SOne pair
|
||||
let ty = sub1 (ret // shift 2) $
|
||||
Ann (Pair (BVT 0 loc) (BVT 1 loc) loc) (weakT 2 ety) loc
|
||||
(tfst, tsnd) <- wrapExpect `(expectSig) ctx loc ety
|
||||
(tfst, tsnd) <- wrapExpect `(expectSig) defs ctx loc ety
|
||||
let ctx' = extendTyN0 [< (x, tfst), (y, tsnd.term)] ctx
|
||||
body' <- eraseTerm ctx' ty body.term
|
||||
body' <- eraseTerm defs ctx' ty body.term
|
||||
pure $ EraRes (sub1 ret pair) $ subN [< Erased loc, Erased loc] body'
|
||||
|
||||
-- e ⤋ e' ⇒ (x : A) × B
|
||||
-- ----------------------
|
||||
-- fst e ⤋ fst e' ⇒ A
|
||||
eraseElim ctx (Fst pair loc) = do
|
||||
epair <- eraseElim ctx pair
|
||||
a <- fst <$> wrapExpect `(expectSig) ctx loc epair.type
|
||||
eraseElim defs ctx (Fst pair loc) = do
|
||||
epair <- eraseElim defs ctx pair
|
||||
a <- fst <$> wrapExpect `(expectSig) defs ctx loc epair.type
|
||||
pure $ EraRes a $ Fst epair.term loc
|
||||
|
||||
-- e ⤋ e' ⇒ (x : A) × B
|
||||
-- -----------------------------
|
||||
-- snd e ⤋ snd e' ⇒ B[fst e/x]
|
||||
eraseElim ctx (Snd pair loc) = do
|
||||
epair <- eraseElim ctx pair
|
||||
b <- snd <$> wrapExpect `(expectSig) ctx loc epair.type
|
||||
eraseElim defs ctx (Snd pair loc) = do
|
||||
epair <- eraseElim defs ctx pair
|
||||
b <- snd <$> wrapExpect `(expectSig) defs ctx loc epair.type
|
||||
pure $ EraRes (sub1 b (Fst pair loc)) $ Snd epair.term loc
|
||||
|
||||
-- caseρ e return z ⇒ R of {} ⤋ absurd ⇒ R[e/z]
|
||||
|
@ -349,23 +360,23 @@ eraseElim ctx (Snd pair loc) = do
|
|||
-- e ⤋ e' ⇒ A sᵢ ⤋ s'ᵢ ⇐ R[𝐚ᵢ/z] ρ ≠ 0 i ≠ 0
|
||||
-- -------------------------------------------------------------------
|
||||
-- caseρ e return z ⇒ R of {𝐚ᵢ ⇒ sᵢ} ⤋ case e of {𝐚ᵢ ⇒ s'ᵢ} ⇒ R[e/z]
|
||||
eraseElim ctx e@(CaseEnum qty tag ret arms loc) = do
|
||||
eraseElim defs ctx e@(CaseEnum qty tag ret arms loc) = do
|
||||
let ty = sub1 ret tag
|
||||
case isErased qty of
|
||||
Erased => case SortedMap.toList arms of
|
||||
[] => pure $ EraRes ty $ Absurd loc
|
||||
[(t, rhs)] => do
|
||||
let ty' = sub1 ret (Ann (Tag t loc) (enum [t] loc) loc)
|
||||
rhs' <- eraseTerm ctx ty' rhs
|
||||
rhs' <- eraseTerm defs ctx ty' rhs
|
||||
pure $ EraRes ty rhs'
|
||||
_ => throw $ CompileTimeOnly ctx $ E e
|
||||
Kept => case List1.fromList $ SortedMap.toList arms of
|
||||
Nothing => pure $ EraRes ty $ Absurd loc
|
||||
Just arms => do
|
||||
etag <- eraseElim ctx tag
|
||||
etag <- eraseElim defs ctx tag
|
||||
arms <- for arms $ \(t, rhs) => do
|
||||
let ty' = sub1 ret (Ann (Tag t loc) etag.type loc)
|
||||
rhs' <- eraseTerm ctx ty' rhs
|
||||
rhs' <- eraseTerm defs ctx ty' rhs
|
||||
pure (t, rhs')
|
||||
pure $ EraRes ty $ CaseEnum etag.term arms loc
|
||||
|
||||
|
@ -382,12 +393,12 @@ eraseElim ctx e@(CaseEnum qty tag ret arms loc) = do
|
|||
-- caseρ n return z ⇒ R of {0 ⇒ z; succ m, 0.ih ⇒ s}
|
||||
-- ⤋
|
||||
-- case n' of {0 ⇒ z'; succ m ⇒ s'[⌷/ih]} ⇒ R[n/z]
|
||||
eraseElim ctx (CaseNat qty qtyIH nat ret zero succ loc) = do
|
||||
eraseElim defs ctx (CaseNat qty qtyIH nat ret zero succ loc) = do
|
||||
let ty = sub1 ret nat
|
||||
enat <- eraseElim ctx nat
|
||||
zero <- eraseTerm ctx (sub1 ret (Ann (Zero loc) (NAT loc) loc)) zero
|
||||
enat <- eraseElim defs ctx nat
|
||||
zero <- eraseTerm defs ctx (sub1 ret (Ann (Zero loc) (NAT loc) loc)) zero
|
||||
let [< p, ih] = succ.names
|
||||
succ' <- eraseTerm
|
||||
succ' <- eraseTerm defs
|
||||
(extendTyN [< (qty, p, NAT loc),
|
||||
(qtyIH, ih, sub1 (ret // shift 1) (BV 0 loc))] ctx)
|
||||
(sub1 (ret // shift 2) (Ann (Succ (BVT 1 loc) loc) (NAT loc) loc))
|
||||
|
@ -404,56 +415,56 @@ eraseElim ctx (CaseNat qty qtyIH nat ret zero succ loc) = do
|
|||
-- b ⇒ [π.A] x : A | 0.x ⊢ s ⤋ s' ⇐ R[[x]∷[0.A]/z] πρ = 0
|
||||
-- -------------------------------------------------------------
|
||||
-- caseρ b return z ⇒ R of {[x] ⇒ s} ⤋ s'[⌷/x] ⇒ R[b/z]
|
||||
eraseElim ctx (CaseBox qty box ret body loc) = do
|
||||
tbox <- computeElimType ctx SOne box -- [fixme] is there any way to avoid this?
|
||||
(pi, tinner) <- wrapExpect `(expectBOX) ctx loc tbox
|
||||
eraseElim defs ctx (CaseBox qty box ret body loc) = do
|
||||
tbox <- computeElimType defs ctx SOne box
|
||||
(pi, tinner) <- wrapExpect `(expectBOX) defs ctx loc tbox
|
||||
let ctx' = extendTy (pi * qty) body.name tinner ctx
|
||||
bty = sub1 (ret // shift 1) $
|
||||
Ann (Box (BVT 0 loc) loc) (weakT 1 tbox) loc
|
||||
case isErased $ qty * pi of
|
||||
Kept => do
|
||||
ebox <- eraseElim ctx box
|
||||
ebody <- eraseTerm ctx' bty body.term
|
||||
ebox <- eraseElim defs ctx box
|
||||
ebody <- eraseTerm defs ctx' bty body.term
|
||||
pure $ EraRes (sub1 ret box) $ Let body.name ebox.term ebody loc
|
||||
Erased => do
|
||||
body' <- eraseTerm ctx' bty body.term
|
||||
body' <- eraseTerm defs ctx' bty body.term
|
||||
pure $ EraRes (sub1 ret box) $ body' // one (Erased loc)
|
||||
|
||||
-- f ⤋ f' ⇒ Eq (𝑖 ⇒ A) l r
|
||||
-- ------------------------------
|
||||
-- f @r ⤋ f' ⇒ A‹r/𝑖›
|
||||
eraseElim ctx (DApp fun arg loc) = do
|
||||
efun <- eraseElim ctx fun
|
||||
a <- fst <$> wrapExpect `(expectEq) ctx loc efun.type
|
||||
eraseElim defs ctx (DApp fun arg loc) = do
|
||||
efun <- eraseElim defs ctx fun
|
||||
a <- fst <$> wrapExpect `(expectEq) defs ctx loc efun.type
|
||||
pure $ EraRes (dsub1 a arg) efun.term
|
||||
|
||||
-- s ⤋ s' ⇐ A
|
||||
-- ----------------
|
||||
-- s ∷ A ⤋ s' ⇒ A
|
||||
eraseElim ctx (Ann tm ty loc) =
|
||||
EraRes ty <$> eraseTerm ctx ty tm
|
||||
eraseElim defs ctx (Ann tm ty loc) =
|
||||
EraRes ty <$> eraseTerm defs ctx ty tm
|
||||
|
||||
-- s ⤋ s' ⇐ A‹p/𝑖›
|
||||
-- -----------------------------------
|
||||
-- coe (𝑖 ⇒ A) @p @q s ⤋ s' ⇒ A‹q/𝑖›
|
||||
eraseElim ctx (Coe ty p q val loc) = do
|
||||
val <- eraseTerm ctx (dsub1 ty p) val
|
||||
eraseElim defs ctx (Coe ty p q val loc) = do
|
||||
val <- eraseTerm defs ctx (dsub1 ty p) val
|
||||
pure $ EraRes (dsub1 ty q) val
|
||||
|
||||
-- s ⤋ s' ⇐ A
|
||||
-- --------------------------------
|
||||
-- comp A @p @q s @r {⋯} ⤋ s' ⇒ A
|
||||
eraseElim ctx (Comp ty p q val r zero one loc) =
|
||||
EraRes ty <$> eraseTerm ctx ty val
|
||||
eraseElim defs ctx (Comp ty p q val r zero one loc) =
|
||||
EraRes ty <$> eraseTerm defs ctx ty val
|
||||
|
||||
eraseElim ctx t@(TypeCase ty ret arms def loc) =
|
||||
eraseElim defs ctx t@(TypeCase ty ret arms def loc) =
|
||||
throw $ CompileTimeOnly ctx $ E t
|
||||
|
||||
eraseElim ctx (CloE (Sub term th)) =
|
||||
eraseElim ctx $ pushSubstsWith' id th term
|
||||
eraseElim defs ctx (CloE (Sub term th)) =
|
||||
eraseElim defs ctx $ pushSubstsWith' id th term
|
||||
|
||||
eraseElim ctx (DCloE (Sub term th)) =
|
||||
eraseElim ctx $ pushSubstsWith' th id term
|
||||
eraseElim defs ctx (DCloE (Sub term th)) =
|
||||
eraseElim defs ctx $ pushSubstsWith' th id term
|
||||
|
||||
|
||||
export
|
||||
|
@ -539,8 +550,8 @@ trimLets (Erased loc) = Erased loc
|
|||
|
||||
|
||||
export covering
|
||||
eraseDef : Name -> Q.Definition -> Eff Erase U.Definition
|
||||
eraseDef name def@(MkDef qty type body scheme isMain loc) =
|
||||
eraseDef : Q.Definitions -> Name -> Q.Definition -> Eff Erase U.Definition
|
||||
eraseDef defs name def@(MkDef qty type body scheme isMain loc) =
|
||||
wrapErr (WhileErasing name def) $
|
||||
case isErased qty.qty of
|
||||
Erased => do
|
||||
|
@ -552,4 +563,4 @@ eraseDef name def@(MkDef qty type body scheme isMain loc) =
|
|||
Nothing => case body of
|
||||
Postulate => throw $ Postulate loc name
|
||||
Concrete body => KeptDef isMain . trimLets <$>
|
||||
eraseTerm empty type body
|
||||
eraseTerm defs empty type body
|
||||
|
|
|
@ -28,7 +28,7 @@ parameters {auto _ : CanWhnf Term Interface.isRedexT}
|
|||
export covering
|
||||
piCoe : (ty : DScopeTerm d n) -> (p, q : Dim d) ->
|
||||
(val, s : Term d n) -> Loc ->
|
||||
Eff Whnf (Subset (Elim d n) (No . isRedexE defs sg))
|
||||
Eff Whnf (Subset (Elim d n) (No . isRedexE defs ctx sg))
|
||||
piCoe sty@(S [< i] ty) p q val s loc = do
|
||||
-- (coe [i ⇒ π.(x : A) → B] @p @q t) s ⇝
|
||||
-- coe [i ⇒ B[𝒔‹i›/x] @p @q ((t ∷ (π.(x : A) → B)‹p/i›) 𝒔‹p›)
|
||||
|
@ -49,7 +49,7 @@ parameters {auto _ : CanWhnf Term Interface.isRedexT}
|
|||
sigCoe : (qty : Qty) ->
|
||||
(ty : DScopeTerm d n) -> (p, q : Dim d) -> (val : Term d n) ->
|
||||
(ret : ScopeTerm d n) -> (body : ScopeTermN 2 d n) -> Loc ->
|
||||
Eff Whnf (Subset (Elim d n) (No . isRedexE defs sg))
|
||||
Eff Whnf (Subset (Elim d n) (No . isRedexE defs ctx sg))
|
||||
sigCoe qty sty@(S [< i] ty) p q val ret body loc = do
|
||||
-- caseπ (coe [i ⇒ (x : A) × B] @p @q s) return z ⇒ C of { (a, b) ⇒ e }
|
||||
-- ⇝
|
||||
|
@ -74,7 +74,7 @@ parameters {auto _ : CanWhnf Term Interface.isRedexT}
|
|||
||| reduce a pair projection `Fst (Coe ty p q val) loc`
|
||||
export covering
|
||||
fstCoe : (ty : DScopeTerm d n) -> (p, q : Dim d) -> (val : Term d n) ->
|
||||
Loc -> Eff Whnf (Subset (Elim d n) (No . isRedexE defs sg))
|
||||
Loc -> Eff Whnf (Subset (Elim d n) (No . isRedexE defs ctx sg))
|
||||
fstCoe sty@(S [< i] ty) p q val loc = do
|
||||
-- fst (coe (𝑖 ⇒ (x : A) × B) @p @q s)
|
||||
-- ⇝
|
||||
|
@ -91,7 +91,7 @@ parameters {auto _ : CanWhnf Term Interface.isRedexT}
|
|||
||| reduce a pair projection `Snd (Coe ty p q val) loc`
|
||||
export covering
|
||||
sndCoe : (ty : DScopeTerm d n) -> (p, q : Dim d) -> (val : Term d n) ->
|
||||
Loc -> Eff Whnf (Subset (Elim d n) (No . isRedexE defs sg))
|
||||
Loc -> Eff Whnf (Subset (Elim d n) (No . isRedexE defs ctx sg))
|
||||
sndCoe sty@(S [< i] ty) p q val loc = do
|
||||
-- snd (coe (𝑖 ⇒ (x : A) × B) @p @q s)
|
||||
-- ⇝
|
||||
|
@ -115,7 +115,7 @@ parameters {auto _ : CanWhnf Term Interface.isRedexT}
|
|||
export covering
|
||||
eqCoe : (ty : DScopeTerm d n) -> (p, q : Dim d) -> (val : Term d n) ->
|
||||
(r : Dim d) -> Loc ->
|
||||
Eff Whnf (Subset (Elim d n) (No . isRedexE defs sg))
|
||||
Eff Whnf (Subset (Elim d n) (No . isRedexE defs ctx sg))
|
||||
eqCoe sty@(S [< j] ty) p q val r loc = do
|
||||
-- (coe [j ⇒ Eq [i ⇒ A] L R] @p @q eq) @r
|
||||
-- ⇝
|
||||
|
@ -133,7 +133,7 @@ parameters {auto _ : CanWhnf Term Interface.isRedexT}
|
|||
boxCoe : (qty : Qty) ->
|
||||
(ty : DScopeTerm d n) -> (p, q : Dim d) -> (val : Term d n) ->
|
||||
(ret : ScopeTerm d n) -> (body : ScopeTerm d n) -> Loc ->
|
||||
Eff Whnf (Subset (Elim d n) (No . isRedexE defs sg))
|
||||
Eff Whnf (Subset (Elim d n) (No . isRedexE defs ctx sg))
|
||||
boxCoe qty sty@(S [< i] ty) p q val ret body loc = do
|
||||
-- caseπ (coe [i ⇒ [ρ. A]] @p @q s) return z ⇒ C of { [a] ⇒ e }
|
||||
-- ⇝
|
||||
|
@ -151,7 +151,7 @@ parameters {auto _ : CanWhnf Term Interface.isRedexT}
|
|||
pushCoe : BindName ->
|
||||
(ty : Term (S d) n) -> (p, q : Dim d) -> (s : Term d n) -> Loc ->
|
||||
(0 pc : So (canPushCoe sg ty s)) =>
|
||||
Eff Whnf (NonRedex Elim d n defs sg)
|
||||
Eff Whnf (NonRedex Elim d n defs ctx sg)
|
||||
pushCoe i ty p q s loc =
|
||||
case ty of
|
||||
-- (coe ★ᵢ @_ @_ s) ⇝ (s ∷ ★ᵢ)
|
||||
|
|
|
@ -14,8 +14,8 @@ export covering
|
|||
computeElimType :
|
||||
CanWhnf Term Interface.isRedexT =>
|
||||
CanWhnf Elim Interface.isRedexE =>
|
||||
(defs : Definitions) -> WhnfContext d n -> (0 sg : SQty) ->
|
||||
(e : Elim d n) -> (0 ne : No (isRedexE defs sg e)) =>
|
||||
(defs : Definitions) -> (ctx : WhnfContext d n) -> (0 sg : SQty) ->
|
||||
(e : Elim d n) -> (0 ne : No (isRedexE defs ctx sg e)) =>
|
||||
Eff Whnf (Term d n)
|
||||
|
||||
|
||||
|
@ -24,8 +24,8 @@ export covering
|
|||
computeWhnfElimType0 :
|
||||
CanWhnf Term Interface.isRedexT =>
|
||||
CanWhnf Elim Interface.isRedexE =>
|
||||
(defs : Definitions) -> WhnfContext d n -> (0 sg : SQty) ->
|
||||
(e : Elim d n) -> (0 ne : No (isRedexE defs sg e)) =>
|
||||
(defs : Definitions) -> (ctx : WhnfContext d n) -> (0 sg : SQty) ->
|
||||
(e : Elim d n) -> (0 ne : No (isRedexE defs ctx sg e)) =>
|
||||
Eff Whnf (Term d n)
|
||||
|
||||
computeElimType defs ctx sg e =
|
||||
|
@ -36,7 +36,7 @@ computeElimType defs ctx sg e =
|
|||
pure $ def.typeWithAt ctx.dimLen ctx.termLen u
|
||||
|
||||
B i _ =>
|
||||
pure $ ctx.tctx !! i
|
||||
pure (ctx.tctx !! i).type
|
||||
|
||||
App f s loc =>
|
||||
case !(computeWhnfElimType0 defs ctx sg f {ne = noOr1 ne}) of
|
||||
|
|
|
@ -18,13 +18,14 @@ Whnf = [Except Error, NameGen]
|
|||
|
||||
public export
|
||||
0 RedexTest : TermLike -> Type
|
||||
RedexTest tm = {0 d, n : Nat} -> Definitions -> SQty -> tm d n -> Bool
|
||||
RedexTest tm =
|
||||
{0 d, n : Nat} -> Definitions -> WhnfContext d n -> SQty -> tm d n -> Bool
|
||||
|
||||
public export
|
||||
interface CanWhnf (0 tm : TermLike) (0 isRedex : RedexTest tm) | tm
|
||||
where
|
||||
whnf : (defs : Definitions) -> (ctx : WhnfContext d n) -> (q : SQty) ->
|
||||
tm d n -> Eff Whnf (Subset (tm d n) (No . isRedex defs q))
|
||||
tm d n -> Eff Whnf (Subset (tm d n) (No . isRedex defs ctx q))
|
||||
-- having isRedex be part of the class header, and needing to be explicitly
|
||||
-- quantified on every use since idris can't infer its type, is a little ugly.
|
||||
-- but none of the alternatives i've thought of so far work. e.g. in some
|
||||
|
@ -37,19 +38,20 @@ whnf0 defs ctx q t = fst <$> whnf defs ctx q t
|
|||
|
||||
public export
|
||||
0 IsRedex, NotRedex : {isRedex : RedexTest tm} -> CanWhnf tm isRedex =>
|
||||
Definitions -> SQty -> Pred (tm d n)
|
||||
IsRedex defs q = So . isRedex defs q
|
||||
NotRedex defs q = No . isRedex defs q
|
||||
Definitions -> WhnfContext d n -> SQty -> Pred (tm d n)
|
||||
IsRedex defs ctx q = So . isRedex defs ctx q
|
||||
NotRedex defs ctx q = No . isRedex defs ctx q
|
||||
|
||||
public export
|
||||
0 NonRedex : (tm : TermLike) -> {isRedex : RedexTest tm} ->
|
||||
CanWhnf tm isRedex => (d, n : Nat) ->
|
||||
(defs : Definitions) -> SQty -> Type
|
||||
NonRedex tm d n defs q = Subset (tm d n) (NotRedex defs q)
|
||||
Definitions -> WhnfContext d n -> SQty -> Type
|
||||
NonRedex tm d n defs ctx q = Subset (tm d n) (NotRedex defs ctx q)
|
||||
|
||||
public export %inline
|
||||
nred : {0 isRedex : RedexTest tm} -> (0 _ : CanWhnf tm isRedex) =>
|
||||
(t : tm d n) -> (0 nr : NotRedex defs q t) => NonRedex tm d n defs q
|
||||
(t : tm d n) -> (0 nr : NotRedex defs ctx q t) =>
|
||||
NonRedex tm d n defs ctx q
|
||||
nred t = Element t nr
|
||||
|
||||
|
||||
|
@ -193,50 +195,52 @@ mutual
|
|||
||| a reducible elimination
|
||||
|||
|
||||
||| 1. a free variable, if its definition is known
|
||||
||| 2. an elimination whose head is reducible
|
||||
||| 3. an "active" elimination:
|
||||
||| 2. a bound variable pointing to a `let`
|
||||
||| 3. an elimination whose head is reducible
|
||||
||| 4. an "active" elimination:
|
||||
||| an application whose head is an annotated lambda,
|
||||
||| a case expression whose head is an annotated constructor form, etc
|
||||
||| 4. a redundant annotation, or one whose term or type is reducible
|
||||
||| 5. a coercion `coe (𝑖 ⇒ A) @p @q s` where:
|
||||
||| 5. a redundant annotation, or one whose term or type is reducible
|
||||
||| 6. a coercion `coe (𝑖 ⇒ A) @p @q s` where:
|
||||
||| a. `A` is reducible or a type constructor, or
|
||||
||| b. `𝑖` is not mentioned in `A`
|
||||
||| ([fixme] should be A‹0/𝑖› = A‹1/𝑖›), or
|
||||
||| c. `p = q`
|
||||
||| 6. a composition `comp A @p @q s @r {⋯}`
|
||||
||| 7. a composition `comp A @p @q s @r {⋯}`
|
||||
||| where `p = q`, `r = 0`, or `r = 1`
|
||||
||| 7. a closure
|
||||
||| 8. a closure
|
||||
public export
|
||||
isRedexE : RedexTest Elim
|
||||
isRedexE defs sg (F {x, u, _}) = isJust $ lookupElim0 x u defs
|
||||
isRedexE _ sg (B {}) = False
|
||||
isRedexE defs sg (App {fun, _}) =
|
||||
isRedexE defs sg fun || isLamHead fun
|
||||
isRedexE defs sg (CasePair {pair, _}) =
|
||||
isRedexE defs sg pair || isPairHead pair || isYes (sg `decEq` SZero)
|
||||
isRedexE defs sg (Fst pair _) =
|
||||
isRedexE defs sg pair || isPairHead pair
|
||||
isRedexE defs sg (Snd pair _) =
|
||||
isRedexE defs sg pair || isPairHead pair
|
||||
isRedexE defs sg (CaseEnum {tag, _}) =
|
||||
isRedexE defs sg tag || isTagHead tag
|
||||
isRedexE defs sg (CaseNat {nat, _}) =
|
||||
isRedexE defs sg nat || isNatHead nat
|
||||
isRedexE defs sg (CaseBox {box, _}) =
|
||||
isRedexE defs sg box || isBoxHead box
|
||||
isRedexE defs sg (DApp {fun, arg, _}) =
|
||||
isRedexE defs sg fun || isDLamHead fun || isK arg
|
||||
isRedexE defs sg (Ann {tm, ty, _}) =
|
||||
isE tm || isRedexT defs sg tm || isRedexT defs SZero ty
|
||||
isRedexE defs sg (Coe {ty = S _ (N _), _}) = True
|
||||
isRedexE defs sg (Coe {ty = S _ (Y ty), p, q, val, _}) =
|
||||
isRedexT defs SZero ty || canPushCoe sg ty val || isYes (p `decEqv` q)
|
||||
isRedexE defs sg (Comp {ty, p, q, r, _}) =
|
||||
isRedexE defs ctx sg (F {x, u, _}) = isJust $ lookupElim0 x u defs
|
||||
isRedexE _ ctx sg (B {i, _}) = isJust (ctx.tctx !! i).term
|
||||
isRedexE defs ctx sg (App {fun, _}) =
|
||||
isRedexE defs ctx sg fun || isLamHead fun
|
||||
isRedexE defs ctx sg (CasePair {pair, _}) =
|
||||
isRedexE defs ctx sg pair || isPairHead pair || isYes (sg `decEq` SZero)
|
||||
isRedexE defs ctx sg (Fst pair _) =
|
||||
isRedexE defs ctx sg pair || isPairHead pair
|
||||
isRedexE defs ctx sg (Snd pair _) =
|
||||
isRedexE defs ctx sg pair || isPairHead pair
|
||||
isRedexE defs ctx sg (CaseEnum {tag, _}) =
|
||||
isRedexE defs ctx sg tag || isTagHead tag
|
||||
isRedexE defs ctx sg (CaseNat {nat, _}) =
|
||||
isRedexE defs ctx sg nat || isNatHead nat
|
||||
isRedexE defs ctx sg (CaseBox {box, _}) =
|
||||
isRedexE defs ctx sg box || isBoxHead box
|
||||
isRedexE defs ctx sg (DApp {fun, arg, _}) =
|
||||
isRedexE defs ctx sg fun || isDLamHead fun || isK arg
|
||||
isRedexE defs ctx sg (Ann {tm, ty, _}) =
|
||||
isE tm || isRedexT defs ctx sg tm || isRedexT defs ctx SZero ty
|
||||
isRedexE defs ctx sg (Coe {ty = S _ (N _), _}) = True
|
||||
isRedexE defs ctx sg (Coe {ty = S [< i] (Y ty), p, q, val, _}) =
|
||||
isRedexT defs (extendDim i ctx) SZero ty ||
|
||||
canPushCoe sg ty val || isYes (p `decEqv` q)
|
||||
isRedexE defs ctx sg (Comp {ty, p, q, r, _}) =
|
||||
isYes (p `decEqv` q) || isK r
|
||||
isRedexE defs sg (TypeCase {ty, ret, _}) =
|
||||
isRedexE defs sg ty || isRedexT defs sg ret || isAnnTyCon ty
|
||||
isRedexE _ _ (CloE {}) = True
|
||||
isRedexE _ _ (DCloE {}) = True
|
||||
isRedexE defs ctx sg (TypeCase {ty, ret, _}) =
|
||||
isRedexE defs ctx sg ty || isRedexT defs ctx sg ret || isAnnTyCon ty
|
||||
isRedexE _ _ _ (CloE {}) = True
|
||||
isRedexE _ _ _ (DCloE {}) = True
|
||||
|
||||
||| a reducible term
|
||||
|||
|
||||
|
@ -248,9 +252,9 @@ mutual
|
|||
||| 5. a `let` expression
|
||||
public export
|
||||
isRedexT : RedexTest Term
|
||||
isRedexT _ _ (CloT {}) = True
|
||||
isRedexT _ _ (DCloT {}) = True
|
||||
isRedexT _ _ (Let {}) = True
|
||||
isRedexT defs sg (E {e, _}) = isAnn e || isRedexE defs sg e
|
||||
isRedexT _ _ (Succ p {}) = isNatConst p
|
||||
isRedexT _ _ _ = False
|
||||
isRedexT _ _ _ (CloT {}) = True
|
||||
isRedexT _ _ _ (DCloT {}) = True
|
||||
isRedexT _ _ _ (Let {}) = True
|
||||
isRedexT defs ctx sg (E {e, _}) = isAnn e || isRedexE defs ctx sg e
|
||||
isRedexT _ _ _ (Succ p {}) = isNatConst p
|
||||
isRedexT _ _ _ _ = False
|
||||
|
|
|
@ -20,7 +20,10 @@ CanWhnf Elim Interface.isRedexE where
|
|||
_ | Just y = whnf defs ctx sg $ setLoc loc $ injElim ctx y
|
||||
_ | Nothing = pure $ Element (F x u loc) $ rewrite eq in Ah
|
||||
|
||||
whnf _ _ _ (B i loc) = pure $ nred $ B i loc
|
||||
whnf defs ctx sg (B i loc) with (ctx.tctx !! i) proof eq1
|
||||
_ | l with (l.term) proof eq2
|
||||
_ | Just y = whnf defs ctx sg $ Ann y l.type loc
|
||||
_ | Nothing = pure $ Element (B i loc) $ rewrite eq1 in rewrite eq2 in Ah
|
||||
|
||||
-- ((λ x ⇒ t) ∷ (π.x : A) → B) s ⇝ t[s∷A/x] ∷ B[s∷A/x]
|
||||
whnf defs ctx sg (App f s appLoc) = do
|
||||
|
|
|
@ -35,7 +35,7 @@ parameters {auto _ : CanWhnf Term Interface.isRedexT}
|
|||
||| for an elim returns a pair of type-cases that will reduce to that;
|
||||
||| for other intro forms error
|
||||
export covering
|
||||
tycasePi : (t : Term d n) -> (0 tnf : No (isRedexT defs SZero t)) =>
|
||||
tycasePi : (t : Term d n) -> (0 tnf : No (isRedexT defs ctx SZero t)) =>
|
||||
Eff Whnf (Term d n, ScopeTerm d n)
|
||||
tycasePi (Pi {arg, res, _}) = pure (arg, res)
|
||||
tycasePi (E e) {tnf} = do
|
||||
|
@ -53,7 +53,7 @@ parameters {auto _ : CanWhnf Term Interface.isRedexT}
|
|||
||| for an elim returns a pair of type-cases that will reduce to that;
|
||||
||| for other intro forms error
|
||||
export covering
|
||||
tycaseSig : (t : Term d n) -> (0 tnf : No (isRedexT defs SZero t)) =>
|
||||
tycaseSig : (t : Term d n) -> (0 tnf : No (isRedexT defs ctx SZero t)) =>
|
||||
Eff Whnf (Term d n, ScopeTerm d n)
|
||||
tycaseSig (Sig {fst, snd, _}) = pure (fst, snd)
|
||||
tycaseSig (E e) {tnf} = do
|
||||
|
@ -71,7 +71,7 @@ parameters {auto _ : CanWhnf Term Interface.isRedexT}
|
|||
||| for an elim returns a type-case that will reduce to that;
|
||||
||| for other intro forms error
|
||||
export covering
|
||||
tycaseBOX : (t : Term d n) -> (0 tnf : No (isRedexT defs SZero t)) =>
|
||||
tycaseBOX : (t : Term d n) -> (0 tnf : No (isRedexT defs ctx SZero t)) =>
|
||||
Eff Whnf (Term d n)
|
||||
tycaseBOX (BOX {ty, _}) = pure ty
|
||||
tycaseBOX (E e) {tnf} = do
|
||||
|
@ -83,7 +83,7 @@ parameters {auto _ : CanWhnf Term Interface.isRedexT}
|
|||
||| for an elim returns five type-cases that will reduce to that;
|
||||
||| for other intro forms error
|
||||
export covering
|
||||
tycaseEq : (t : Term d n) -> (0 tnf : No (isRedexT defs SZero t)) =>
|
||||
tycaseEq : (t : Term d n) -> (0 tnf : No (isRedexT defs ctx SZero t)) =>
|
||||
Eff Whnf (Term d n, Term d n, DScopeTerm d n, Term d n, Term d n)
|
||||
tycaseEq (Eq {ty, l, r, _}) = pure (ty.zero, ty.one, ty, l, r)
|
||||
tycaseEq (E e) {tnf} = do
|
||||
|
@ -107,7 +107,7 @@ parameters {auto _ : CanWhnf Term Interface.isRedexT}
|
|||
reduceTypeCase : (ty : Term d n) -> (u : Universe) -> (ret : Term d n) ->
|
||||
(arms : TypeCaseArms d n) -> (def : Term d n) ->
|
||||
(0 _ : So (isTyCon ty)) => Loc ->
|
||||
Eff Whnf (Subset (Elim d n) (No . isRedexE defs SZero))
|
||||
Eff Whnf (Subset (Elim d n) (No . isRedexE defs ctx SZero))
|
||||
reduceTypeCase ty u ret arms def loc = case ty of
|
||||
-- (type-case ★ᵢ ∷ _ return Q of { ★ ⇒ s; ⋯ }) ⇝ s ∷ Q
|
||||
TYPE {} =>
|
||||
|
|
|
@ -24,13 +24,17 @@ anys : {n : Nat} -> QContext n
|
|||
anys {n = 0} = [<]
|
||||
anys {n = S n} = anys :< Any
|
||||
|
||||
public export
|
||||
locals : Context (Term d) n -> Context (LocalVar d) n
|
||||
locals = map $ \t => MkLocal t Nothing
|
||||
|
||||
public export
|
||||
ctx, ctx01 : {n : Nat} -> Context (\n => (BindName, Term 0 n)) n ->
|
||||
TyContext 0 n
|
||||
ctx tel = let (ns, ts) = unzip tel in
|
||||
MkTyContext new [<] ts ns anys
|
||||
MkTyContext new [<] (locals ts) ns anys
|
||||
ctx01 tel = let (ns, ts) = unzip tel in
|
||||
MkTyContext ZeroIsOne [<] ts ns anys
|
||||
MkTyContext ZeroIsOne [<] (locals ts) ns anys
|
||||
|
||||
export
|
||||
mkDef : GQty -> Term 0 0 -> Term 0 0 -> Definition
|
||||
|
|
|
@ -33,7 +33,7 @@ parameters {0 isRedex : RedexTest tm} {auto _ : CanWhnf tm isRedex} {d, n : Nat}
|
|||
|
||||
private
|
||||
ctx : {n : Nat} -> Context (\n => (BindName, Term 0 n)) n -> WhnfContext 0 n
|
||||
ctx xs = let (ns, ts) = unzip xs in MkWhnfContext [<] ns ts
|
||||
ctx xs = let (ns, ts) = unzip xs in MkWhnfContext [<] ns (locals ts)
|
||||
|
||||
|
||||
export
|
||||
|
|
Loading…
Reference in a new issue