add local bindings to context

- without this, inside the body of `let x = e in …`, the typechecker
  would forget that `x = e`
- now bound variables can reduce, if they have a definition, so RedexTest
  needs to take the context too
This commit is contained in:
rhiannon morris 2023-12-07 01:35:39 +01:00
parent cdf1ec6deb
commit 03c197bd04
13 changed files with 300 additions and 211 deletions

View file

@ -164,7 +164,7 @@ private
liftFromParser : Eff FromParserIO a -> Eff CompileStop a liftFromParser : Eff FromParserIO a -> Eff CompileStop a
liftFromParser act = liftFromParser act =
runEff act $ with Union.(::) runEff act $ with Union.(::)
[handleExcept (\err => throw $ FromParserError err), [handleExcept $ \err => throw $ FromParserError err,
handleStateIORef !(asksAt STATE defs), handleStateIORef !(asksAt STATE defs),
handleStateIORef !(asksAt STATE ns), handleStateIORef !(asksAt STATE ns),
handleStateIORef !(asksAt STATE suf), handleStateIORef !(asksAt STATE suf),
@ -174,8 +174,7 @@ private
liftErase : Q.Definitions -> Eff Erase a -> Eff CompileStop a liftErase : Q.Definitions -> Eff Erase a -> Eff CompileStop a
liftErase defs act = liftErase defs act =
runEff act runEff act
[\case Err e => throw $ EraseError e, [handleExcept $ \err => throw $ EraseError err,
\case Ask => pure defs,
handleStateIORef !(asksAt STATE suf)] handleStateIORef !(asksAt STATE suf)]
private private
@ -207,7 +206,7 @@ processFile file = withEarlyStop $ do
traverse (uncurry Q.prettyDef) defList traverse (uncurry Q.prettyDef) defList
let defs = SortedMap.fromList defList let defs = SortedMap.fromList defList
erased <- liftErase defs $ erased <- liftErase defs $
traverse (\(x, d) => (x,) <$> eraseDef x d) defList traverse (\(x, d) => (x,) <$> eraseDef defs x d) defList
outputDocStopIf Erase $ outputDocStopIf Erase $
traverse (uncurry U.prettyDef) erased traverse (uncurry U.prettyDef) erased
(scheme, mains) <- liftScheme $ map catMaybes $ (scheme, mains) <- liftScheme $ map catMaybes $

View file

@ -170,12 +170,19 @@ compareType : Definitions -> EqContext n -> (s, t : Term 0 n) ->
Eff EqualInner () Eff EqualInner ()
private
0 NotRedexEq : {isRedex : RedexTest tm} -> CanWhnf tm isRedex =>
Definitions -> EqContext n -> SQty -> Pred (tm 0 n)
NotRedexEq defs ctx sg t = NotRedex defs (toWhnfContext ctx) sg t
namespace Term namespace Term
private covering private covering
compare0' : (defs : Definitions) -> EqContext n -> (sg : SQty) -> compare0' : (defs : Definitions) -> (ctx : EqContext n) -> (sg : SQty) ->
(ty, s, t : Term 0 n) -> (ty, s, t : Term 0 n) ->
(0 _ : NotRedex defs SZero ty) => (0 _ : So (isTyConE ty)) => (0 _ : NotRedexEq defs ctx SZero ty) =>
(0 _ : NotRedex defs sg s) => (0 _ : NotRedex defs sg t) => (0 _ : So (isTyConE ty)) =>
(0 _ : NotRedexEq defs ctx sg s) =>
(0 _ : NotRedexEq defs ctx sg t) =>
Eff EqualInner () Eff EqualInner ()
compare0' defs ctx sg (TYPE {}) s t = compareType defs ctx s t compare0' defs ctx sg (TYPE {}) s t = compareType defs ctx s t
@ -350,9 +357,10 @@ namespace Term
private covering private covering
compareType' : (defs : Definitions) -> EqContext n -> (s, t : Term 0 n) -> compareType' : (defs : Definitions) -> (ctx : EqContext n) ->
(0 _ : NotRedex defs SZero s) => (0 _ : So (isTyConE s)) => (s, t : Term 0 n) ->
(0 _ : NotRedex defs SZero t) => (0 _ : So (isTyConE t)) => (0 _ : NotRedexEq defs ctx SZero s) => (0 _ : So (isTyConE s)) =>
(0 _ : NotRedexEq defs ctx SZero t) => (0 _ : So (isTyConE t)) =>
(0 _ : So (sameTyCon s t)) => (0 _ : So (sameTyCon s t)) =>
Eff EqualInner () Eff EqualInner ()
-- equality is the same as subtyping, except with the -- equality is the same as subtyping, except with the
@ -477,8 +485,9 @@ namespace Elim
EqualElim = InnerErrEff :: EqualInner EqualElim = InnerErrEff :: EqualInner
private covering private covering
computeElimTypeE : (defs : Definitions) -> EqContext n -> (sg : SQty) -> computeElimTypeE : (defs : Definitions) -> (ctx : EqContext n) ->
(e : Elim 0 n) -> (0 ne : NotRedex defs sg e) => (sg : SQty) ->
(e : Elim 0 n) -> (0 ne : NotRedexEq defs ctx sg e) =>
Eff EqualElim (Term 0 n) Eff EqualElim (Term 0 n)
computeElimTypeE defs ectx sg e = lift $ computeElimTypeE defs ectx sg e = lift $
computeElimType defs (toWhnfContext ectx) sg e computeElimType defs (toWhnfContext ectx) sg e
@ -492,8 +501,8 @@ namespace Elim
try act = lift $ catch putError $ lift act {fs' = EqualElim} try act = lift $ catch putError $ lift act {fs' = EqualElim}
private covering %inline private covering %inline
clashE : (defs : Definitions) -> EqContext n -> (sg : SQty) -> clashE : (defs : Definitions) -> (ctx : EqContext n) -> (sg : SQty) ->
(e, f : Elim 0 n) -> (0 nf : NotRedex defs sg f) => (e, f : Elim 0 n) -> (0 nf : NotRedexEq defs ctx sg f) =>
Eff EqualElim (Term 0 n) Eff EqualElim (Term 0 n)
clashE defs ctx sg e f = do clashE defs ctx sg e f = do
putError $ ClashE e.loc ctx !mode e f putError $ ClashE e.loc ctx !mode e f
@ -522,9 +531,10 @@ namespace Elim
(e, f : Elim 0 n) -> Eff EqualElim (Term 0 n) (e, f : Elim 0 n) -> Eff EqualElim (Term 0 n)
private covering private covering
compare0Inner' : (defs : Definitions) -> EqContext n -> (sg : SQty) -> compare0Inner' : (defs : Definitions) -> (ctx : EqContext n) -> (sg : SQty) ->
(e, f : Elim 0 n) -> (e, f : Elim 0 n) ->
(0 ne : NotRedex defs sg e) -> (0 nf : NotRedex defs sg f) -> (0 ne : NotRedexEq defs ctx sg e) ->
(0 nf : NotRedexEq defs ctx sg f) ->
Eff EqualElim (Term 0 n) Eff EqualElim (Term 0 n)
compare0Inner' defs ctx sg e@(F {}) f _ _ = do compare0Inner' defs ctx sg e@(F {}) f _ _ = do

View file

@ -215,8 +215,8 @@ mutual
check' ctx sg (Let qty rhs body loc) ty = do check' ctx sg (Let qty rhs body loc) ty = do
eres <- inferC ctx (subjMult sg qty) rhs eres <- inferC ctx (subjMult sg qty) rhs
qout <- checkC (extendTy (qty * sg.qty) body.name eres.type ctx) sg qout <- checkC (extendTyLet (qty * sg.qty) body.name eres.type (E rhs) ctx)
body.term (weakT 1 ty) sg body.term (weakT 1 ty)
>>= popQ loc qty >>= popQ loc qty
pure $ qty * eres.qout + qout pure $ qty * eres.qout + qout
@ -338,8 +338,8 @@ mutual
pure $ lookupBound sg.qty i ctx.tctx pure $ lookupBound sg.qty i ctx.tctx
where where
lookupBound : forall n. Qty -> Var n -> TContext d n -> InferResult' d n lookupBound : forall n. Qty -> Var n -> TContext d n -> InferResult' d n
lookupBound pi VZ (ctx :< type) = lookupBound pi VZ (ctx :< var) =
InfRes {type = weakT 1 type, qout = zeroFor ctx :< pi} InfRes {type = weakT 1 var.type, qout = zeroFor ctx :< pi}
lookupBound pi (VS i) (ctx :< _) = lookupBound pi (VS i) (ctx :< _) =
let InfRes {type, qout} = lookupBound pi i ctx in let InfRes {type, qout} = lookupBound pi i ctx in
InfRes {type = weakT 1 type, qout = qout :< Zero} InfRes {type = weakT 1 type, qout = qout :< Zero}

View file

@ -70,7 +70,7 @@ parameters (defs : Definitions) {auto _ : (Has ErrorEff fs, Has NameGen fs)}
parameters (ctx : TyContext d n) (sg : SQty) (loc : Loc) parameters (ctx : TyContext d n) (sg : SQty) (loc : Loc)
export covering export covering
whnf : {0 isRedex : RedexTest tm} -> CanWhnf tm isRedex => whnf : {0 isRedex : RedexTest tm} -> CanWhnf tm isRedex =>
tm d n -> Eff fs (NonRedex tm d n defs sg) tm d n -> Eff fs (NonRedex tm d n defs ? sg)
whnf tm = do whnf tm = do
let Val n = ctx.termLen; Val d = ctx.dimLen let Val n = ctx.termLen; Val d = ctx.dimLen
res <- lift $ runExcept $ whnf defs (toWhnfContext ctx) sg tm res <- lift $ runExcept $ whnf defs (toWhnfContext ctx) sg tm
@ -120,7 +120,7 @@ parameters (defs : Definitions) {auto _ : (Has ErrorEff fs, Has NameGen fs)}
parameters (ctx : EqContext n) (sg : SQty) (loc : Loc) parameters (ctx : EqContext n) (sg : SQty) (loc : Loc)
export covering export covering
whnf : {0 isRedex : RedexTest tm} -> CanWhnf tm isRedex => whnf : {0 isRedex : RedexTest tm} -> CanWhnf tm isRedex =>
tm 0 n -> Eff fs (NonRedex tm 0 n defs sg) tm 0 n -> Eff fs (NonRedex tm 0 n defs ? sg)
whnf tm = do whnf tm = do
res <- lift $ runExcept $ whnf defs (toWhnfContext ctx) sg tm res <- lift $ runExcept $ whnf defs (toWhnfContext ctx) sg tm
rethrow res rethrow res

View file

@ -14,9 +14,27 @@ public export
QContext : Nat -> Type QContext : Nat -> Type
QContext = Context' Qty QContext = Context' Qty
public export
record LocalVar d n where
constructor MkLocal
type : Term d n
term : Maybe (Term d n) -- if from a `let`
%runElab deriveIndexed "LocalVar" [Show]
export
CanShift (LocalVar d) where
l // by = {type $= (// by), term $= map (// by)} l
namespace LocalVar
subD : DSubst d1 d2 -> LocalVar d1 n -> LocalVar d2 n
subD th = {type $= (// th), term $= map (// th)}
weakD : LocalVar d n -> LocalVar (S d) n
weakD = subD $ shift 1
public export public export
TContext : TermLike TContext : TermLike
TContext d = Context (Term d) TContext d = Context (\n => LocalVar d n)
public export public export
QOutput : Nat -> Type QOutput : Nat -> Type
@ -67,10 +85,6 @@ record WhnfContext d n where
%runElab deriveIndexed "WhnfContext" [Show] %runElab deriveIndexed "WhnfContext" [Show]
namespace TContext namespace TContext
export %inline
pushD : TContext d n -> TContext (S d) n
pushD tel = map (// shift 1) tel
export %inline export %inline
zeroFor : Context tm n -> QOutput n zeroFor : Context tm n -> QOutput n
zeroFor ctx = Zero <$ ctx zeroFor ctx = Zero <$ ctx
@ -89,6 +103,14 @@ public export
CtxExtension0 : Nat -> Nat -> Nat -> Type CtxExtension0 : Nat -> Nat -> Nat -> Type
CtxExtension0 d = Telescope ((BindName,) . Term d) CtxExtension0 d = Telescope ((BindName,) . Term d)
public export
CtxExtensionLet : Nat -> Nat -> Nat -> Type
CtxExtensionLet d = Telescope ((Qty, BindName,) . LocalVar d)
public export
CtxExtensionLet0 : Nat -> Nat -> Nat -> Type
CtxExtensionLet0 d = Telescope ((BindName,) . LocalVar d)
namespace TyContext namespace TyContext
public export %inline public export %inline
empty : TyContext 0 0 empty : TyContext 0 0
@ -100,21 +122,34 @@ namespace TyContext
null ctx = null ctx.dnames && null ctx.tnames null ctx = null ctx.dnames && null ctx.tnames
export %inline export %inline
extendTyN : CtxExtension d n1 n2 -> TyContext d n1 -> TyContext d n2 extendTyLetN : CtxExtensionLet d n1 n2 -> TyContext d n1 -> TyContext d n2
extendTyN xss (MkTyContext {termLen, dctx, dnames, tctx, tnames, qtys}) = extendTyLetN xss (MkTyContext {termLen, dctx, dnames, tctx, tnames, qtys}) =
let (qs, xs, ss) = unzip3 xss in let (qs, xs, ls) = unzip3 xss in
MkTyContext { MkTyContext {
dctx, dnames, dctx, dnames,
termLen = extendLen xss termLen, termLen = extendLen xss termLen,
tctx = tctx . ss, tctx = tctx . ls,
tnames = tnames . xs, tnames = tnames . xs,
qtys = qtys . qs qtys = qtys . qs
} }
export %inline
extendTyN : CtxExtension d n1 n2 -> TyContext d n1 -> TyContext d n2
extendTyN = extendTyLetN . map (\(q, x, s) => (q, x, MkLocal s Nothing))
export %inline
extendTyLetN0 : CtxExtensionLet0 d n1 n2 -> TyContext d n1 -> TyContext d n2
extendTyLetN0 xss = extendTyLetN (map (Zero,) xss)
export %inline export %inline
extendTyN0 : CtxExtension0 d n1 n2 -> TyContext d n1 -> TyContext d n2 extendTyN0 : CtxExtension0 d n1 n2 -> TyContext d n1 -> TyContext d n2
extendTyN0 xss = extendTyN (map (Zero,) xss) extendTyN0 xss = extendTyN (map (Zero,) xss)
export %inline
extendTyLet : Qty -> BindName -> Term d n -> Term d n ->
TyContext d n -> TyContext d (S n)
extendTyLet q x s e = extendTyLetN [< (q, x, MkLocal s (Just e))]
export %inline export %inline
extendTy : Qty -> BindName -> Term d n -> TyContext d n -> TyContext d (S n) extendTy : Qty -> BindName -> Term d n -> TyContext d n -> TyContext d (S n)
extendTy q x s = extendTyN [< (q, x, s)] extendTy q x s = extendTyN [< (q, x, s)]
@ -130,7 +165,7 @@ namespace TyContext
dctx = dctx :<? Nothing, dctx = dctx :<? Nothing,
dnames = dnames :< x, dnames = dnames :< x,
dimLen = [|S dimLen|], dimLen = [|S dimLen|],
tctx = pushD tctx, tctx = map weakD tctx,
tnames, qtys tnames, qtys
} }
@ -169,7 +204,7 @@ makeEqContext' ctx th = MkEqContext {
termLen = ctx.termLen, termLen = ctx.termLen,
dassign = makeDAssign th, dassign = makeDAssign th,
dnames = ctx.dnames, dnames = ctx.dnames,
tctx = map (// th) ctx.tctx, tctx = map (subD th) ctx.tctx,
tnames = ctx.tnames, tnames = ctx.tnames,
qtys = ctx.qtys qtys = ctx.qtys
} }
@ -191,21 +226,34 @@ namespace EqContext
null ctx = null ctx.dnames && null ctx.tnames null ctx = null ctx.dnames && null ctx.tnames
export %inline export %inline
extendTyN : CtxExtension 0 n1 n2 -> EqContext n1 -> EqContext n2 extendTyLetN : CtxExtensionLet 0 n1 n2 -> EqContext n1 -> EqContext n2
extendTyN xss (MkEqContext {termLen, dassign, dnames, tctx, tnames, qtys}) = extendTyLetN xss (MkEqContext {termLen, dassign, dnames, tctx, tnames, qtys}) =
let (qs, xs, ss) = unzip3 xss in let (qs, xs, ls) = unzip3 xss in
MkEqContext { MkEqContext {
termLen = extendLen xss termLen, termLen = extendLen xss termLen,
tctx = tctx . ss, tctx = tctx . ls,
tnames = tnames . xs, tnames = tnames . xs,
qtys = qtys . qs, qtys = qtys . qs,
dassign, dnames dassign, dnames
} }
export %inline
extendTyN : CtxExtension 0 n1 n2 -> EqContext n1 -> EqContext n2
extendTyN = extendTyLetN . map (\(q, x, s) => (q, x, MkLocal s Nothing))
export %inline
extendTyLetN0 : CtxExtensionLet0 0 n1 n2 -> EqContext n1 -> EqContext n2
extendTyLetN0 xss = extendTyLetN (map (Zero,) xss)
export %inline export %inline
extendTyN0 : CtxExtension0 0 n1 n2 -> EqContext n1 -> EqContext n2 extendTyN0 : CtxExtension0 0 n1 n2 -> EqContext n1 -> EqContext n2
extendTyN0 xss = extendTyN (map (Zero,) xss) extendTyN0 xss = extendTyN (map (Zero,) xss)
export %inline
extendTyLet : Qty -> BindName -> Term 0 n -> Term 0 n ->
EqContext n -> EqContext (S n)
extendTyLet q x s e = extendTyLetN [< (q, x, MkLocal s (Just e))]
export %inline export %inline
extendTy : Qty -> BindName -> Term 0 n -> EqContext n -> EqContext (S n) extendTy : Qty -> BindName -> Term 0 n -> EqContext n -> EqContext (S n)
extendTy q x s = extendTyN [< (q, x, s)] extendTy q x s = extendTyN [< (q, x, s)]
@ -225,7 +273,7 @@ namespace EqContext
toTyContext (MkEqContext {dimLen, dassign, dnames, tctx, tnames, qtys}) = toTyContext (MkEqContext {dimLen, dassign, dnames, tctx, tnames, qtys}) =
MkTyContext { MkTyContext {
dctx = fromGround dassign, dctx = fromGround dassign,
tctx = map (// shift0 dimLen) tctx, tctx = map (subD $ shift0 dimLen) tctx,
dnames, tnames, qtys dnames, tnames, qtys
} }
@ -252,7 +300,7 @@ namespace WhnfContext
MkWhnfContext { MkWhnfContext {
dimLen = [|Val s + dimLen|], dimLen = [|Val s + dimLen|],
dnames = dnames ++ toSnocVect' ns, dnames = dnames ++ toSnocVect' ns,
tctx = dweakT s <$> tctx, tctx = map (subD $ shift s) tctx,
tnames tnames
} }
@ -264,10 +312,20 @@ namespace WhnfContext
private private
prettyTContextElt : {opts : _} -> prettyTContextElt : {opts : _} ->
BContext d -> BContext n -> BContext d -> BContext n ->
Qty -> BindName -> Term d n -> Eff Pretty (Doc opts) Qty -> BindName -> LocalVar d n -> Eff Pretty (Doc opts)
prettyTContextElt dnames tnames q x s = prettyTContextElt dnames tnames q x s = do
pure $ hsep [hcat [!(prettyQty q), !dotD, !(prettyTBind x)], !colonD, q <- prettyQty q; dot <- dotD
!(withPrec Outer $ prettyTerm dnames tnames s)] x <- prettyTBind x; colon <- colonD
ty <- withPrec Outer $ prettyTerm dnames tnames s.type; eq <- cstD
tm <- traverse (withPrec Outer . prettyTerm dnames tnames) s.term
d <- askAt INDENT
let qx = hcat [q, dot, x]
pure $ case tm of
Nothing =>
ifMultiline (hsep [qx, colon, ty]) (vsep [qx, indent d $ colon <++> ty])
Just tm =>
ifMultiline (hsep [qx, colon, ty, eq, tm])
(vsep [qx, indent d $ colon <++> ty, indent d $ eq <++> tm])
private private
prettyTContext' : {opts : _} -> prettyTContext' : {opts : _} ->

View file

@ -88,16 +88,16 @@ parameters {opts : LayoutOpts} (showContext : Bool)
public export public export
Erase : List (Type -> Type) Erase : List (Type -> Type)
Erase = [Except Error, DefsReader, NameGen] Erase = [Except Error, NameGen]
export export
liftWhnf : Eff Whnf a -> Eff Erase a liftWhnf : Eff Whnf a -> Eff Erase a
liftWhnf act = lift $ wrapErr WrapTypeError act liftWhnf act = lift $ wrapErr WrapTypeError act
export covering export covering
computeElimType : ErasureContext d n -> SQty -> Elim d n -> Eff Erase (Term d n) computeElimType : Q.Definitions -> ErasureContext d n -> SQty ->
computeElimType ctx sg e = do Elim d n -> Eff Erase (Term d n)
defs <- askAt DEFS computeElimType defs ctx sg e = do
let ctx = toWhnfContext ctx let ctx = toWhnfContext ctx
liftWhnf $ do liftWhnf $ do
Element e _ <- whnf defs ctx sg e Element e _ <- whnf defs ctx sg e
@ -106,10 +106,11 @@ computeElimType ctx sg e = do
private %macro private %macro
wrapExpect : TTImp -> wrapExpect : TTImp ->
Elab (TyContext d n -> Loc -> Term d n -> Eff Erase a) Elab (Q.Definitions -> TyContext d n -> Loc ->
Term d n -> Eff Erase a)
wrapExpect f_ = do wrapExpect f_ = do
f <- check `(\x => ~(f_) x) f <- check `(\x => ~(f_) x)
pure $ \ctx, loc, s => liftWhnf $ f !(askAt DEFS) ctx SZero loc s pure $ \defs, ctx, loc, s => liftWhnf $ f defs ctx SZero loc s
public export public export
@ -119,27 +120,36 @@ record EraseElimResult d n where
term : U.Term n term : U.Term n
export covering
eraseTerm' : (defs : Q.Definitions) -> (ctx : ErasureContext d n) ->
(ty, tm : Q.Term d n) ->
(0 _ : NotRedex defs (toWhnfContext ctx) SZero ty) =>
Eff Erase (U.Term n)
-- "Ψ | Γ | Σ ⊢ s ⤋ s' ⇐ A" for `s' <- eraseTerm (Ψ,Γ,Σ) A s` -- "Ψ | Γ | Σ ⊢ s ⤋ s' ⇐ A" for `s' <- eraseTerm (Ψ,Γ,Σ) A s`
-- --
-- in the below comments, Ψ, Γ, Σ are implicit and -- in the below comments, Ψ, Γ, Σ are implicit and
-- only their extensions are written -- only their extensions are written
export covering export covering
eraseTerm : ErasureContext d n -> eraseTerm : Q.Definitions -> ErasureContext d n ->
(ty, tm : Q.Term d n) -> Eff Erase (U.Term n) (ty, tm : Q.Term d n) -> Eff Erase (U.Term n)
eraseTerm defs ctx ty tm = do
Element ty _ <- liftWhnf $ Interface.whnf defs (toWhnfContext ctx) SZero ty
eraseTerm' defs ctx ty tm
-- "Ψ | Γ | Σ ⊢ e ⤋ e' ⇒ A" for `EraRes A e' <- eraseElim (Ψ,Γ,Σ) e` -- "Ψ | Γ | Σ ⊢ e ⤋ e' ⇒ A" for `EraRes A e' <- eraseElim (Ψ,Γ,Σ) e`
export covering export covering
eraseElim : ErasureContext d n -> (tm : Q.Elim d n) -> eraseElim : Q.Definitions -> ErasureContext d n -> (tm : Q.Elim d n) ->
Eff Erase (EraseElimResult d n) Eff Erase (EraseElimResult d n)
eraseTerm ctx _ s@(TYPE {}) = eraseTerm' defs ctx _ s@(TYPE {}) =
throw $ CompileTimeOnly ctx s throw $ CompileTimeOnly ctx s
eraseTerm ctx _ s@(IOState {}) = eraseTerm' defs ctx _ s@(IOState {}) =
throw $ CompileTimeOnly ctx s throw $ CompileTimeOnly ctx s
eraseTerm ctx _ s@(Pi {}) = eraseTerm' defs ctx _ s@(Pi {}) =
throw $ CompileTimeOnly ctx s throw $ CompileTimeOnly ctx s
-- x : A | 0.x ⊢ s ⤋ s' ⇐ B -- x : A | 0.x ⊢ s ⤋ s' ⇐ B
@ -149,66 +159,66 @@ eraseTerm ctx _ s@(Pi {}) =
-- x : A | π.x ⊢ s ⤋ s' ⇐ B π ≠ 0 -- x : A | π.x ⊢ s ⤋ s' ⇐ B π ≠ 0
-- ---------------------------------------- -- ----------------------------------------
-- (λ x ⇒ s) ⤋ (λ x ⇒ s') ⇐ π.(x : A) → B -- (λ x ⇒ s) ⤋ (λ x ⇒ s') ⇐ π.(x : A) → B
eraseTerm ctx ty (Lam body loc) = do eraseTerm' defs ctx ty (Lam body loc) = do
let x = body.name let x = body.name
(qty, arg, res) <- wrapExpect `(expectPi) ctx loc ty (qty, arg, res) <- wrapExpect `(expectPi) defs ctx loc ty
body <- eraseTerm (extendTy qty x arg ctx) res.term body.term body <- eraseTerm defs (extendTy qty x arg ctx) res.term body.term
pure $ case isErased qty of pure $ case isErased qty of
Kept => U.Lam x body loc Kept => U.Lam x body loc
Erased => sub1 (Erased loc) body Erased => sub1 (Erased loc) body
eraseTerm ctx _ s@(Sig {}) = eraseTerm' defs ctx _ s@(Sig {}) =
throw $ CompileTimeOnly ctx s throw $ CompileTimeOnly ctx s
-- s ⤋ s' ⇐ A t ⤋ t' ⇐ B[s/x] -- s ⤋ s' ⇐ A t ⤋ t' ⇐ B[s/x]
-- --------------------------------- -- ---------------------------------
-- (s, t) ⤋ (s', t') ⇐ (x : A) × B -- (s, t) ⤋ (s', t') ⇐ (x : A) × B
eraseTerm ctx ty (Pair fst snd loc) = do eraseTerm' defs ctx ty (Pair fst snd loc) = do
(a, b) <- wrapExpect `(expectSig) ctx loc ty (a, b) <- wrapExpect `(expectSig) defs ctx loc ty
let b = sub1 b (Ann fst a a.loc) let b = sub1 b (Ann fst a a.loc)
fst <- eraseTerm ctx a fst fst <- eraseTerm defs ctx a fst
snd <- eraseTerm ctx b snd snd <- eraseTerm defs ctx b snd
pure $ Pair fst snd loc pure $ Pair fst snd loc
eraseTerm ctx _ s@(Enum {}) = eraseTerm' defs ctx _ s@(Enum {}) =
throw $ CompileTimeOnly ctx s throw $ CompileTimeOnly ctx s
-- '𝐚 ⤋ '𝐚 ⇐ {⋯} -- '𝐚 ⤋ '𝐚 ⇐ {⋯}
eraseTerm ctx _ (Tag tag loc) = eraseTerm' defs ctx _ (Tag tag loc) =
pure $ Tag tag loc pure $ Tag tag loc
eraseTerm ctx ty s@(Eq {}) = eraseTerm' defs ctx ty s@(Eq {}) =
throw $ CompileTimeOnly ctx s throw $ CompileTimeOnly ctx s
-- 𝑖 ⊢ s ⤋ s' ⇐ A -- 𝑖 ⊢ s ⤋ s' ⇐ A
-- --------------------------------- -- ---------------------------------
-- (δ 𝑖 ⇒ s) ⤋ s' ⇐ Eq (𝑖 ⇒ A) l r -- (δ 𝑖 ⇒ s) ⤋ s' ⇐ Eq (𝑖 ⇒ A) l r
eraseTerm ctx ty (DLam body loc) = do eraseTerm' defs ctx ty (DLam body loc) = do
a <- fst <$> wrapExpect `(expectEq) ctx loc ty a <- fst <$> wrapExpect `(expectEq) defs ctx loc ty
eraseTerm (extendDim body.name ctx) a.term body.term eraseTerm defs (extendDim body.name ctx) a.term body.term
eraseTerm ctx _ s@(NAT {}) = eraseTerm' defs ctx _ s@(NAT {}) =
throw $ CompileTimeOnly ctx s throw $ CompileTimeOnly ctx s
-- n ⤋ n ⇐ -- n ⤋ n ⇐
eraseTerm _ _ (Nat n loc) = eraseTerm' _ _ _ (Nat n loc) =
pure $ Nat n loc pure $ Nat n loc
-- s ⤋ s' ⇐ -- s ⤋ s' ⇐
-- ----------------------- -- -----------------------
-- succ s ⤋ succ s' ⇐ -- succ s ⤋ succ s' ⇐
eraseTerm ctx ty (Succ p loc) = do eraseTerm' defs ctx ty (Succ p loc) = do
p <- eraseTerm ctx ty p p <- eraseTerm defs ctx ty p
pure $ Succ p loc pure $ Succ p loc
eraseTerm ctx ty s@(STRING {}) = eraseTerm' defs ctx ty s@(STRING {}) =
throw $ CompileTimeOnly ctx s throw $ CompileTimeOnly ctx s
-- s ⤋ s ⇐ String -- s ⤋ s ⇐ String
eraseTerm _ _ (Str s loc) = eraseTerm' _ _ _ (Str s loc) =
pure $ Str s loc pure $ Str s loc
eraseTerm ctx ty s@(BOX {}) = eraseTerm' defs ctx ty s@(BOX {}) =
throw $ CompileTimeOnly ctx s throw $ CompileTimeOnly ctx s
-- [s] ⤋ ⌷ ⇐ [0.A] -- [s] ⤋ ⌷ ⇐ [0.A]
@ -216,48 +226,49 @@ eraseTerm ctx ty s@(BOX {}) =
-- π ≠ 0 s ⤋ s' ⇐ A -- π ≠ 0 s ⤋ s' ⇐ A
-- -------------------- -- --------------------
-- [s] ⤋ s' ⇐ [π.A] -- [s] ⤋ s' ⇐ [π.A]
eraseTerm ctx ty (Box val loc) = do eraseTerm' defs ctx ty (Box val loc) = do
(qty, a) <- wrapExpect `(expectBOX) ctx loc ty (qty, a) <- wrapExpect `(expectBOX) defs ctx loc ty
case isErased qty of case isErased qty of
Erased => pure $ Erased loc Erased => pure $ Erased loc
Kept => eraseTerm ctx a val Kept => eraseTerm defs ctx a val
-- s ⤋ s' ⇐ A -- s ⤋ s' ⇐ A
-- --------------------------------- -- ---------------------------------
-- let0 x = e in s ⤋ s'[⌷/x] ⇐ A -- let0 x = e in s ⤋ s'[⌷/x] ⇐ A
-- --
-- e ⤋ e' s ⤋ s' ⇐ A π ≠ 0 -- e ⤋ e' ⇒ E π ≠ 0
-- x : E ≔ e ⊢ s ⤋ s' ⇐ A
-- ------------------------------------- -- -------------------------------------
-- letπ x = e in s ⤋ let x = e' in s' -- letπ x = e in s ⤋ let x = e' in s'
eraseTerm ctx ty (Let pi e s loc) = do eraseTerm' defs ctx ty (Let pi e s loc) = do
let x = s.name let x = s.name
case isErased pi of case isErased pi of
Erased => do Erased => do
ety <- computeElimType ctx SZero e ety <- computeElimType defs ctx SZero e
s' <- eraseTerm (extendTy pi x ety ctx) (weakT 1 ty) s.term s' <- eraseTerm defs (extendTyLet pi x ety (E e) ctx) (weakT 1 ty) s.term
pure $ sub1 (Erased e.loc) s' pure $ sub1 (Erased e.loc) s'
Kept => do Kept => do
EraRes ety e' <- eraseElim ctx e EraRes ety e' <- eraseElim defs ctx e
s' <- eraseTerm (extendTy pi x ety ctx) (weakT 1 ty) s.term s' <- eraseTerm defs (extendTyLet pi x ety (E e) ctx) (weakT 1 ty) s.term
pure $ Let x e' s' loc pure $ Let x e' s' loc
-- e ⤋ e' ⇒ B -- e ⤋ e' ⇒ B
-- ------------ -- ------------
-- e ⤋ e' ⇐ A -- e ⤋ e' ⇐ A
eraseTerm ctx ty (E e) = eraseTerm' defs ctx ty (E e) =
term <$> eraseElim ctx e term <$> eraseElim defs ctx e
eraseTerm ctx ty (CloT (Sub term th)) = eraseTerm' defs ctx ty (CloT (Sub term th)) =
eraseTerm ctx ty $ pushSubstsWith' id th term eraseTerm defs ctx ty $ pushSubstsWith' id th term
eraseTerm ctx ty (DCloT (Sub term th)) = eraseTerm' defs ctx ty (DCloT (Sub term th)) =
eraseTerm ctx ty $ pushSubstsWith' th id term eraseTerm defs ctx ty $ pushSubstsWith' th id term
-- defω x : A = s -- defω x : A = s
-- ---------------- -- ----------------
-- x ⤋ x ⇒ A -- x ⤋ x ⇒ A
eraseElim ctx e@(F x u loc) = do eraseElim defs ctx e@(F x u loc) = do
Just def <- asksAt DEFS $ lookup x let Just def = lookup x defs
| Nothing => throw $ notInScope loc x | Nothing => throw $ notInScope loc x
case isErased def.qty.qty of case isErased def.qty.qty of
Erased => throw $ CompileTimeOnly ctx $ E e Erased => throw $ CompileTimeOnly ctx $ E e
@ -266,10 +277,10 @@ eraseElim ctx e@(F x u loc) = do
-- π.x ∈ Σ π ≠ 0 -- π.x ∈ Σ π ≠ 0
-- ----------------- -- -----------------
-- x ⤋ x ⇒ A -- x ⤋ x ⇒ A
eraseElim ctx e@(B i loc) = do eraseElim defs ctx e@(B i loc) = do
case isErased $ ctx.qtys !!! i of case isErased $ ctx.qtys !!! i of
Erased => throw $ CompileTimeOnly ctx $ E e Erased => throw $ CompileTimeOnly ctx $ E e
Kept => pure $ EraRes (ctx.tctx !! i) $ B i loc Kept => pure $ EraRes (ctx.tctx !! i).type $ B i loc
-- f ⤋ f' ⇒ π.(x : A) → B s ⤋ s' ⇒ A π ≠ 0 -- f ⤋ f' ⇒ π.(x : A) → B s ⤋ s' ⇒ A π ≠ 0
-- --------------------------------------------- -- ---------------------------------------------
@ -278,13 +289,13 @@ eraseElim ctx e@(B i loc) = do
-- f ⤋ f' ⇒ 0.(x : A) → B -- f ⤋ f' ⇒ 0.(x : A) → B
-- ------------------------- -- -------------------------
-- f s ⤋ f' ⇒ B[s/x] -- f s ⤋ f' ⇒ B[s/x]
eraseElim ctx (App fun arg loc) = do eraseElim defs ctx (App fun arg loc) = do
efun <- eraseElim ctx fun efun <- eraseElim defs ctx fun
(qty, targ, tres) <- wrapExpect `(expectPi) ctx loc efun.type (qty, targ, tres) <- wrapExpect `(expectPi) defs ctx loc efun.type
let ty = sub1 tres (Ann arg targ arg.loc) let ty = sub1 tres (Ann arg targ arg.loc)
case isErased qty of case isErased qty of
Erased => pure $ EraRes ty efun.term Erased => pure $ EraRes ty efun.term
Kept => do arg <- eraseTerm ctx targ arg Kept => do arg <- eraseTerm defs ctx targ arg
pure $ EraRes ty $ App efun.term arg loc pure $ EraRes ty $ App efun.term arg loc
-- e ⇒ (x : A) × B -- e ⇒ (x : A) × B
@ -298,16 +309,16 @@ eraseElim ctx (App fun arg loc) = do
-- (caseρ e return z ⇒ R of {(x, y) ⇒ s}) ⤋ -- (caseρ e return z ⇒ R of {(x, y) ⇒ s}) ⤋
-- ⤋ -- ⤋
-- let xy = e' in let x = fst xy in let y = snd xy in s' ⇒ R[e/z] -- let xy = e' in let x = fst xy in let y = snd xy in s' ⇒ R[e/z]
eraseElim ctx (CasePair qty pair ret body loc) = do eraseElim defs ctx (CasePair qty pair ret body loc) = do
let [< x, y] = body.names let [< x, y] = body.names
case isErased qty of case isErased qty of
Kept => do Kept => do
EraRes ety eterm <- eraseElim ctx pair EraRes ety eterm <- eraseElim defs ctx pair
let ty = sub1 (ret // shift 2) $ let ty = sub1 (ret // shift 2) $
Ann (Pair (BVT 0 loc) (BVT 1 loc) loc) (weakT 2 ety) loc Ann (Pair (BVT 0 loc) (BVT 1 loc) loc) (weakT 2 ety) loc
(tfst, tsnd) <- wrapExpect `(expectSig) ctx loc ety (tfst, tsnd) <- wrapExpect `(expectSig) defs ctx loc ety
let ctx' = extendTyN [< (qty, x, tfst), (qty, y, tsnd.term)] ctx let ctx' = extendTyN [< (qty, x, tfst), (qty, y, tsnd.term)] ctx
body' <- eraseTerm ctx' ty body.term body' <- eraseTerm defs ctx' ty body.term
p <- mnb "p" loc p <- mnb "p" loc
pure $ EraRes (sub1 ret pair) $ pure $ EraRes (sub1 ret pair) $
Let p eterm Let p eterm
@ -316,28 +327,28 @@ eraseElim ctx (CasePair qty pair ret body loc) = do
(body' // (B VZ loc ::: B (VS VZ) loc ::: shift 3)) (body' // (B VZ loc ::: B (VS VZ) loc ::: shift 3))
loc) loc) loc loc) loc) loc
Erased => do Erased => do
ety <- computeElimType ctx SOne pair ety <- computeElimType defs ctx SOne pair
let ty = sub1 (ret // shift 2) $ let ty = sub1 (ret // shift 2) $
Ann (Pair (BVT 0 loc) (BVT 1 loc) loc) (weakT 2 ety) loc Ann (Pair (BVT 0 loc) (BVT 1 loc) loc) (weakT 2 ety) loc
(tfst, tsnd) <- wrapExpect `(expectSig) ctx loc ety (tfst, tsnd) <- wrapExpect `(expectSig) defs ctx loc ety
let ctx' = extendTyN0 [< (x, tfst), (y, tsnd.term)] ctx let ctx' = extendTyN0 [< (x, tfst), (y, tsnd.term)] ctx
body' <- eraseTerm ctx' ty body.term body' <- eraseTerm defs ctx' ty body.term
pure $ EraRes (sub1 ret pair) $ subN [< Erased loc, Erased loc] body' pure $ EraRes (sub1 ret pair) $ subN [< Erased loc, Erased loc] body'
-- e ⤋ e' ⇒ (x : A) × B -- e ⤋ e' ⇒ (x : A) × B
-- ---------------------- -- ----------------------
-- fst e ⤋ fst e' ⇒ A -- fst e ⤋ fst e' ⇒ A
eraseElim ctx (Fst pair loc) = do eraseElim defs ctx (Fst pair loc) = do
epair <- eraseElim ctx pair epair <- eraseElim defs ctx pair
a <- fst <$> wrapExpect `(expectSig) ctx loc epair.type a <- fst <$> wrapExpect `(expectSig) defs ctx loc epair.type
pure $ EraRes a $ Fst epair.term loc pure $ EraRes a $ Fst epair.term loc
-- e ⤋ e' ⇒ (x : A) × B -- e ⤋ e' ⇒ (x : A) × B
-- ----------------------------- -- -----------------------------
-- snd e ⤋ snd e' ⇒ B[fst e/x] -- snd e ⤋ snd e' ⇒ B[fst e/x]
eraseElim ctx (Snd pair loc) = do eraseElim defs ctx (Snd pair loc) = do
epair <- eraseElim ctx pair epair <- eraseElim defs ctx pair
b <- snd <$> wrapExpect `(expectSig) ctx loc epair.type b <- snd <$> wrapExpect `(expectSig) defs ctx loc epair.type
pure $ EraRes (sub1 b (Fst pair loc)) $ Snd epair.term loc pure $ EraRes (sub1 b (Fst pair loc)) $ Snd epair.term loc
-- caseρ e return z ⇒ R of {} ⤋ absurd ⇒ R[e/z] -- caseρ e return z ⇒ R of {} ⤋ absurd ⇒ R[e/z]
@ -349,23 +360,23 @@ eraseElim ctx (Snd pair loc) = do
-- e ⤋ e' ⇒ A sᵢ ⤋ s'ᵢ ⇐ R[𝐚ᵢ/z] ρ ≠ 0 i ≠ 0 -- e ⤋ e' ⇒ A sᵢ ⤋ s'ᵢ ⇐ R[𝐚ᵢ/z] ρ ≠ 0 i ≠ 0
-- ------------------------------------------------------------------- -- -------------------------------------------------------------------
-- caseρ e return z ⇒ R of {𝐚ᵢ ⇒ sᵢ} ⤋ case e of {𝐚ᵢ ⇒ s'ᵢ} ⇒ R[e/z] -- caseρ e return z ⇒ R of {𝐚ᵢ ⇒ sᵢ} ⤋ case e of {𝐚ᵢ ⇒ s'ᵢ} ⇒ R[e/z]
eraseElim ctx e@(CaseEnum qty tag ret arms loc) = do eraseElim defs ctx e@(CaseEnum qty tag ret arms loc) = do
let ty = sub1 ret tag let ty = sub1 ret tag
case isErased qty of case isErased qty of
Erased => case SortedMap.toList arms of Erased => case SortedMap.toList arms of
[] => pure $ EraRes ty $ Absurd loc [] => pure $ EraRes ty $ Absurd loc
[(t, rhs)] => do [(t, rhs)] => do
let ty' = sub1 ret (Ann (Tag t loc) (enum [t] loc) loc) let ty' = sub1 ret (Ann (Tag t loc) (enum [t] loc) loc)
rhs' <- eraseTerm ctx ty' rhs rhs' <- eraseTerm defs ctx ty' rhs
pure $ EraRes ty rhs' pure $ EraRes ty rhs'
_ => throw $ CompileTimeOnly ctx $ E e _ => throw $ CompileTimeOnly ctx $ E e
Kept => case List1.fromList $ SortedMap.toList arms of Kept => case List1.fromList $ SortedMap.toList arms of
Nothing => pure $ EraRes ty $ Absurd loc Nothing => pure $ EraRes ty $ Absurd loc
Just arms => do Just arms => do
etag <- eraseElim ctx tag etag <- eraseElim defs ctx tag
arms <- for arms $ \(t, rhs) => do arms <- for arms $ \(t, rhs) => do
let ty' = sub1 ret (Ann (Tag t loc) etag.type loc) let ty' = sub1 ret (Ann (Tag t loc) etag.type loc)
rhs' <- eraseTerm ctx ty' rhs rhs' <- eraseTerm defs ctx ty' rhs
pure (t, rhs') pure (t, rhs')
pure $ EraRes ty $ CaseEnum etag.term arms loc pure $ EraRes ty $ CaseEnum etag.term arms loc
@ -382,12 +393,12 @@ eraseElim ctx e@(CaseEnum qty tag ret arms loc) = do
-- caseρ n return z ⇒ R of {0 ⇒ z; succ m, 0.ih ⇒ s} -- caseρ n return z ⇒ R of {0 ⇒ z; succ m, 0.ih ⇒ s}
-- ⤋ -- ⤋
-- case n' of {0 ⇒ z'; succ m ⇒ s'[⌷/ih]} ⇒ R[n/z] -- case n' of {0 ⇒ z'; succ m ⇒ s'[⌷/ih]} ⇒ R[n/z]
eraseElim ctx (CaseNat qty qtyIH nat ret zero succ loc) = do eraseElim defs ctx (CaseNat qty qtyIH nat ret zero succ loc) = do
let ty = sub1 ret nat let ty = sub1 ret nat
enat <- eraseElim ctx nat enat <- eraseElim defs ctx nat
zero <- eraseTerm ctx (sub1 ret (Ann (Zero loc) (NAT loc) loc)) zero zero <- eraseTerm defs ctx (sub1 ret (Ann (Zero loc) (NAT loc) loc)) zero
let [< p, ih] = succ.names let [< p, ih] = succ.names
succ' <- eraseTerm succ' <- eraseTerm defs
(extendTyN [< (qty, p, NAT loc), (extendTyN [< (qty, p, NAT loc),
(qtyIH, ih, sub1 (ret // shift 1) (BV 0 loc))] ctx) (qtyIH, ih, sub1 (ret // shift 1) (BV 0 loc))] ctx)
(sub1 (ret // shift 2) (Ann (Succ (BVT 1 loc) loc) (NAT loc) loc)) (sub1 (ret // shift 2) (Ann (Succ (BVT 1 loc) loc) (NAT loc) loc))
@ -404,56 +415,56 @@ eraseElim ctx (CaseNat qty qtyIH nat ret zero succ loc) = do
-- b ⇒ [π.A] x : A | 0.x ⊢ s ⤋ s' ⇐ R[[x]∷[0.A]/z] πρ = 0 -- b ⇒ [π.A] x : A | 0.x ⊢ s ⤋ s' ⇐ R[[x]∷[0.A]/z] πρ = 0
-- ------------------------------------------------------------- -- -------------------------------------------------------------
-- caseρ b return z ⇒ R of {[x] ⇒ s} ⤋ s'[⌷/x] ⇒ R[b/z] -- caseρ b return z ⇒ R of {[x] ⇒ s} ⤋ s'[⌷/x] ⇒ R[b/z]
eraseElim ctx (CaseBox qty box ret body loc) = do eraseElim defs ctx (CaseBox qty box ret body loc) = do
tbox <- computeElimType ctx SOne box -- [fixme] is there any way to avoid this? tbox <- computeElimType defs ctx SOne box
(pi, tinner) <- wrapExpect `(expectBOX) ctx loc tbox (pi, tinner) <- wrapExpect `(expectBOX) defs ctx loc tbox
let ctx' = extendTy (pi * qty) body.name tinner ctx let ctx' = extendTy (pi * qty) body.name tinner ctx
bty = sub1 (ret // shift 1) $ bty = sub1 (ret // shift 1) $
Ann (Box (BVT 0 loc) loc) (weakT 1 tbox) loc Ann (Box (BVT 0 loc) loc) (weakT 1 tbox) loc
case isErased $ qty * pi of case isErased $ qty * pi of
Kept => do Kept => do
ebox <- eraseElim ctx box ebox <- eraseElim defs ctx box
ebody <- eraseTerm ctx' bty body.term ebody <- eraseTerm defs ctx' bty body.term
pure $ EraRes (sub1 ret box) $ Let body.name ebox.term ebody loc pure $ EraRes (sub1 ret box) $ Let body.name ebox.term ebody loc
Erased => do Erased => do
body' <- eraseTerm ctx' bty body.term body' <- eraseTerm defs ctx' bty body.term
pure $ EraRes (sub1 ret box) $ body' // one (Erased loc) pure $ EraRes (sub1 ret box) $ body' // one (Erased loc)
-- f ⤋ f' ⇒ Eq (𝑖 ⇒ A) l r -- f ⤋ f' ⇒ Eq (𝑖 ⇒ A) l r
-- ------------------------------ -- ------------------------------
-- f @r ⤋ f' ⇒ Ar/𝑖 -- f @r ⤋ f' ⇒ Ar/𝑖
eraseElim ctx (DApp fun arg loc) = do eraseElim defs ctx (DApp fun arg loc) = do
efun <- eraseElim ctx fun efun <- eraseElim defs ctx fun
a <- fst <$> wrapExpect `(expectEq) ctx loc efun.type a <- fst <$> wrapExpect `(expectEq) defs ctx loc efun.type
pure $ EraRes (dsub1 a arg) efun.term pure $ EraRes (dsub1 a arg) efun.term
-- s ⤋ s' ⇐ A -- s ⤋ s' ⇐ A
-- ---------------- -- ----------------
-- s ∷ A ⤋ s' ⇒ A -- s ∷ A ⤋ s' ⇒ A
eraseElim ctx (Ann tm ty loc) = eraseElim defs ctx (Ann tm ty loc) =
EraRes ty <$> eraseTerm ctx ty tm EraRes ty <$> eraseTerm defs ctx ty tm
-- s ⤋ s' ⇐ Ap/𝑖 -- s ⤋ s' ⇐ Ap/𝑖
-- ----------------------------------- -- -----------------------------------
-- coe (𝑖 ⇒ A) @p @q s ⤋ s' ⇒ Aq/𝑖 -- coe (𝑖 ⇒ A) @p @q s ⤋ s' ⇒ Aq/𝑖
eraseElim ctx (Coe ty p q val loc) = do eraseElim defs ctx (Coe ty p q val loc) = do
val <- eraseTerm ctx (dsub1 ty p) val val <- eraseTerm defs ctx (dsub1 ty p) val
pure $ EraRes (dsub1 ty q) val pure $ EraRes (dsub1 ty q) val
-- s ⤋ s' ⇐ A -- s ⤋ s' ⇐ A
-- -------------------------------- -- --------------------------------
-- comp A @p @q s @r {⋯} ⤋ s' ⇒ A -- comp A @p @q s @r {⋯} ⤋ s' ⇒ A
eraseElim ctx (Comp ty p q val r zero one loc) = eraseElim defs ctx (Comp ty p q val r zero one loc) =
EraRes ty <$> eraseTerm ctx ty val EraRes ty <$> eraseTerm defs ctx ty val
eraseElim ctx t@(TypeCase ty ret arms def loc) = eraseElim defs ctx t@(TypeCase ty ret arms def loc) =
throw $ CompileTimeOnly ctx $ E t throw $ CompileTimeOnly ctx $ E t
eraseElim ctx (CloE (Sub term th)) = eraseElim defs ctx (CloE (Sub term th)) =
eraseElim ctx $ pushSubstsWith' id th term eraseElim defs ctx $ pushSubstsWith' id th term
eraseElim ctx (DCloE (Sub term th)) = eraseElim defs ctx (DCloE (Sub term th)) =
eraseElim ctx $ pushSubstsWith' th id term eraseElim defs ctx $ pushSubstsWith' th id term
export export
@ -539,8 +550,8 @@ trimLets (Erased loc) = Erased loc
export covering export covering
eraseDef : Name -> Q.Definition -> Eff Erase U.Definition eraseDef : Q.Definitions -> Name -> Q.Definition -> Eff Erase U.Definition
eraseDef name def@(MkDef qty type body scheme isMain loc) = eraseDef defs name def@(MkDef qty type body scheme isMain loc) =
wrapErr (WhileErasing name def) $ wrapErr (WhileErasing name def) $
case isErased qty.qty of case isErased qty.qty of
Erased => do Erased => do
@ -552,4 +563,4 @@ eraseDef name def@(MkDef qty type body scheme isMain loc) =
Nothing => case body of Nothing => case body of
Postulate => throw $ Postulate loc name Postulate => throw $ Postulate loc name
Concrete body => KeptDef isMain . trimLets <$> Concrete body => KeptDef isMain . trimLets <$>
eraseTerm empty type body eraseTerm defs empty type body

View file

@ -28,7 +28,7 @@ parameters {auto _ : CanWhnf Term Interface.isRedexT}
export covering export covering
piCoe : (ty : DScopeTerm d n) -> (p, q : Dim d) -> piCoe : (ty : DScopeTerm d n) -> (p, q : Dim d) ->
(val, s : Term d n) -> Loc -> (val, s : Term d n) -> Loc ->
Eff Whnf (Subset (Elim d n) (No . isRedexE defs sg)) Eff Whnf (Subset (Elim d n) (No . isRedexE defs ctx sg))
piCoe sty@(S [< i] ty) p q val s loc = do piCoe sty@(S [< i] ty) p q val s loc = do
-- (coe [i ⇒ π.(x : A) → B] @p @q t) s ⇝ -- (coe [i ⇒ π.(x : A) → B] @p @q t) s ⇝
-- coe [i ⇒ B[𝒔i/x] @p @q ((t ∷ (π.(x : A) → B)p/i) 𝒔p) -- coe [i ⇒ B[𝒔i/x] @p @q ((t ∷ (π.(x : A) → B)p/i) 𝒔p)
@ -49,7 +49,7 @@ parameters {auto _ : CanWhnf Term Interface.isRedexT}
sigCoe : (qty : Qty) -> sigCoe : (qty : Qty) ->
(ty : DScopeTerm d n) -> (p, q : Dim d) -> (val : Term d n) -> (ty : DScopeTerm d n) -> (p, q : Dim d) -> (val : Term d n) ->
(ret : ScopeTerm d n) -> (body : ScopeTermN 2 d n) -> Loc -> (ret : ScopeTerm d n) -> (body : ScopeTermN 2 d n) -> Loc ->
Eff Whnf (Subset (Elim d n) (No . isRedexE defs sg)) Eff Whnf (Subset (Elim d n) (No . isRedexE defs ctx sg))
sigCoe qty sty@(S [< i] ty) p q val ret body loc = do sigCoe qty sty@(S [< i] ty) p q val ret body loc = do
-- caseπ (coe [i ⇒ (x : A) × B] @p @q s) return z ⇒ C of { (a, b) ⇒ e } -- caseπ (coe [i ⇒ (x : A) × B] @p @q s) return z ⇒ C of { (a, b) ⇒ e }
-- ⇝ -- ⇝
@ -74,7 +74,7 @@ parameters {auto _ : CanWhnf Term Interface.isRedexT}
||| reduce a pair projection `Fst (Coe ty p q val) loc` ||| reduce a pair projection `Fst (Coe ty p q val) loc`
export covering export covering
fstCoe : (ty : DScopeTerm d n) -> (p, q : Dim d) -> (val : Term d n) -> fstCoe : (ty : DScopeTerm d n) -> (p, q : Dim d) -> (val : Term d n) ->
Loc -> Eff Whnf (Subset (Elim d n) (No . isRedexE defs sg)) Loc -> Eff Whnf (Subset (Elim d n) (No . isRedexE defs ctx sg))
fstCoe sty@(S [< i] ty) p q val loc = do fstCoe sty@(S [< i] ty) p q val loc = do
-- fst (coe (𝑖 ⇒ (x : A) × B) @p @q s) -- fst (coe (𝑖 ⇒ (x : A) × B) @p @q s)
-- ⇝ -- ⇝
@ -91,7 +91,7 @@ parameters {auto _ : CanWhnf Term Interface.isRedexT}
||| reduce a pair projection `Snd (Coe ty p q val) loc` ||| reduce a pair projection `Snd (Coe ty p q val) loc`
export covering export covering
sndCoe : (ty : DScopeTerm d n) -> (p, q : Dim d) -> (val : Term d n) -> sndCoe : (ty : DScopeTerm d n) -> (p, q : Dim d) -> (val : Term d n) ->
Loc -> Eff Whnf (Subset (Elim d n) (No . isRedexE defs sg)) Loc -> Eff Whnf (Subset (Elim d n) (No . isRedexE defs ctx sg))
sndCoe sty@(S [< i] ty) p q val loc = do sndCoe sty@(S [< i] ty) p q val loc = do
-- snd (coe (𝑖 ⇒ (x : A) × B) @p @q s) -- snd (coe (𝑖 ⇒ (x : A) × B) @p @q s)
-- ⇝ -- ⇝
@ -115,7 +115,7 @@ parameters {auto _ : CanWhnf Term Interface.isRedexT}
export covering export covering
eqCoe : (ty : DScopeTerm d n) -> (p, q : Dim d) -> (val : Term d n) -> eqCoe : (ty : DScopeTerm d n) -> (p, q : Dim d) -> (val : Term d n) ->
(r : Dim d) -> Loc -> (r : Dim d) -> Loc ->
Eff Whnf (Subset (Elim d n) (No . isRedexE defs sg)) Eff Whnf (Subset (Elim d n) (No . isRedexE defs ctx sg))
eqCoe sty@(S [< j] ty) p q val r loc = do eqCoe sty@(S [< j] ty) p q val r loc = do
-- (coe [j ⇒ Eq [i ⇒ A] L R] @p @q eq) @r -- (coe [j ⇒ Eq [i ⇒ A] L R] @p @q eq) @r
-- ⇝ -- ⇝
@ -133,7 +133,7 @@ parameters {auto _ : CanWhnf Term Interface.isRedexT}
boxCoe : (qty : Qty) -> boxCoe : (qty : Qty) ->
(ty : DScopeTerm d n) -> (p, q : Dim d) -> (val : Term d n) -> (ty : DScopeTerm d n) -> (p, q : Dim d) -> (val : Term d n) ->
(ret : ScopeTerm d n) -> (body : ScopeTerm d n) -> Loc -> (ret : ScopeTerm d n) -> (body : ScopeTerm d n) -> Loc ->
Eff Whnf (Subset (Elim d n) (No . isRedexE defs sg)) Eff Whnf (Subset (Elim d n) (No . isRedexE defs ctx sg))
boxCoe qty sty@(S [< i] ty) p q val ret body loc = do boxCoe qty sty@(S [< i] ty) p q val ret body loc = do
-- caseπ (coe [i ⇒ [ρ. A]] @p @q s) return z ⇒ C of { [a] ⇒ e } -- caseπ (coe [i ⇒ [ρ. A]] @p @q s) return z ⇒ C of { [a] ⇒ e }
-- ⇝ -- ⇝
@ -151,7 +151,7 @@ parameters {auto _ : CanWhnf Term Interface.isRedexT}
pushCoe : BindName -> pushCoe : BindName ->
(ty : Term (S d) n) -> (p, q : Dim d) -> (s : Term d n) -> Loc -> (ty : Term (S d) n) -> (p, q : Dim d) -> (s : Term d n) -> Loc ->
(0 pc : So (canPushCoe sg ty s)) => (0 pc : So (canPushCoe sg ty s)) =>
Eff Whnf (NonRedex Elim d n defs sg) Eff Whnf (NonRedex Elim d n defs ctx sg)
pushCoe i ty p q s loc = pushCoe i ty p q s loc =
case ty of case ty of
-- (coe ★ᵢ @_ @_ s) ⇝ (s ∷ ★ᵢ) -- (coe ★ᵢ @_ @_ s) ⇝ (s ∷ ★ᵢ)

View file

@ -14,8 +14,8 @@ export covering
computeElimType : computeElimType :
CanWhnf Term Interface.isRedexT => CanWhnf Term Interface.isRedexT =>
CanWhnf Elim Interface.isRedexE => CanWhnf Elim Interface.isRedexE =>
(defs : Definitions) -> WhnfContext d n -> (0 sg : SQty) -> (defs : Definitions) -> (ctx : WhnfContext d n) -> (0 sg : SQty) ->
(e : Elim d n) -> (0 ne : No (isRedexE defs sg e)) => (e : Elim d n) -> (0 ne : No (isRedexE defs ctx sg e)) =>
Eff Whnf (Term d n) Eff Whnf (Term d n)
@ -24,8 +24,8 @@ export covering
computeWhnfElimType0 : computeWhnfElimType0 :
CanWhnf Term Interface.isRedexT => CanWhnf Term Interface.isRedexT =>
CanWhnf Elim Interface.isRedexE => CanWhnf Elim Interface.isRedexE =>
(defs : Definitions) -> WhnfContext d n -> (0 sg : SQty) -> (defs : Definitions) -> (ctx : WhnfContext d n) -> (0 sg : SQty) ->
(e : Elim d n) -> (0 ne : No (isRedexE defs sg e)) => (e : Elim d n) -> (0 ne : No (isRedexE defs ctx sg e)) =>
Eff Whnf (Term d n) Eff Whnf (Term d n)
computeElimType defs ctx sg e = computeElimType defs ctx sg e =
@ -36,7 +36,7 @@ computeElimType defs ctx sg e =
pure $ def.typeWithAt ctx.dimLen ctx.termLen u pure $ def.typeWithAt ctx.dimLen ctx.termLen u
B i _ => B i _ =>
pure $ ctx.tctx !! i pure (ctx.tctx !! i).type
App f s loc => App f s loc =>
case !(computeWhnfElimType0 defs ctx sg f {ne = noOr1 ne}) of case !(computeWhnfElimType0 defs ctx sg f {ne = noOr1 ne}) of

View file

@ -18,13 +18,14 @@ Whnf = [Except Error, NameGen]
public export public export
0 RedexTest : TermLike -> Type 0 RedexTest : TermLike -> Type
RedexTest tm = {0 d, n : Nat} -> Definitions -> SQty -> tm d n -> Bool RedexTest tm =
{0 d, n : Nat} -> Definitions -> WhnfContext d n -> SQty -> tm d n -> Bool
public export public export
interface CanWhnf (0 tm : TermLike) (0 isRedex : RedexTest tm) | tm interface CanWhnf (0 tm : TermLike) (0 isRedex : RedexTest tm) | tm
where where
whnf : (defs : Definitions) -> (ctx : WhnfContext d n) -> (q : SQty) -> whnf : (defs : Definitions) -> (ctx : WhnfContext d n) -> (q : SQty) ->
tm d n -> Eff Whnf (Subset (tm d n) (No . isRedex defs q)) tm d n -> Eff Whnf (Subset (tm d n) (No . isRedex defs ctx q))
-- having isRedex be part of the class header, and needing to be explicitly -- having isRedex be part of the class header, and needing to be explicitly
-- quantified on every use since idris can't infer its type, is a little ugly. -- quantified on every use since idris can't infer its type, is a little ugly.
-- but none of the alternatives i've thought of so far work. e.g. in some -- but none of the alternatives i've thought of so far work. e.g. in some
@ -37,19 +38,20 @@ whnf0 defs ctx q t = fst <$> whnf defs ctx q t
public export public export
0 IsRedex, NotRedex : {isRedex : RedexTest tm} -> CanWhnf tm isRedex => 0 IsRedex, NotRedex : {isRedex : RedexTest tm} -> CanWhnf tm isRedex =>
Definitions -> SQty -> Pred (tm d n) Definitions -> WhnfContext d n -> SQty -> Pred (tm d n)
IsRedex defs q = So . isRedex defs q IsRedex defs ctx q = So . isRedex defs ctx q
NotRedex defs q = No . isRedex defs q NotRedex defs ctx q = No . isRedex defs ctx q
public export public export
0 NonRedex : (tm : TermLike) -> {isRedex : RedexTest tm} -> 0 NonRedex : (tm : TermLike) -> {isRedex : RedexTest tm} ->
CanWhnf tm isRedex => (d, n : Nat) -> CanWhnf tm isRedex => (d, n : Nat) ->
(defs : Definitions) -> SQty -> Type Definitions -> WhnfContext d n -> SQty -> Type
NonRedex tm d n defs q = Subset (tm d n) (NotRedex defs q) NonRedex tm d n defs ctx q = Subset (tm d n) (NotRedex defs ctx q)
public export %inline public export %inline
nred : {0 isRedex : RedexTest tm} -> (0 _ : CanWhnf tm isRedex) => nred : {0 isRedex : RedexTest tm} -> (0 _ : CanWhnf tm isRedex) =>
(t : tm d n) -> (0 nr : NotRedex defs q t) => NonRedex tm d n defs q (t : tm d n) -> (0 nr : NotRedex defs ctx q t) =>
NonRedex tm d n defs ctx q
nred t = Element t nr nred t = Element t nr
@ -193,50 +195,52 @@ mutual
||| a reducible elimination ||| a reducible elimination
||| |||
||| 1. a free variable, if its definition is known ||| 1. a free variable, if its definition is known
||| 2. an elimination whose head is reducible ||| 2. a bound variable pointing to a `let`
||| 3. an "active" elimination: ||| 3. an elimination whose head is reducible
||| 4. an "active" elimination:
||| an application whose head is an annotated lambda, ||| an application whose head is an annotated lambda,
||| a case expression whose head is an annotated constructor form, etc ||| a case expression whose head is an annotated constructor form, etc
||| 4. a redundant annotation, or one whose term or type is reducible ||| 5. a redundant annotation, or one whose term or type is reducible
||| 5. a coercion `coe (𝑖 ⇒ A) @p @q s` where: ||| 6. a coercion `coe (𝑖 ⇒ A) @p @q s` where:
||| a. `A` is reducible or a type constructor, or ||| a. `A` is reducible or a type constructor, or
||| b. `𝑖` is not mentioned in `A` ||| b. `𝑖` is not mentioned in `A`
||| ([fixme] should be A0/𝑖 = A1/𝑖), or ||| ([fixme] should be A0/𝑖 = A1/𝑖), or
||| c. `p = q` ||| c. `p = q`
||| 6. a composition `comp A @p @q s @r {⋯}` ||| 7. a composition `comp A @p @q s @r {⋯}`
||| where `p = q`, `r = 0`, or `r = 1` ||| where `p = q`, `r = 0`, or `r = 1`
||| 7. a closure ||| 8. a closure
public export public export
isRedexE : RedexTest Elim isRedexE : RedexTest Elim
isRedexE defs sg (F {x, u, _}) = isJust $ lookupElim0 x u defs isRedexE defs ctx sg (F {x, u, _}) = isJust $ lookupElim0 x u defs
isRedexE _ sg (B {}) = False isRedexE _ ctx sg (B {i, _}) = isJust (ctx.tctx !! i).term
isRedexE defs sg (App {fun, _}) = isRedexE defs ctx sg (App {fun, _}) =
isRedexE defs sg fun || isLamHead fun isRedexE defs ctx sg fun || isLamHead fun
isRedexE defs sg (CasePair {pair, _}) = isRedexE defs ctx sg (CasePair {pair, _}) =
isRedexE defs sg pair || isPairHead pair || isYes (sg `decEq` SZero) isRedexE defs ctx sg pair || isPairHead pair || isYes (sg `decEq` SZero)
isRedexE defs sg (Fst pair _) = isRedexE defs ctx sg (Fst pair _) =
isRedexE defs sg pair || isPairHead pair isRedexE defs ctx sg pair || isPairHead pair
isRedexE defs sg (Snd pair _) = isRedexE defs ctx sg (Snd pair _) =
isRedexE defs sg pair || isPairHead pair isRedexE defs ctx sg pair || isPairHead pair
isRedexE defs sg (CaseEnum {tag, _}) = isRedexE defs ctx sg (CaseEnum {tag, _}) =
isRedexE defs sg tag || isTagHead tag isRedexE defs ctx sg tag || isTagHead tag
isRedexE defs sg (CaseNat {nat, _}) = isRedexE defs ctx sg (CaseNat {nat, _}) =
isRedexE defs sg nat || isNatHead nat isRedexE defs ctx sg nat || isNatHead nat
isRedexE defs sg (CaseBox {box, _}) = isRedexE defs ctx sg (CaseBox {box, _}) =
isRedexE defs sg box || isBoxHead box isRedexE defs ctx sg box || isBoxHead box
isRedexE defs sg (DApp {fun, arg, _}) = isRedexE defs ctx sg (DApp {fun, arg, _}) =
isRedexE defs sg fun || isDLamHead fun || isK arg isRedexE defs ctx sg fun || isDLamHead fun || isK arg
isRedexE defs sg (Ann {tm, ty, _}) = isRedexE defs ctx sg (Ann {tm, ty, _}) =
isE tm || isRedexT defs sg tm || isRedexT defs SZero ty isE tm || isRedexT defs ctx sg tm || isRedexT defs ctx SZero ty
isRedexE defs sg (Coe {ty = S _ (N _), _}) = True isRedexE defs ctx sg (Coe {ty = S _ (N _), _}) = True
isRedexE defs sg (Coe {ty = S _ (Y ty), p, q, val, _}) = isRedexE defs ctx sg (Coe {ty = S [< i] (Y ty), p, q, val, _}) =
isRedexT defs SZero ty || canPushCoe sg ty val || isYes (p `decEqv` q) isRedexT defs (extendDim i ctx) SZero ty ||
isRedexE defs sg (Comp {ty, p, q, r, _}) = canPushCoe sg ty val || isYes (p `decEqv` q)
isRedexE defs ctx sg (Comp {ty, p, q, r, _}) =
isYes (p `decEqv` q) || isK r isYes (p `decEqv` q) || isK r
isRedexE defs sg (TypeCase {ty, ret, _}) = isRedexE defs ctx sg (TypeCase {ty, ret, _}) =
isRedexE defs sg ty || isRedexT defs sg ret || isAnnTyCon ty isRedexE defs ctx sg ty || isRedexT defs ctx sg ret || isAnnTyCon ty
isRedexE _ _ (CloE {}) = True isRedexE _ _ _ (CloE {}) = True
isRedexE _ _ (DCloE {}) = True isRedexE _ _ _ (DCloE {}) = True
||| a reducible term ||| a reducible term
||| |||
@ -248,9 +252,9 @@ mutual
||| 5. a `let` expression ||| 5. a `let` expression
public export public export
isRedexT : RedexTest Term isRedexT : RedexTest Term
isRedexT _ _ (CloT {}) = True isRedexT _ _ _ (CloT {}) = True
isRedexT _ _ (DCloT {}) = True isRedexT _ _ _ (DCloT {}) = True
isRedexT _ _ (Let {}) = True isRedexT _ _ _ (Let {}) = True
isRedexT defs sg (E {e, _}) = isAnn e || isRedexE defs sg e isRedexT defs ctx sg (E {e, _}) = isAnn e || isRedexE defs ctx sg e
isRedexT _ _ (Succ p {}) = isNatConst p isRedexT _ _ _ (Succ p {}) = isNatConst p
isRedexT _ _ _ = False isRedexT _ _ _ _ = False

View file

@ -20,7 +20,10 @@ CanWhnf Elim Interface.isRedexE where
_ | Just y = whnf defs ctx sg $ setLoc loc $ injElim ctx y _ | Just y = whnf defs ctx sg $ setLoc loc $ injElim ctx y
_ | Nothing = pure $ Element (F x u loc) $ rewrite eq in Ah _ | Nothing = pure $ Element (F x u loc) $ rewrite eq in Ah
whnf _ _ _ (B i loc) = pure $ nred $ B i loc whnf defs ctx sg (B i loc) with (ctx.tctx !! i) proof eq1
_ | l with (l.term) proof eq2
_ | Just y = whnf defs ctx sg $ Ann y l.type loc
_ | Nothing = pure $ Element (B i loc) $ rewrite eq1 in rewrite eq2 in Ah
-- ((λ x ⇒ t) ∷ (π.x : A) → B) s ⇝ t[s∷A/x] ∷ B[s∷A/x] -- ((λ x ⇒ t) ∷ (π.x : A) → B) s ⇝ t[s∷A/x] ∷ B[s∷A/x]
whnf defs ctx sg (App f s appLoc) = do whnf defs ctx sg (App f s appLoc) = do

View file

@ -35,7 +35,7 @@ parameters {auto _ : CanWhnf Term Interface.isRedexT}
||| for an elim returns a pair of type-cases that will reduce to that; ||| for an elim returns a pair of type-cases that will reduce to that;
||| for other intro forms error ||| for other intro forms error
export covering export covering
tycasePi : (t : Term d n) -> (0 tnf : No (isRedexT defs SZero t)) => tycasePi : (t : Term d n) -> (0 tnf : No (isRedexT defs ctx SZero t)) =>
Eff Whnf (Term d n, ScopeTerm d n) Eff Whnf (Term d n, ScopeTerm d n)
tycasePi (Pi {arg, res, _}) = pure (arg, res) tycasePi (Pi {arg, res, _}) = pure (arg, res)
tycasePi (E e) {tnf} = do tycasePi (E e) {tnf} = do
@ -53,7 +53,7 @@ parameters {auto _ : CanWhnf Term Interface.isRedexT}
||| for an elim returns a pair of type-cases that will reduce to that; ||| for an elim returns a pair of type-cases that will reduce to that;
||| for other intro forms error ||| for other intro forms error
export covering export covering
tycaseSig : (t : Term d n) -> (0 tnf : No (isRedexT defs SZero t)) => tycaseSig : (t : Term d n) -> (0 tnf : No (isRedexT defs ctx SZero t)) =>
Eff Whnf (Term d n, ScopeTerm d n) Eff Whnf (Term d n, ScopeTerm d n)
tycaseSig (Sig {fst, snd, _}) = pure (fst, snd) tycaseSig (Sig {fst, snd, _}) = pure (fst, snd)
tycaseSig (E e) {tnf} = do tycaseSig (E e) {tnf} = do
@ -71,7 +71,7 @@ parameters {auto _ : CanWhnf Term Interface.isRedexT}
||| for an elim returns a type-case that will reduce to that; ||| for an elim returns a type-case that will reduce to that;
||| for other intro forms error ||| for other intro forms error
export covering export covering
tycaseBOX : (t : Term d n) -> (0 tnf : No (isRedexT defs SZero t)) => tycaseBOX : (t : Term d n) -> (0 tnf : No (isRedexT defs ctx SZero t)) =>
Eff Whnf (Term d n) Eff Whnf (Term d n)
tycaseBOX (BOX {ty, _}) = pure ty tycaseBOX (BOX {ty, _}) = pure ty
tycaseBOX (E e) {tnf} = do tycaseBOX (E e) {tnf} = do
@ -83,7 +83,7 @@ parameters {auto _ : CanWhnf Term Interface.isRedexT}
||| for an elim returns five type-cases that will reduce to that; ||| for an elim returns five type-cases that will reduce to that;
||| for other intro forms error ||| for other intro forms error
export covering export covering
tycaseEq : (t : Term d n) -> (0 tnf : No (isRedexT defs SZero t)) => tycaseEq : (t : Term d n) -> (0 tnf : No (isRedexT defs ctx SZero t)) =>
Eff Whnf (Term d n, Term d n, DScopeTerm d n, Term d n, Term d n) Eff Whnf (Term d n, Term d n, DScopeTerm d n, Term d n, Term d n)
tycaseEq (Eq {ty, l, r, _}) = pure (ty.zero, ty.one, ty, l, r) tycaseEq (Eq {ty, l, r, _}) = pure (ty.zero, ty.one, ty, l, r)
tycaseEq (E e) {tnf} = do tycaseEq (E e) {tnf} = do
@ -107,7 +107,7 @@ parameters {auto _ : CanWhnf Term Interface.isRedexT}
reduceTypeCase : (ty : Term d n) -> (u : Universe) -> (ret : Term d n) -> reduceTypeCase : (ty : Term d n) -> (u : Universe) -> (ret : Term d n) ->
(arms : TypeCaseArms d n) -> (def : Term d n) -> (arms : TypeCaseArms d n) -> (def : Term d n) ->
(0 _ : So (isTyCon ty)) => Loc -> (0 _ : So (isTyCon ty)) => Loc ->
Eff Whnf (Subset (Elim d n) (No . isRedexE defs SZero)) Eff Whnf (Subset (Elim d n) (No . isRedexE defs ctx SZero))
reduceTypeCase ty u ret arms def loc = case ty of reduceTypeCase ty u ret arms def loc = case ty of
-- (type-case ★ᵢ ∷ _ return Q of { ★ ⇒ s; ⋯ }) ⇝ s ∷ Q -- (type-case ★ᵢ ∷ _ return Q of { ★ ⇒ s; ⋯ }) ⇝ s ∷ Q
TYPE {} => TYPE {} =>

View file

@ -24,13 +24,17 @@ anys : {n : Nat} -> QContext n
anys {n = 0} = [<] anys {n = 0} = [<]
anys {n = S n} = anys :< Any anys {n = S n} = anys :< Any
public export
locals : Context (Term d) n -> Context (LocalVar d) n
locals = map $ \t => MkLocal t Nothing
public export public export
ctx, ctx01 : {n : Nat} -> Context (\n => (BindName, Term 0 n)) n -> ctx, ctx01 : {n : Nat} -> Context (\n => (BindName, Term 0 n)) n ->
TyContext 0 n TyContext 0 n
ctx tel = let (ns, ts) = unzip tel in ctx tel = let (ns, ts) = unzip tel in
MkTyContext new [<] ts ns anys MkTyContext new [<] (locals ts) ns anys
ctx01 tel = let (ns, ts) = unzip tel in ctx01 tel = let (ns, ts) = unzip tel in
MkTyContext ZeroIsOne [<] ts ns anys MkTyContext ZeroIsOne [<] (locals ts) ns anys
export export
mkDef : GQty -> Term 0 0 -> Term 0 0 -> Definition mkDef : GQty -> Term 0 0 -> Term 0 0 -> Definition

View file

@ -33,7 +33,7 @@ parameters {0 isRedex : RedexTest tm} {auto _ : CanWhnf tm isRedex} {d, n : Nat}
private private
ctx : {n : Nat} -> Context (\n => (BindName, Term 0 n)) n -> WhnfContext 0 n ctx : {n : Nat} -> Context (\n => (BindName, Term 0 n)) n -> WhnfContext 0 n
ctx xs = let (ns, ts) = unzip xs in MkWhnfContext [<] ns ts ctx xs = let (ns, ts) = unzip xs in MkWhnfContext [<] ns (locals ts)
export export