quox/examples/nat.quox

114 lines
3.4 KiB
Text
Raw Normal View History

2023-04-18 18:42:40 -04:00
load "misc.quox";
load "bool.quox";
load "either.quox";
namespace nat {
def dup : 1. → [ω.] =
2023-04-01 13:16:30 -04:00
λ n ⇒
case1 n return [ω.] of {
2023-04-18 18:42:40 -04:00
zero ⇒ [zero];
succ _, 1.d ⇒ case1 d return [ω.] of { [d] ⇒ [succ d] }
2023-04-01 13:16:30 -04:00
};
2023-04-17 15:44:16 -04:00
def plus : 1. → 1. =
2023-04-01 13:16:30 -04:00
λ m n ⇒
case1 m return of {
zero ⇒ n;
succ _, 1.p ⇒ succ p
};
2023-04-18 18:42:40 -04:00
def timesω : 1. → ω. =
2023-04-01 13:16:30 -04:00
λ m n ⇒
case1 m return of {
zero ⇒ zero;
succ _, 1.t ⇒ plus n t
};
2023-04-17 15:44:16 -04:00
def times : 1. → 1. =
2023-04-18 18:42:40 -04:00
λ m n ⇒ case1 dup n return of { [n] ⇒ timesω m n };
2023-04-01 13:16:30 -04:00
2023-04-18 18:42:40 -04:00
def pred : 1. = λ n ⇒ case1 n return of { zero ⇒ zero; succ n ⇒ n };
2023-04-01 13:16:30 -04:00
2023-04-18 18:42:40 -04:00
def pred-succ : ω.(n : ) → pred (succ n) ≡ n : =
λ n ⇒ δ 𝑖 ⇒ n;
2023-04-17 15:44:16 -04:00
def0 succ-inj : 0.(m n : ) → 0.(succ m ≡ succ n : ) → m ≡ n : =
2023-04-18 18:42:40 -04:00
λ m n eq ⇒ δ 𝑖 ⇒ pred (eq @𝑖);
def0 IsSucc : 0. → ★₀ =
λ n ⇒ caseω n return ★₀ of { zero ⇒ False; succ _ ⇒ True };
def isSucc? : ω.(n : ) → Dec (IsSucc n) =
λ n ⇒
caseω n return n' ⇒ Dec (IsSucc n') of {
zero ⇒ No (IsSucc zero) (λ v ⇒ v);
succ n ⇒ Yes (IsSucc (succ n)) 'true
};
def zero-not-succ : 0.(m : ) → Not (zero ≡ succ m : ) =
λ m eq ⇒ coe (𝑖 ⇒ IsSucc (eq @𝑖)) @1 @0 'true;
2023-04-18 18:42:40 -04:00
def succ-not-zero : 0.(m : ) → Not (succ m ≡ zero : ) =
λ m eq ⇒ coe (𝑖 ⇒ IsSucc (eq @𝑖)) 'true;
2023-04-18 18:42:40 -04:00
def0 not-succ-self : 0.(m : ) → Not (m ≡ succ m : ) =
λ m ⇒
caseω m return m' ⇒ Not (m' ≡ succ m' : ) of {
zero ⇒ zero-not-succ 0;
succ n, ω.ih ⇒ λ eq ⇒ ih (succ-inj n (succ n) eq)
}
def eq? : DecEq =
λ m ⇒
caseω m
return m' ⇒ ω.(n : ) → Dec (m' ≡ n : )
of {
zero ⇒ λ n ⇒
caseω n return n' ⇒ Dec (zero ≡ n' : ) of {
zero ⇒ Yes (zero ≡ zero : ) (δ _ ⇒ zero);
succ n' ⇒ No (zero ≡ succ n' : ) (λ eq ⇒ zero-not-succ n' eq)
};
succ m', ω.ih ⇒ λ n ⇒
caseω n return n' ⇒ Dec (succ m' ≡ n' : ) of {
zero ⇒ No (succ m' ≡ zero : ) (λ eq ⇒ succ-not-zero m' eq);
succ n' ⇒
dec.elim (m' ≡ n' : ) (λ _ ⇒ Dec (succ m' ≡ succ n' : ))
(λ y ⇒ Yes (succ m' ≡ succ n' : ) (δ 𝑖 ⇒ succ (y @𝑖)))
(λ n ⇒ No (succ m' ≡ succ n' : ) (λ eq ⇒ n (succ-inj m' n' eq)))
(ih n')
}
};
2023-04-23 11:33:32 -04:00
def eqb : ω. → ω. → Bool = λ m n ⇒ dec.bool (m ≡ n : ) (eq? m n);
2023-04-18 18:42:40 -04:00
def0 plus-zero : 0.(m : ) → m ≡ plus m 0 : =
λ m ⇒
caseω m return m' ⇒ m' ≡ plus m' 0 : of {
zero ⇒ δ _ ⇒ zero;
succ _, ω.ih ⇒ δ 𝑖 ⇒ succ (ih @𝑖)
};
def0 plus-succ : 0.(m n : ) → succ (plus m n) ≡ plus m (succ n) : =
2023-04-18 18:42:40 -04:00
λ m n ⇒
caseω m return m' ⇒ succ (plus m' n) ≡ plus m' (succ n) : of {
zero ⇒ δ _ ⇒ succ n;
succ _, ω.ih ⇒ δ 𝑖 ⇒ succ (ih @𝑖)
};
def0 plus-comm : 0.(m n : ) → plus m n ≡ plus n m : =
2023-04-18 18:42:40 -04:00
λ m n ⇒
caseω m return m' ⇒ plus m' n ≡ plus n m' : of {
zero ⇒ plus-zero n;
succ m', ω.ih ⇒
trans (succ (plus m' n)) (succ (plus n m')) (plus n (succ m'))
𝑖 ⇒ succ (ih @𝑖))
(plus-succ n m')
};
}