quox/tests/Tests/Reduce.idr

117 lines
3.2 KiB
Idris
Raw Normal View History

2022-05-25 10:10:19 -04:00
module Tests.Reduce
import Quox.Syntax as Lib
import TermImpls
import TAP
testWhnf : (Eq b, Show b) => (a -> (Subset b _)) ->
String -> a -> b -> Test
testWhnf whnf label from to = test "\{label} (whnf)" $
let result = fst (whnf from) in
if result == to
then Right ()
else with Prelude.(::)
Left [("expected", to), ("received", result)]
testNoStep : forall p. Show a => ((x : a) -> Either (p x) a) ->
String -> a -> Test
testNoStep step label e = test "\{label} (no step)" $
case step e of
Left _ => Right ()
Right e' => with Prelude.(::) Left [("reduced", e')]
parameters {default 0 d, n : Nat}
testWhnfT : String -> Term d n -> Term d n -> Test
testWhnfT = testWhnf whnfT
testWhnfE : String -> Elim d n -> Elim d n -> Test
testWhnfE = testWhnf whnfE
testNoStepE : String -> Elim d n -> Test
testNoStepE = testNoStep stepE
testNoStepT : String -> Term d n -> Test
testNoStepT = testNoStep stepT
tests = "whnf" :- [
"head constructors" :- [
testNoStepT "★₀" $ TYPE 0,
testNoStepT "[A] ⊸ [B]" $
Arr One (FT "A") (FT "B"),
testNoStepT "(x: [A]) ⊸ [B [x]]" $
Pi One "x" (FT "A") (TUsed $ E $ F "B" :@ BVT 0),
testNoStepT "λx. [x]" $
Lam "x" $ TUsed $ BVT 0,
testNoStepT "[f [a]]" $
E $ F "f" :@ FT "a"
],
"neutrals" :- [
testNoStepE "x" {n = 1} $ BV 0,
testNoStepE "a" $ F "a",
testNoStepE "f [a]" $ F "f" :@ FT "a",
testNoStepE "★₀ ∷ ★₁" $ TYPE 0 :# TYPE 1
],
"redexes" :- [
testWhnfE "[a] ∷ [A]"
(FT "a" :# FT "A")
(F "a"),
testWhnfT "[★₁ ∷ ★₃]"
(E (TYPE 1 :# TYPE 3))
(TYPE 1),
testWhnfE "(λx. [x] ∷ [A] ⊸ [A]) [a]"
((Lam "x" (TUsed $ BVT 0) :# Arr One (FT "A") (FT "A")) :@ FT "a")
(F "a")
],
"elim closure" :- [
testWhnfE "x{}" {n = 1}
(CloE (BV 0) id)
(BV 0),
testWhnfE "x{a/x}"
(CloE (BV 0) (F "a" ::: id))
(F "a"),
testWhnfE "x{x/x,a/y}" {n = 1}
(CloE (BV 0) (BV 0 ::: F "a" ::: id))
(BV 0),
testWhnfE "x{(y{a/y})/x}"
(CloE (BV 0) ((CloE (BV 0) (F "a" ::: id)) ::: id))
(F "a"),
testWhnfE "(x y){f/x,a/y}"
(CloE (BV 0 :@ BVT 1) (F "f" ::: F "a" ::: id))
(F "f" :@ FT "a"),
testWhnfE "([y] ∷ [x]){A/x}" {n = 1}
(CloE (BVT 1 :# BVT 0) (F "A" ::: id))
(BV 0),
testWhnfE "([y] ∷ [x]){A/x,a/y}"
(CloE (BVT 1 :# BVT 0) (F "A" ::: F "a" ::: id))
(F "a")
],
"term closure" :- [
testWhnfT "(λy. x){a/x}"
(CloT (Lam "x" $ TUnused $ BVT 0) (F "a" ::: id))
(Lam "x" $ TUnused $ FT "a")
],
"looking inside […]" :- [
testWhnfT "[(λx. x ∷ A ⊸ A) [a]]"
(E $ (Lam "x" (TUsed $ BVT 0) :# Arr One (FT "A") (FT "A")) :@ FT "a")
(FT "a")
],
"nested redex" :- [
note "whnf only looks at top level redexes",
testNoStepT "λy. [(λx. [x] ∷ [A] ⊸ [A]) [y]]" $
Lam "y" $ TUsed $ E $
(Lam "x" (TUsed $ BVT 0) :# Arr One (FT "A") (FT "A")) :@ BVT 0,
testNoStepE "f [(λx. [x] ∷ [A] ⊸ [A]) [a]]" $
F "a" :@
E ((Lam "x" (TUsed $ BVT 0) :# Arr One (FT "A") (FT "A")) :@ FT "a")
]
]