2022-02-26 20:17:09 -05:00
|
|
|
||| "order preserving embeddings", for recording a correspondence between
|
|
|
|
||| a smaller scope and part of a larger one.
|
|
|
|
module Quox.OPE
|
|
|
|
|
2022-04-11 17:33:32 -04:00
|
|
|
import Quox.NatExtra
|
|
|
|
|
2022-02-26 20:17:09 -05:00
|
|
|
import Data.Nat
|
|
|
|
|
|
|
|
|
|
|
|
public export
|
|
|
|
data OPE : Nat -> Nat -> Type where
|
|
|
|
Id : OPE n n
|
|
|
|
Drop : OPE m n -> OPE m (S n)
|
|
|
|
Keep : OPE m n -> OPE (S m) (S n)
|
|
|
|
%name OPE p, q
|
|
|
|
|
|
|
|
public export %inline Injective Drop where injective Refl = Refl
|
|
|
|
public export %inline Injective Keep where injective Refl = Refl
|
|
|
|
|
|
|
|
public export
|
|
|
|
opeZero : {n : Nat} -> OPE 0 n
|
|
|
|
opeZero {n = 0} = Id
|
|
|
|
opeZero {n = S n} = Drop opeZero
|
|
|
|
|
|
|
|
public export
|
|
|
|
(.) : OPE m n -> OPE n p -> OPE m p
|
|
|
|
p . Id = p
|
|
|
|
Id . q = q
|
|
|
|
p . Drop q = Drop $ p . q
|
|
|
|
Drop p . Keep q = Drop $ p . q
|
|
|
|
Keep p . Keep q = Keep $ p . q
|
|
|
|
|
|
|
|
public export
|
|
|
|
toLTE : {m : Nat} -> OPE m n -> m `LTE` n
|
|
|
|
toLTE Id = reflexive
|
|
|
|
toLTE (Drop p) = lteSuccRight $ toLTE p
|
|
|
|
toLTE (Keep p) = LTESucc $ toLTE p
|
|
|
|
|
|
|
|
|
|
|
|
public export
|
|
|
|
dropInner' : LTE' m n -> OPE m n
|
2022-04-11 17:33:32 -04:00
|
|
|
dropInner' LTERefl = Id
|
2022-02-26 20:17:09 -05:00
|
|
|
dropInner' (LTESuccR p) = Drop $ dropInner' $ force p
|
|
|
|
|
|
|
|
public export
|
|
|
|
dropInner : {n : Nat} -> LTE m n -> OPE m n
|
|
|
|
dropInner = dropInner' . fromLTE
|
|
|
|
|
|
|
|
public export
|
|
|
|
dropInnerN : (m : Nat) -> OPE n (m + n)
|
|
|
|
dropInnerN 0 = Id
|
|
|
|
dropInnerN (S m) = Drop $ dropInnerN m
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-- [todo] can this be done with fancy nats too?
|
|
|
|
-- with bitmasks sure but that might not be worth the effort
|
|
|
|
-- [the next day] it probably isn't
|
|
|
|
|
|
|
|
-- public export
|
|
|
|
-- data OPE' : Nat -> Nat -> Type where
|
|
|
|
-- None : OPE' 0 0
|
|
|
|
-- Drop : OPE' m n -> OPE' m (S n)
|
|
|
|
-- Keep : OPE' m n -> OPE' (S m) (S n)
|
|
|
|
-- %name OPE' q
|
|
|
|
|
|
|
|
|
|
|
|
-- public export %inline
|
|
|
|
-- drop' : Integer -> Integer
|
|
|
|
-- drop' n = n * 2
|
|
|
|
|
|
|
|
-- public export %inline
|
|
|
|
-- keep' : Integer -> Integer
|
|
|
|
-- keep' n = 1 + 2 * n
|
|
|
|
|
|
|
|
-- public export
|
|
|
|
-- data IsOPE : Integer -> (OPE' m n) -> Type where
|
|
|
|
-- IsNone : 0 `IsOPE` None
|
|
|
|
-- IsDrop : (0 _ : m `IsOPE` q) -> drop' m `IsOPE` Drop q
|
|
|
|
-- IsKeep : (0 _ : m `IsOPE` q) -> keep' m `IsOPE` Keep q
|
|
|
|
-- %name IsOPE p
|
|
|
|
|
|
|
|
|
|
|
|
-- public export
|
|
|
|
-- record OPE m n where
|
|
|
|
-- constructor MkOPE
|
|
|
|
-- value : Integer
|
|
|
|
-- 0 spec : OPE' m n
|
|
|
|
-- 0 prf : value `IsOPE` spec
|
|
|
|
-- 0 pos : So (value >= 0)
|
|
|
|
|
|
|
|
|
|
|
|
-- private
|
|
|
|
-- 0 idrisPleaseLearnAboutIntegers : {x, y : Integer} -> x = y
|
|
|
|
-- idrisPleaseLearnAboutIntegers {x, y} = believe_me $ Refl {x}
|
|
|
|
|
|
|
|
-- private
|
|
|
|
-- 0 natIntPlus : (m, n : Nat) ->
|
|
|
|
-- natToInteger (m + n) = natToInteger m + natToInteger n
|
|
|
|
-- natIntPlus m n = idrisPleaseLearnAboutIntegers
|
|
|
|
|
|
|
|
-- private
|
|
|
|
-- 0 shiftTwice : (x : Integer) -> (m, n : Nat) ->
|
|
|
|
-- x `shiftL` (m + n) = (x `shiftL` m) `shiftL` n
|
|
|
|
-- shiftTwice x m n = idrisPleaseLearnAboutIntegers
|
|
|
|
|
|
|
|
-- private
|
|
|
|
-- 0 shift1 : (x : Integer) -> (x `shiftL` 1) = 2 * x
|
|
|
|
-- shift1 x = idrisPleaseLearnAboutIntegers
|
|
|
|
|
|
|
|
-- private
|
|
|
|
-- 0 intPlusComm : (x, y : Integer) -> (x + y) = (y + x)
|
|
|
|
-- intPlusComm x y = idrisPleaseLearnAboutIntegers
|
|
|
|
|
|
|
|
-- private
|
|
|
|
-- 0 intTimes2Minus1 : (x : Integer) -> 2 * x - 1 = 2 * (x - 1) + 1
|
|
|
|
-- intTimes2Minus1 x = idrisPleaseLearnAboutIntegers
|
|
|
|
|
|
|
|
-- private
|
|
|
|
-- 0 intPosShift : So (x > 0) -> So (x `shiftL` i > 0)
|
|
|
|
-- intPosShift p = believe_me Oh
|
|
|
|
|
|
|
|
-- private
|
|
|
|
-- 0 intNonnegDec : {x : Integer} -> So (x > 0) -> So (x - 1 >= 0)
|
|
|
|
-- intNonnegDec p = believe_me Oh
|
|
|
|
|
|
|
|
|
|
|
|
-- private
|
|
|
|
-- 0 shiftSucc : (x : Integer) -> (n : Nat) ->
|
|
|
|
-- x `shiftL` S n = 2 * (x `shiftL` n)
|
|
|
|
-- shiftSucc x n = Calc $
|
|
|
|
-- |~ x `shiftL` S n
|
|
|
|
-- ~~ x `shiftL` (n + 1)
|
|
|
|
-- ...(cong (x `shiftL`) $ sym $ plusCommutative {})
|
|
|
|
-- ~~ (x `shiftL` n) `shiftL` 1
|
|
|
|
-- ...(shiftTwice {})
|
|
|
|
-- ~~ 2 * (x `shiftL` n)
|
|
|
|
-- ...(shift1 {})
|
|
|
|
|
|
|
|
|
|
|
|
-- private
|
|
|
|
-- opeIdVal : (n : Nat) -> Integer
|
|
|
|
-- opeIdVal n = (1 `shiftL` n) - 1
|
|
|
|
|
|
|
|
-- private
|
|
|
|
-- 0 opeIdValSpec : (n : Nat) -> Integer
|
|
|
|
-- opeIdValSpec 0 = 0
|
|
|
|
-- opeIdValSpec (S n) = keep' $ opeIdValSpec n
|
|
|
|
|
|
|
|
-- private
|
|
|
|
-- 0 opeIdValOk : (n : Nat) -> opeIdVal n = opeIdValSpec n
|
|
|
|
-- opeIdValOk 0 = Refl
|
|
|
|
-- opeIdValOk (S n) = Calc $
|
|
|
|
-- |~ (1 `shiftL` S n) - 1
|
|
|
|
-- ~~ 2 * (1 `shiftL` n) - 1 ...(cong (\x => x - 1) $ shiftSucc {})
|
|
|
|
-- ~~ 2 * (1 `shiftL` n - 1) + 1 ...(intTimes2Minus1 {})
|
|
|
|
-- ~~ 1 + 2 * (1 `shiftL` n - 1) ...(intPlusComm {})
|
|
|
|
-- ~~ 1 + 2 * opeIdValSpec n ...(cong (\x => 1 + 2 * x) $ opeIdValOk {})
|
|
|
|
|
|
|
|
-- private
|
|
|
|
-- 0 opeIdSpec : (n : Nat) -> OPE' n n
|
|
|
|
-- opeIdSpec 0 = None
|
|
|
|
-- opeIdSpec (S n) = Keep $ opeIdSpec n
|
|
|
|
|
|
|
|
-- private
|
|
|
|
-- 0 opeIdProof' : (n : Nat) -> opeIdValSpec n `IsOPE` opeIdSpec n
|
|
|
|
-- opeIdProof' 0 = IsNone
|
|
|
|
-- opeIdProof' (S n) = IsKeep (opeIdProof' n)
|
|
|
|
|
|
|
|
-- private
|
|
|
|
-- 0 opeIdProof : (n : Nat) -> opeIdVal n `IsOPE` opeIdSpec n
|
|
|
|
-- opeIdProof n = rewrite opeIdValOk n in opeIdProof' n
|
|
|
|
|
|
|
|
-- export
|
|
|
|
-- opeId : {n : Nat} -> OPE n n
|
|
|
|
-- opeId {n} = MkOPE {prf = opeIdProof n, pos = intNonnegDec $ intPosShift Oh, _}
|