quox/lib/Quox/Whnf/Main.idr

215 lines
8.5 KiB
Idris
Raw Normal View History

2023-08-24 12:42:26 -04:00
module Quox.Whnf.Main
import Quox.Whnf.Interface
import Quox.Whnf.ComputeElimType
import Quox.Whnf.TypeCase
import Quox.Whnf.Coercion
import Quox.Displace
import Data.SnocVect
%default total
export covering CanWhnf Term Interface.isRedexT
export covering CanWhnf Elim Interface.isRedexE
covering
CanWhnf Elim Interface.isRedexE where
whnf defs ctx (F x u loc) with (lookupElim x defs) proof eq
_ | Just y = whnf defs ctx $ setLoc loc $ displace u y
_ | Nothing = pure $ Element (F x u loc) $ rewrite eq in Ah
whnf _ _ (B i loc) = pure $ nred $ B i loc
-- ((λ x ⇒ t) ∷ (π.x : A) → B) s ⇝ t[s∷A/x] ∷ B[s∷A/x]
whnf defs ctx (App f s appLoc) = do
Element f fnf <- whnf defs ctx f
case nchoose $ isLamHead f of
Left _ => case f of
Ann (Lam {body, _}) (Pi {arg, res, _}) floc =>
let s = Ann s arg s.loc in
whnf defs ctx $ Ann (sub1 body s) (sub1 res s) appLoc
Coe ty p q val _ => piCoe defs ctx ty p q val s appLoc
Right nlh => pure $ Element (App f s appLoc) $ fnf `orNo` nlh
-- case (s, t) ∷ (x : A) × B return p ⇒ C of { (a, b) ⇒ u } ⇝
-- u[s∷A/a, t∷B[s∷A/x]] ∷ C[(s, t)∷((x : A) × B)/p]
whnf defs ctx (CasePair pi pair ret body caseLoc) = do
Element pair pairnf <- whnf defs ctx pair
case nchoose $ isPairHead pair of
Left _ => case pair of
Ann (Pair {fst, snd, _}) (Sig {fst = tfst, snd = tsnd, _}) pairLoc =>
let fst = Ann fst tfst fst.loc
snd = Ann snd (sub1 tsnd fst) snd.loc
in
whnf defs ctx $ Ann (subN body [< fst, snd]) (sub1 ret pair) caseLoc
Coe ty p q val _ => do
sigCoe defs ctx pi ty p q val ret body caseLoc
Right np =>
pure $ Element (CasePair pi pair ret body caseLoc) $ pairnf `orNo` np
-- case 'a ∷ {a,…} return p ⇒ C of { 'a ⇒ u } ⇝
-- u ∷ C['a∷{a,…}/p]
whnf defs ctx (CaseEnum pi tag ret arms caseLoc) = do
Element tag tagnf <- whnf defs ctx tag
case nchoose $ isTagHead tag of
Left _ => case tag of
Ann (Tag t _) (Enum ts _) _ =>
let ty = sub1 ret tag in
case lookup t arms of
Just arm => whnf defs ctx $ Ann arm ty arm.loc
Nothing => throw $ MissingEnumArm caseLoc t (keys arms)
Coe ty p q val _ =>
-- there is nowhere an equality can be hiding inside an enum type
whnf defs ctx $
CaseEnum pi (Ann val (dsub1 ty q) val.loc) ret arms caseLoc
Right nt =>
pure $ Element (CaseEnum pi tag ret arms caseLoc) $ tagnf `orNo` nt
-- case zero ∷ return p ⇒ C of { zero ⇒ u; … } ⇝
-- u ∷ C[zero∷/p]
--
-- case succ n ∷ return p ⇒ C of { succ n', π.ih ⇒ u; … } ⇝
-- u[n∷/n', (case n ∷ ⋯)/ih] ∷ C[succ n ∷ /p]
whnf defs ctx (CaseNat pi piIH nat ret zer suc caseLoc) = do
Element nat natnf <- whnf defs ctx nat
case nchoose $ isNatHead nat of
Left _ =>
let ty = sub1 ret nat in
case nat of
Ann (Zero _) (Nat _) _ =>
whnf defs ctx $ Ann zer ty zer.loc
Ann (Succ n succLoc) (Nat natLoc) _ =>
let nn = Ann n (Nat natLoc) succLoc
tm = subN suc [< nn, CaseNat pi piIH nn ret zer suc caseLoc]
in
whnf defs ctx $ Ann tm ty caseLoc
Coe ty p q val _ =>
-- same deal as Enum
whnf defs ctx $
CaseNat pi piIH (Ann val (dsub1 ty q) val.loc) ret zer suc caseLoc
Right nn => pure $
Element (CaseNat pi piIH nat ret zer suc caseLoc) (natnf `orNo` nn)
2023-08-24 12:42:26 -04:00
-- case [t] ∷ [π.A] return p ⇒ C of { [x] ⇒ u } ⇝
-- u[t∷A/x] ∷ C[[t] ∷ [π.A]/p]
whnf defs ctx (CaseBox pi box ret body caseLoc) = do
Element box boxnf <- whnf defs ctx box
case nchoose $ isBoxHead box of
Left _ => case box of
Ann (Box val boxLoc) (BOX q bty tyLoc) _ =>
let ty = sub1 ret box in
whnf defs ctx $ Ann (sub1 body (Ann val bty val.loc)) ty caseLoc
Coe ty p q val _ =>
boxCoe defs ctx pi ty p q val ret body caseLoc
Right nb =>
pure $ Element (CaseBox pi box ret body caseLoc) (boxnf `orNo` nb)
2023-08-24 12:42:26 -04:00
-- e : Eq (𝑗 ⇒ A) t u ⊢ e @0 ⇝ t ∷ A0/𝑗
-- e : Eq (𝑗 ⇒ A) t u ⊢ e @1 ⇝ u ∷ A1/𝑗
--
-- ((δ 𝑖 ⇒ s) ∷ Eq (𝑗 ⇒ A) t u) @𝑘 ⇝ s𝑘/𝑖 ∷ A𝑘/𝑗
whnf defs ctx (DApp f p appLoc) = do
Element f fnf <- whnf defs ctx f
case nchoose $ isDLamHead f of
Left _ => case f of
Ann (DLam {body, _}) (Eq {ty, l, r, _}) _ =>
whnf defs ctx $
Ann (endsOr (setLoc appLoc l) (setLoc appLoc r) (dsub1 body p) p)
(dsub1 ty p) appLoc
Coe ty p' q' val _ =>
eqCoe defs ctx ty p' q' val p appLoc
Right ndlh => case p of
K e _ => do
Eq {l, r, ty, _} <- whnf0 defs ctx =<< computeElimType defs ctx f
| ty => throw $ ExpectedEq ty.loc ctx.names ty
whnf defs ctx $
ends (Ann (setLoc appLoc l) ty.zero appLoc)
(Ann (setLoc appLoc r) ty.one appLoc) e
B {} => pure $ Element (DApp f p appLoc) (fnf `orNo` ndlh `orNo` Ah)
2023-08-24 12:42:26 -04:00
-- e ∷ A ⇝ e
whnf defs ctx (Ann s a annLoc) = do
Element s snf <- whnf defs ctx s
case nchoose $ isE s of
Left _ => let E e = s in pure $ Element e $ noOr2 snf
Right ne => do
Element a anf <- whnf defs ctx a
pure $ Element (Ann s a annLoc) (ne `orNo` snf `orNo` anf)
whnf defs ctx (Coe ty p q val coeLoc) =
-- 𝑖 ∉ fv(A)
-- -------------------------------
-- coe (𝑖 ⇒ A) @p @q s ⇝ s ∷ A
--
-- [fixme] needs a real equality check between ty.zero and ty.one
case dsqueezed ty of
Right ty => whnf defs ctx $ Ann val ty coeLoc
Left ([< i], ty) =>
case p `decEqv` q of
-- coe (𝑖 ⇒ A) @p @p s ⇝ (s ∷ Ap/𝑖)
Yes _ => whnf defs ctx $ Ann val (ty // one p) coeLoc
No npq => do
Element ty tynf <- whnf defs (extendDim i ctx) ty
case nchoose $ canPushCoe ty val of
Left pc =>
pushCoe defs ctx i ty p q val coeLoc
Right npc =>
pure $ Element (Coe (SY [< i] ty) p q val coeLoc)
(tynf `orNo` npc `orNo` notYesNo npq)
2023-08-24 12:42:26 -04:00
whnf defs ctx (Comp ty p q val r zero one compLoc) =
case p `decEqv` q of
-- comp [A] @p @p s @r { ⋯ } ⇝ s ∷ A
Yes y => whnf defs ctx $ Ann val ty compLoc
No npq => case r of
-- comp [A] @p @q s @0 { 0 𝑗 ⇒ t₀; ⋯ } ⇝ t₀q/𝑗 ∷ A
2023-08-24 12:42:26 -04:00
K Zero _ => whnf defs ctx $ Ann (dsub1 zero q) ty compLoc
-- comp [A] @p @q s @1 { 1 𝑗 ⇒ t₁; ⋯ } ⇝ t₁q/𝑗 ∷ A
2023-08-24 12:42:26 -04:00
K One _ => whnf defs ctx $ Ann (dsub1 one q) ty compLoc
B {} =>
pure $ Element (Comp ty p q val r zero one compLoc)
(notYesNo npq `orNo` Ah)
2023-08-24 12:42:26 -04:00
whnf defs ctx (TypeCase ty ret arms def tcLoc) = do
Element ty tynf <- whnf defs ctx ty
Element ret retnf <- whnf defs ctx ret
case nchoose $ isAnnTyCon ty of
Left y =>
let Ann ty (TYPE u _) _ = ty in
reduceTypeCase defs ctx ty u ret arms def tcLoc
Right nt =>
pure $ Element (TypeCase ty ret arms def tcLoc)
(tynf `orNo` retnf `orNo` nt)
2023-08-24 12:42:26 -04:00
whnf defs ctx (CloE (Sub el th)) = whnf defs ctx $ pushSubstsWith' id th el
whnf defs ctx (DCloE (Sub el th)) = whnf defs ctx $ pushSubstsWith' th id el
covering
CanWhnf Term Interface.isRedexT where
whnf _ _ t@(TYPE {}) = pure $ nred t
whnf _ _ t@(Pi {}) = pure $ nred t
whnf _ _ t@(Lam {}) = pure $ nred t
whnf _ _ t@(Sig {}) = pure $ nred t
whnf _ _ t@(Pair {}) = pure $ nred t
whnf _ _ t@(Enum {}) = pure $ nred t
whnf _ _ t@(Tag {}) = pure $ nred t
whnf _ _ t@(Eq {}) = pure $ nred t
whnf _ _ t@(DLam {}) = pure $ nred t
whnf _ _ t@(Nat {}) = pure $ nred t
whnf _ _ t@(Zero {}) = pure $ nred t
whnf _ _ t@(Succ {}) = pure $ nred t
whnf _ _ t@(BOX {}) = pure $ nred t
whnf _ _ t@(Box {}) = pure $ nred t
-- s ∷ A ⇝ s (in term context)
whnf defs ctx (E e) = do
Element e enf <- whnf defs ctx e
case nchoose $ isAnn e of
Left _ => let Ann {tm, _} = e in pure $ Element tm $ noOr1 $ noOr2 enf
Right na => pure $ Element (E e) $ na `orNo` enf
whnf defs ctx (CloT (Sub tm th)) = whnf defs ctx $ pushSubstsWith' id th tm
whnf defs ctx (DCloT (Sub tm th)) = whnf defs ctx $ pushSubstsWith' th id tm