quox/lib/Quox/Thin/List.idr

128 lines
3.5 KiB
Idris
Raw Permalink Normal View History

2023-06-05 10:19:52 -04:00
module Quox.Thin.List
import public Quox.Thin.Base
import public Quox.Thin.Cons
import Data.DPair
import Data.Nat
import Control.Function
%default total
||| a list of OPEs of a given outer scope size
||| (at runtime just the masks)
public export
data OPEList : Nat -> Type where
Nil : OPEList n
(::) : {mask : Nat} -> (0 ope : OPE m n mask) -> OPEList n -> OPEList n
%name OPEList opes
2023-06-05 11:25:02 -04:00
public export
2023-06-05 10:19:52 -04:00
length : OPEList n -> Nat
length [] = 0
length (_ :: opes) = S $ length opes
2023-06-05 11:25:02 -04:00
public export
2023-06-05 10:19:52 -04:00
toList : OPEList n -> List (SomeOPE n)
toList [] = []
toList (ope :: opes) = MkOPE ope :: toList opes
2023-06-05 11:25:02 -04:00
public export
2023-06-05 10:19:52 -04:00
fromList : List (SomeOPE n) -> OPEList n
fromList [] = []
fromList (MkOPE ope :: xs) = ope :: fromList xs
public export
0 Pred : Nat -> Type
Pred n = forall m, mask. OPE m n mask -> Type
public export
0 Rel : Nat -> Nat -> Type
Rel n1 n2 = forall m1, m2, mask1, mask2.
OPE m1 n1 mask1 -> OPE m2 n2 mask2 -> Type
namespace All
public export
data All : Pred n -> OPEList n -> Type where
Nil : {0 p : Pred n} -> All p []
(::) : {0 p : Pred n} -> p ope -> All p opes -> All p (ope :: opes)
%name All.All ps, qs
namespace All2
public export
data All2 : Rel n1 n2 -> OPEList n1 -> OPEList n2 -> Type where
Nil : {0 p : Rel n1 n2} -> All2 p [] []
(::) : {0 p : Rel n1 n2} -> p a b -> All2 p as bs ->
All2 p (a :: as) (b :: bs)
%name All2.All2 ps, qs
2023-06-05 11:25:02 -04:00
export
0 all2Length : {p : Rel m n} -> All2 p ss ts -> length ss = length ts
all2Length [] = Refl
all2Length (p :: ps) = cong S $ all2Length ps
2023-06-05 10:19:52 -04:00
namespace Any
public export
data Any : Pred n -> OPEList n -> Type where
Here : {0 p : Pred n} -> p ope -> Any p (ope :: opes)
There : {0 p : Pred n} -> Any p opes -> Any p (ope :: opes)
%name Any.Any p, q
export
{0 p : Pred n} -> Uninhabited (Any p []) where uninhabited _ impossible
export
all : {0 p : Pred n} ->
(forall m. {mask : Nat} -> (0 ope : OPE m n mask) -> p ope) ->
(opes : OPEList n) -> All p opes
all f [] = []
all f (ope :: opes) = f ope :: all f opes
export
allDec : {0 p : Pred n} ->
(forall m. {mask : Nat} -> (0 ope : OPE m n mask) -> Dec (p ope)) ->
(opes : OPEList n) -> Dec (All p opes)
allDec f [] = Yes []
allDec f (ope :: opes) = case f ope of
Yes y => case allDec f opes of
Yes ys => Yes $ y :: ys
No k => No $ \(_ :: ps) => k ps
No k => No $ \(p :: _) => k p
export
anyDec : {0 p : Pred n} ->
(forall m. {mask : Nat} -> (0 ope : OPE m n mask) -> Dec (p ope)) ->
(opes : OPEList n) -> Dec (Any p opes)
anyDec f [] = No absurd
anyDec f (ope :: opes) = case f ope of
Yes y => Yes $ Here y
No nh => case anyDec f opes of
Yes y => Yes $ There y
No nt => No $ \case Here h => nh h; There t => nt t
export
unconses : {n : Nat} -> (opes : OPEList (S n)) -> All Uncons opes
unconses = all uncons
export
heads : {n : Nat} -> (opes : OPEList (S n)) -> All (Exists . IsHead) opes
heads = all head
export
tails : {n : Nat} -> (opes : OPEList (S n)) -> All Tail opes
tails = all tail
export
tails_ : {n : Nat} -> (opes : OPEList (S n)) ->
Subset (OPEList n) (All2 IsTail opes)
tails_ [] = Element [] []
tails_ (ope :: opes) = Element _ $ (tail ope).isTail :: (tails_ opes).snd
export
conses : (heads : List Bool) -> (tails : OPEList n) ->
(0 len : length heads = length tails) =>
OPEList (S n)
conses [] [] = []
conses (h :: hs) (t :: ts) = snd (cons h t) :: conses hs ts @{inj S len}