bytebuild/src/Data/ByteArray/Builder/Small/Bounded.hs
2019-09-01 22:56:06 -07:00

577 lines
21 KiB
Haskell

{-# language GADTs #-}
{-# language KindSignatures #-}
{-# language ScopedTypeVariables #-}
{-# language BangPatterns #-}
{-# language MagicHash #-}
{-# language BinaryLiterals #-}
{-# language UnboxedTuples #-}
{-# language RankNTypes #-}
{-# language LambdaCase #-}
{-# language TypeOperators #-}
{-# language DataKinds #-}
{-# language TypeApplications #-}
-- | The functions in this module are explict in the amount of bytes they require.
module Data.ByteArray.Builder.Small.Bounded
( -- * Builder
Builder(..)
, construct
-- * Execute
, run
, pasteST
, pasteGrowST
, pasteIO
-- * Combine
, empty
, append
-- * Bounds Manipulation
, (<=)
, lessThanEqual
, isLessThanEqual
, raise
-- * Encode Integral Types
-- ** Human-Readable
, word64Dec
, word32Dec
, word16Dec
, int64Dec
, word64PaddedUpperHex
, word32PaddedUpperHex
, word16PaddedUpperHex
, word8PaddedUpperHex
, ascii
, char
-- ** Machine-Readable
, word64BE
, word32BE
, word16BE
, word8
-- * Encode Floating-Point Types
, doubleDec
) where
import Control.Monad.Primitive
import Control.Monad.ST
import Data.Bits
import Data.Char (ord)
import Data.Primitive
import GHC.Exts
import GHC.ST
import GHC.Word
import GHC.Int
import Data.Kind
import GHC.TypeLits (KnownNat,Nat,type (+),natVal')
import qualified GHC.TypeLits as GHC
import Data.Primitive.ByteArray.Offset (MutableByteArrayOffset(..))
import qualified Control.Category as Cat
import qualified Data.Primitive as PM
-- | A builder parameterized by the maximum number of bytes it uses
-- when executed.
newtype Builder :: Nat -> Type where
Builder ::
(forall s. MutableByteArray# s -> Int# -> State# s -> (# State# s, Int# #))
-> Builder n
knownNat :: KnownNat n => Proxy# n -> Int
knownNat p = fromIntegral (natVal' p)
-- | Execute the builder. This function is safe.
run :: forall n. KnownNat n
=> Builder n -- ^ Builder
-> ByteArray
{-# inline run #-}
run b = runST $ do
arr <- newByteArray (knownNat (proxy# :: Proxy# n))
len <- pasteST b arr 0
shrinkMutableByteArray arr len
unsafeFreezeByteArray arr
-- | This function does not enforce the known upper bound on the
-- size. It is up to the user to do this.
pasteST :: Builder n -> MutableByteArray s -> Int -> ST s Int
{-# inline pasteST #-}
pasteST (Builder f) (MutableByteArray arr) (I# off) =
ST $ \s0 -> case f arr off s0 of
(# s1, r #) -> (# s1, (I# r) #)
-- | Paste the builder into the byte array starting at offset zero.
-- This reallocates the byte array if it cannot accomodate the builder,
-- growing it by the minimum amount necessary.
pasteGrowST :: forall n s. KnownNat n
=> Builder n
-> MutableByteArrayOffset s
-- ^ Initial buffer, used linearly. Do not reuse this argument.
-> ST s (MutableByteArrayOffset s)
-- ^ Final buffer that accomodated the builder.
{-# inline pasteGrowST #-}
pasteGrowST b !(MutableByteArrayOffset{array=arr0,offset=off0}) = do
sz0 <- PM.getSizeofMutableByteArray arr0
let req = knownNat (proxy# :: Proxy# n)
let sz1 = off0 + req
if sz1 <= sz0
then do
off1 <- pasteST b arr0 off0
pure (MutableByteArrayOffset arr0 off1)
else do
arr1 <- PM.resizeMutableByteArray arr0 sz1
off1 <- pasteST b arr1 off0
pure (MutableByteArrayOffset arr1 off1)
-- | This function does not enforce the known upper bound on the
-- size. It is up to the user to do this.
pasteIO :: Builder n -> MutableByteArray RealWorld -> Int -> IO Int
{-# inline pasteIO #-}
pasteIO b m off = stToIO (pasteST b m off)
-- | Constructor for 'Builder' that works on a function with lifted
-- arguments instead of unlifted ones. This is just as unsafe as the
-- actual constructor.
construct :: (forall s. MutableByteArray s -> Int -> ST s Int) -> Builder n
{-# inline construct #-}
construct f = Builder
$ \arr off s0 ->
case unST (f (MutableByteArray arr) (I# off)) s0 of
(# s1, (I# n) #) -> (# s1, n #)
infixr 9 `append`
-- | The monoidal unit of `append`
empty :: Builder 0
empty = Builder $ \_ off0 s0 -> (# s0, off0 #)
-- | Concatenate two builders.
append :: Builder n -> Builder m -> Builder (n + m)
append (Builder f) (Builder g) =
Builder $ \arr off0 s0 -> case f arr off0 s0 of
(# s1, r #) -> g arr r s1
-- | A proof that n is less than or equal to m
newtype (n :: Nat) <= (m :: Nat) = LessThanEqual Int -- m - n
instance Cat.Category (<=) where
id = LessThanEqual 0
-- b <= c (c - b) -> a <= b (b - a) -> a <= c (c - a)
LessThanEqual cb . LessThanEqual ba = LessThanEqual (cb + ba)
-- | Dynamically check than 'n' is less than or equal to 'm'
isLessThanEqual :: (KnownNat n, KnownNat m) => Proxy# n -> Proxy# m -> Maybe (n <= m)
isLessThanEqual n m = if 0 <= diff then Just (LessThanEqual diff) else Nothing
where diff = knownNat m - knownNat n
-- | Statically check than 'n' is less than or equal to 'm'. 'n' and 'm' must be known at compile time.
lessThanEqual :: forall n m. (KnownNat n, KnownNat m, n GHC.<= m) => n <= m
lessThanEqual = LessThanEqual (knownNat (proxy# :: Proxy# m) - knownNat (proxy# :: Proxy# n))
-- | Weaken the bound on the maximum number of bytes required.
-- >>> :{
-- buildNumber :: Either Double Word64 -> Builder 32
-- buildNumber = \case
-- Left d -> doubleDec d
-- Right w -> raise lessThanEqual (word64Dec w)
-- :}
raise :: forall m n. n <= m -> Builder n -> Builder m
raise !_ (Builder f) = Builder f
-- | Encode a double-floating-point number, using decimal notation or
-- scientific notation depending on the magnitude. This has undefined
-- behavior when representing @+inf@, @-inf@, and @NaN@. It will not
-- crash, but the generated numbers will be nonsense.
doubleDec :: Double -> Builder 32
doubleDec (D# d) = Builder (\arr off0 s0 -> doubleDec# d arr off0 s0)
-- | Requires up to 19 bytes. Encodes an unsigned 64-bit integer as decimal.
-- This encoding never starts with a zero unless the argument was zero.
word64Dec :: Word64 -> Builder 19
word64Dec (W64# w) = wordCommonDec# w
-- | Requires up to 10 bytes. Encodes an unsigned 32-bit integer as decimal.
-- This encoding never starts with a zero unless the argument was zero.
word32Dec :: Word32 -> Builder 10
word32Dec (W32# w) = wordCommonDec# w
-- | Requires up to 5 bytes. Encodes an unsigned 16-bit integer as decimal.
-- This encoding never starts with a zero unless the argument was zero.
word16Dec :: Word16 -> Builder 5
word16Dec (W16# w) = wordCommonDec# w
-- | Requires up to 20 bytes. Encodes a signed 64-bit integer as decimal.
-- This encoding never starts with a zero unless the argument was zero.
-- Negative numbers are preceded by a minus sign. Positive numbers
-- are not preceded by anything.
int64Dec :: Int64 -> Builder 20
int64Dec (I64# w) = int64Dec# w
-- Requires a number of bytes that is bounded by the size of
-- the word. This is only used internally.
wordCommonDec# :: Word# -> Builder n
{-# noinline wordCommonDec# #-}
wordCommonDec# w# = construct $ \arr off0 -> if w /= 0
then internalWordLoop arr off0 (W# w#)
else do
writeByteArray arr off0 (c2w '0')
pure (off0 + 1)
where
w = W64# w#
internalWordLoop :: MutableByteArray s -> Int -> Word -> ST s Int
{-# inline internalWordLoop #-}
internalWordLoop arr off0 x0 = go off0 x0 where
go !off !(x :: Word) = if x > 0
then do
let (y,z) = quotRem x 10
writeByteArray arr off (fromIntegral (z + 0x30) :: Word8)
go (off + 1) y
else do
reverseBytes arr off0 (off - 1)
pure off
-- | Requires up to 19 bytes.
int64Dec# :: Int# -> Builder 20
{-# noinline int64Dec# #-}
int64Dec# w# = construct $ \arr off0 -> case compare w 0 of
GT -> internalWordLoop arr off0 (fromIntegral w)
EQ -> do
writeByteArray arr off0 (c2w '0')
pure (off0 + 1)
LT -> do
writeByteArray arr off0 (c2w '-')
internalWordLoop arr (off0 + 1) (fromIntegral (negate w))
where
w = I64# w#
-- Convert a number between 0 and 16 to the ASCII
-- representation of its hexadecimal character.
-- The use of fromIntegral causes us to incur an
-- unneeded bitmask. This actually needs a Word64
-- argument.
toHexUpper :: Word -> Word8
toHexUpper w' = fromIntegral
$ (complement theMask .&. loSolved)
.|. (theMask .&. hiSolved)
where
w = w' .&. 0xF
-- This is all ones if the value was >= 10
theMask = (1 .&. unsafeShiftR (w - 10) 63) - 1
loSolved = w + 48
hiSolved = w + 55
-- | Requires exactly 16 bytes. Encodes a 64-bit unsigned integer as
-- hexadecimal, zero-padding the encoding to 16 digits. This uses
-- uppercase for the alphabetical digits. For example, this encodes the
-- number 1022 as @00000000000003FE@.
word64PaddedUpperHex :: Word64 -> Builder 16
word64PaddedUpperHex (W64# w) = word64PaddedUpperHex# w
-- | Requires exactly 8 bytes. Encodes a 32-bit unsigned integer as
-- hexadecimal, zero-padding the encoding to 8 digits. This uses
-- uppercase for the alphabetical digits.
word32PaddedUpperHex :: Word32 -> Builder 8
word32PaddedUpperHex (W32# w) = word32PaddedUpperHex# w
-- | Requires exactly 4 bytes. Encodes a 16-bit unsigned integer as
-- hexadecimal, zero-padding the encoding to 4 digits. This uses
-- uppercase for the alphabetical digits.
word16PaddedUpperHex :: Word16 -> Builder 4
word16PaddedUpperHex (W16# w) = word16PaddedUpperHex# w
-- | Requires exactly 2 bytes. Encodes a 8-bit unsigned integer as
-- hexadecimal, zero-padding the encoding to 2 digits. This uses
-- uppercase for the alphabetical digits.
word8PaddedUpperHex :: Word8 -> Builder 2
word8PaddedUpperHex (W8# w) = word8PaddedUpperHex# w
-- TODO: Is it actually worth unrolling this loop. I suspect that it
-- might not be. Benchmark this.
word64PaddedUpperHex# :: Word# -> Builder 16
{-# noinline word64PaddedUpperHex# #-}
word64PaddedUpperHex# w# = construct $ \arr off -> do
writeByteArray arr off (toHexUpper (unsafeShiftR w 60))
writeByteArray arr (off + 1) (toHexUpper (unsafeShiftR w 56))
writeByteArray arr (off + 2) (toHexUpper (unsafeShiftR w 52))
writeByteArray arr (off + 3) (toHexUpper (unsafeShiftR w 48))
writeByteArray arr (off + 4) (toHexUpper (unsafeShiftR w 44))
writeByteArray arr (off + 5) (toHexUpper (unsafeShiftR w 40))
writeByteArray arr (off + 6) (toHexUpper (unsafeShiftR w 36))
writeByteArray arr (off + 7) (toHexUpper (unsafeShiftR w 32))
writeByteArray arr (off + 8) (toHexUpper (unsafeShiftR w 28))
writeByteArray arr (off + 9) (toHexUpper (unsafeShiftR w 24))
writeByteArray arr (off + 10) (toHexUpper (unsafeShiftR w 20))
writeByteArray arr (off + 11) (toHexUpper (unsafeShiftR w 16))
writeByteArray arr (off + 12) (toHexUpper (unsafeShiftR w 12))
writeByteArray arr (off + 13) (toHexUpper (unsafeShiftR w 8))
writeByteArray arr (off + 14) (toHexUpper (unsafeShiftR w 4))
writeByteArray arr (off + 15) (toHexUpper (unsafeShiftR w 0))
pure (off + 16)
where
w = W# w#
word32PaddedUpperHex# :: Word# -> Builder 8
{-# noinline word32PaddedUpperHex# #-}
word32PaddedUpperHex# w# = construct $ \arr off -> do
writeByteArray arr off (toHexUpper (unsafeShiftR w 28))
writeByteArray arr (off + 1) (toHexUpper (unsafeShiftR w 24))
writeByteArray arr (off + 2) (toHexUpper (unsafeShiftR w 20))
writeByteArray arr (off + 3) (toHexUpper (unsafeShiftR w 16))
writeByteArray arr (off + 4) (toHexUpper (unsafeShiftR w 12))
writeByteArray arr (off + 5) (toHexUpper (unsafeShiftR w 8))
writeByteArray arr (off + 6) (toHexUpper (unsafeShiftR w 4))
writeByteArray arr (off + 7) (toHexUpper (unsafeShiftR w 0))
pure (off + 8)
where
w = W# w#
-- Not sure if it is beneficial to inline this. We just let
-- GHC make the decision. Open an issue on github if this is
-- a problem.
word16PaddedUpperHex# :: Word# -> Builder 4
word16PaddedUpperHex# w# = construct $ \arr off -> do
writeByteArray arr off (toHexUpper (unsafeShiftR w 12))
writeByteArray arr (off + 1) (toHexUpper (unsafeShiftR w 8))
writeByteArray arr (off + 2) (toHexUpper (unsafeShiftR w 4))
writeByteArray arr (off + 3) (toHexUpper (unsafeShiftR w 0))
pure (off + 4)
where
w = W# w#
-- Definitely want this to inline. It's maybe a dozen instructions total.
word8PaddedUpperHex# :: Word# -> Builder 2
{-# inline word8PaddedUpperHex #-}
word8PaddedUpperHex# w# = construct $ \arr off -> do
writeByteArray arr off (toHexUpper (unsafeShiftR w 4))
writeByteArray arr (off + 1) (toHexUpper (unsafeShiftR w 0))
pure (off + 2)
where
w = W# w#
-- | Encode an ASCII char.
-- Precondition: Input must be an ASCII character. This is not checked.
ascii :: Char -> Builder 1
ascii c = word8 (fromIntegral @Int @Word8 (ord c))
-- | Encode an UTF8 char. This only uses as much space as is required.
char :: Char -> Builder 4
char c
| codepoint < 0x80 = construct $ \arr off -> do
writeByteArray arr off (unsafeWordToWord8 codepoint)
pure (off + 1)
| codepoint < 0x800 = construct $ \arr off -> do
writeByteArray arr off (unsafeWordToWord8 (byteTwoOne codepoint))
writeByteArray arr (off + 1) (unsafeWordToWord8 (byteTwoTwo codepoint))
return (off + 2)
| codepoint >= 0xD800 && codepoint < 0xE000 = construct $ \arr off -> do
-- Codepoint U+FFFD
writeByteArray arr off (0xEF :: Word8)
writeByteArray arr (off + 1) (0xBF :: Word8)
writeByteArray arr (off + 2) (0xBD :: Word8)
return (off + 3)
| codepoint < 0x10000 = construct $ \arr off -> do
writeByteArray arr off (unsafeWordToWord8 (byteThreeOne codepoint))
writeByteArray arr (off + 1) (unsafeWordToWord8 (byteThreeTwo codepoint))
writeByteArray arr (off + 2) (unsafeWordToWord8 (byteThreeThree codepoint))
return (off + 3)
| otherwise = construct $ \arr off -> do
writeByteArray arr off (unsafeWordToWord8 (byteFourOne codepoint))
writeByteArray arr (off + 1) (unsafeWordToWord8 (byteFourTwo codepoint))
writeByteArray arr (off + 2) (unsafeWordToWord8 (byteFourThree codepoint))
writeByteArray arr (off + 3) (unsafeWordToWord8 (byteFourFour codepoint))
return (off + 4)
where
codepoint :: Word
codepoint = fromIntegral (ord c)
unsafeWordToWord8 :: Word -> Word8
unsafeWordToWord8 (W# w) = W8# w
-- precondition: codepoint is less than 0x800
byteTwoOne :: Word -> Word
byteTwoOne w = unsafeShiftR w 6 .|. 0b11000000
byteTwoTwo :: Word -> Word
byteTwoTwo w = (w .&. 0b00111111) .|. 0b10000000
-- precondition: codepoint is less than 0x1000
byteThreeOne :: Word -> Word
byteThreeOne w = unsafeShiftR w 12 .|. 0b11100000
byteThreeTwo :: Word -> Word
byteThreeTwo w = (0b00111111 .&. unsafeShiftR w 6) .|. 0b10000000
byteThreeThree :: Word -> Word
byteThreeThree w = (w .&. 0b00111111) .|. 0b10000000
-- precondition: codepoint is less than 0x110000
byteFourOne :: Word -> Word
byteFourOne w = unsafeShiftR w 18 .|. 0b11110000
byteFourTwo :: Word -> Word
byteFourTwo w = (0b00111111 .&. unsafeShiftR w 12) .|. 0b10000000
byteFourThree :: Word -> Word
byteFourThree w = (0b00111111 .&. unsafeShiftR w 6) .|. 0b10000000
byteFourFour :: Word -> Word
byteFourFour w = (0b00111111 .&. w) .|. 0b10000000
-- | Requires exactly 8 bytes. Dump the octets of a 64-bit
-- word in a big-endian fashion.
word64BE :: Word64 -> Builder 8
word64BE w = construct $ \arr off -> do
writeByteArray arr (off ) (fromIntegral @Word64 @Word8 (unsafeShiftR w 56))
writeByteArray arr (off + 1) (fromIntegral @Word64 @Word8 (unsafeShiftR w 48))
writeByteArray arr (off + 2) (fromIntegral @Word64 @Word8 (unsafeShiftR w 40))
writeByteArray arr (off + 3) (fromIntegral @Word64 @Word8 (unsafeShiftR w 32))
writeByteArray arr (off + 4) (fromIntegral @Word64 @Word8 (unsafeShiftR w 24))
writeByteArray arr (off + 5) (fromIntegral @Word64 @Word8 (unsafeShiftR w 16))
writeByteArray arr (off + 6) (fromIntegral @Word64 @Word8 (unsafeShiftR w 8))
writeByteArray arr (off + 7) (fromIntegral @Word64 @Word8 w)
pure (off + 8)
-- | Requires exactly 4 bytes. Dump the octets of a 32-bit
-- word in a big-endian fashion.
word32BE :: Word32 -> Builder 4
word32BE w = construct $ \arr off -> do
writeByteArray arr (off ) (fromIntegral @Word32 @Word8 (unsafeShiftR w 24))
writeByteArray arr (off + 1) (fromIntegral @Word32 @Word8 (unsafeShiftR w 16))
writeByteArray arr (off + 2) (fromIntegral @Word32 @Word8 (unsafeShiftR w 8))
writeByteArray arr (off + 3) (fromIntegral @Word32 @Word8 w)
pure (off + 4)
-- | Requires exactly 2 bytes. Dump the octets of a 16-bit
-- word in a big-endian fashion.
word16BE :: Word16 -> Builder 2
word16BE w = construct $ \arr off -> do
writeByteArray arr (off ) (fromIntegral @Word16 @Word8 (unsafeShiftR w 8))
writeByteArray arr (off + 1) (fromIntegral @Word16 @Word8 w)
pure (off + 2)
word8 :: Word8 -> Builder 1
word8 w = construct $ \arr off -> do
writeByteArray arr off w
pure (off + 1)
-- Reverse the bytes in the designated slice. This takes
-- an inclusive start offset and an inclusive end offset.
reverseBytes :: MutableByteArray s -> Int -> Int -> ST s ()
{-# inline reverseBytes #-}
reverseBytes arr begin end = go begin end where
go ixA ixB = if ixA < ixB
then do
a :: Word8 <- readByteArray arr ixA
b :: Word8 <- readByteArray arr ixB
writeByteArray arr ixA b
writeByteArray arr ixB a
go (ixA + 1) (ixB - 1)
else pure ()
c2w :: Char -> Word8
c2w = fromIntegral . ord
unST :: ST s a -> State# s -> (# State# s, a #)
unST (ST f) = f
shrinkMutableByteArray :: MutableByteArray s -> Int -> ST s ()
shrinkMutableByteArray (MutableByteArray arr) (I# sz) =
primitive_ (shrinkMutableByteArray# arr sz)
-- This is adapted from androider's code in https://stackoverflow.com/a/7097567
-- The checks for infinity and NaN have been removed. Note that this is a little
-- inaccurate. This is very visible when encoding a number like 2.25, which
-- is perfectly represented as an IEEE 754 floating point number but is goofed
-- up by this function.
-- If you modify this function, please take a took at the resulting core.
-- It currently performs no boxing at all, and it would be nice to keep
-- it that way.
doubleDec# :: forall s.
Double# -> MutableByteArray# s -> Int# -> State# s -> (# State# s, Int# #)
{-# noinline doubleDec# #-}
doubleDec# d# marr# off# s0 = unIntST s0 $ do
let marr = MutableByteArray marr#
let d0 = D# d#
let off0 = I# off#
if d0 == 0
then do
writeByteArray marr off0 (c2w '0')
pure (off0 + 1)
else do
let neg = d0 < 0
off1 <- if neg
then do
writeByteArray marr off0 (c2w '-')
pure (off0 + 1)
else pure off0
let d1 = abs d0
let mag0 = floor (logBase10 d1) :: Int
let useExp = (mag0 >= 14 || (neg && mag0 >= 9) || mag0 <= (-9))
-- This straightforward adaptation of the C code is awkward
-- in Haskell. Binding the triple where mag1 might not even
-- get used is strange.
let !(!d2,!mag1,!mag0A) = if useExp
then
let mag0' = if mag0 < 0 then mag0 - 1 else mag0
in (d1 / (10.0 ** fromIntegral @Int @Double mag0'), mag0', 0)
else (d1,0,mag0)
let mag0B = if mag0A < 1 then 0 else mag0A
let goNum :: Double -> Int -> Int -> ST s Int
goNum !dA0 !mag !offA0 = if (dA0 > doublePrecision || mag >= 0)
then do
let weight = 10.0 ** (fromIntegral @Int @Double mag)
-- We should actually check weight with isinf here,
-- but we do not.
(dA1,offA1) <- if weight > 0
then do
-- TODO: use a better floor function
let digit = ((floor :: Double -> Int) (dA0 / weight))
let discard = fromIntegral @Int @Double digit * weight
writeByteArray marr offA0
(fromIntegral @Int @Word8 (digit + ord '0'))
pure (dA0 - discard,offA0 + 1)
else pure (dA0,offA0)
offA2 <- if mag == 0 && dA1 > 0
then do
writeByteArray marr offA1 (c2w '.')
pure (offA1 + 1)
else pure offA1
goNum dA1 (mag - 1) offA2
else pure offA0
!off2 <- goNum d2 mag0B off1
off3 <- if useExp
then do
writeByteArray marr off2 (c2w 'e')
!mag2 <- if mag1 > 0
then do
writeByteArray marr (off2 + 1) (c2w '+')
pure mag1
else do
writeByteArray marr (off2 + 1) (c2w '-')
pure (-mag1)
let goMag !mag !off = if mag > 0
then do
let (q,r) = quotRem mag 10
writeByteArray marr off (fromIntegral @Int @Word8 (ord '0' + r))
goMag q (off + 1)
else pure off
!off3 <- goMag mag2 (off2 + 2)
reverseBytes marr (off2 + 2) (off3 - 1)
pure off3
else pure off2
pure off3
doublePrecision :: Double
doublePrecision = 0.00000000000001
unIntST :: State# s -> ST s Int -> (# State# s, Int# #)
{-# inline unIntST #-}
unIntST s0 (ST f) = case f s0 of
(# s1, I# i #) -> (# s1, i #)
-- This is slightly inaccurate. I think this can actually cause
-- problems in some situations. The log10 function from C would
-- be better. The inaccuracy here cause the logarithm to be slightly
-- larger than it should be. There might actually be a simple way to
-- fix this by just using recursion to compute it. We just floor the
-- result anyway. Hmm...
logBase10 :: Double -> Double
logBase10 d = log d / 2.30258509299