This commit is contained in:
rhiannon morris 2023-05-03 22:00:19 +02:00
parent c49e080cc3
commit 3aee53faa1
2 changed files with 194 additions and 0 deletions

92
posts/2022-10-24-fib.md Normal file
View file

@ -0,0 +1,92 @@
---
title: fibonacci in maude and ats
date: 2022-10-24
tags: [computer, maude, ATS]
...
i might submit these [here], if i can be bothered to get a new github account.
[here]: https://braxtonhall.ca/fib/
:::aside
update: i did it
:::
# maude
```maude
smod FIB is
pr LIST{Nat} .
vars M N : Nat .
var Ns : List{Nat} .
rl [start]: nil => 0 1 .
rl [next]: Ns M N => Ns M N (M + N) .
rl [drop]: Ns N => N .
strats fib fibgo : Nat @ List{Nat} .
sd fib(N) := start ; fibgo(N) .
sd fibgo(0) := top(drop) .
sd fibgo(s(N)) := top(next) ; fibgo(N) .
endsm
```
```
Maude> srew nil using fib(10) .
srewrite in FIB : nil using fib(10) .
Solution 1
rewrites: 8330 in 12ms cpu (12ms real) (694166 rewrites/second)
result NzNat: 89
No more solutions.
rewrites: 8469 in 12ms cpu (13ms real) (705750 rewrites/second)
```
# ats
```ats
#include "share/atspre_define.hats"
#include "share/atspre_staload.hats"
// is_fib(i, n): n is the i-th fibonacci number
dataprop is_fib(int, int) =
| F0(0, 0) | F1(1, 1)
| {i, m, n : nat} Fplus(i + 2, m + n) of (is_fib(i, m), is_fib(i + 1, n))
typedef fib(i : int) = [n : nat] (is_fib(i, n) | int(n))
fun fib {t : nat} .<>. (t : int(t)) :<> fib(t) =
let
// m, n : accs
// i : index of m
// t : target index
fun go {m, n, i, t : nat | i <= t} .<t - i>.
(M : is_fib(i, m), N : is_fib(i + 1, n) |
m : int(m), n : int(n), i : int(i), t : int(t)) :<>
fib(t) =
if i = t then
(M | m)
else
go(N, Fplus(M, N) | n, m + n, i + 1, t)
in
go(F0, F1 | 0, 1, 0, t)
end
fun fib_(i : Nat) : Nat = let val (_ | res) = fib(i) in res end
implement main0() = println!("fib(15) = ", fib_(15))
```
```sh
$ make fib
$ ./fib
fib(15) = 610
```
same makefile as [last time].
[last time]: ./2022-09-16-ats.html#install

View file

@ -0,0 +1,102 @@
---
title: undocumented idris2 features
date: 2022-11-12
tags: [computer, idris]
header-includes: |
<style>
.sidebyside {
display: grid;
grid-template-columns: 1fr 1fr;
}
.sidebyside :is(.input, .goal) {
box-sizing: border-box;
width: 95%;
height: 95%;
}
.sidebyside .input { grid-area: 0 / 1; }
.sidebyside .goal { grid-area: 1 / 2; }
</style>
...
if these are already in the documentation somewhere, i didn't find it.
## quantities on case, let, with
occasionally, idris can't infer that these expressions should be non-ω. usually
when there are still holes in the definition, it seems. so you can specify the
quantity you want directly after the keyword, for [example][viewLsb]:
```idris
export
viewLsb : (n : Nat) -> ViewLsb n
viewLsb n =
-- ↓ here
let 0 nz : NonZero 2 = %search in
rewrite DivisionTheorem n 2 nz nz in
rewrite multCommutative (divNatNZ n 2 nz) 2 in
viewLsb' (modNatNZ n 2 nz) (divNatNZ n 2 nz) (boundModNatNZ n 2 nz)
```
[viewLsb]: https://git.rhiannon.website/rhi/quox/src/branch/ope/lib/Quox/NatExtra.idr#L110-L116
## syntactic with-abstraction
using `with` can be costly, since it has to evaluate the expression being
abstracted, as well as the types of the goal and bound variables, to find
occurrences of it. maybe you know they are all already syntactically equal.
in that case, you can say `… with %syntactic (expr)`:
:::sidebyside
``` {.idris .input}
blah : (n : Nat) -> 2 * n = n + (n + 0)
blah n with (2 * n)
blah n | w = ?blah_rhs
```
``` {.idris .goal}
w : Nat
n : Nat
------------------------------
blah_rhs : w = w
```
``` {.idris .input}
blah2 : (n : Nat) -> 2 * n = n + (n + 0)
blah2 n with %syntactic (2 * n)
blah2 n | w = ?blah2_rhs
```
``` {.idris .goal}
w : Nat
n : Nat
------------------------------
blah2_rhs : w = plus n (plus n 0)
```
:::
in `blah2`, only the exact syntactic occurrence of `2 * n` is replaced, and
the `n + (n + 0)` is left alone.
## equality proof in with
a `with`-abstraction can _also_ have a proof of equality between the pattern
and the original expression, like the old inspect pattern.
:::sidebyside
``` {.idris .input}
blah : (n : Nat) -> 2 * n = n + (n + 0)
blah n with (2 * n) proof eq
blah n | w = ?blah_rhs
```
``` {.idris .goal}
w : Nat
n : Nat
eq : plus n (plus n 0) = w
------------------------------
blah_rhs : w = w
```
:::