aoc2023/lib/pair.quox
2023-12-01 18:52:23 +01:00

74 lines
2.4 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

namespace pair {
def0 Σ : (A : ★) → (A → ★) → ★ = λ A B ⇒ (x : A) × B x;
{-
-- now builtins
def fst : 0.(A : ★) → 0.(B : A → ★) → ω.(Σ A B) → A =
λ A B p ⇒ caseω p return A of { (x, _) ⇒ x };
def snd : 0.(A : ★) → 0.(B : A → ★) → ω.(p : Σ A B) → B (fst A B p) =
λ A B p ⇒ caseω p return p' ⇒ B (fst A B p') of { (_, y) ⇒ y };
-}
def uncurry :
0.(A : ★) → 0.(B : A → ★) → 0.(C : (x : A) → (B x) → ★) →
(f : (x : A) → (y : B x) → C x y) →
(p : Σ A B) → C (fst p) (snd p) =
λ A B C f p ⇒
case p return p' ⇒ C (fst p') (snd p') of { (x, y) ⇒ f x y };
def uncurry' :
0.(A B C : ★) → (A → B → C) → (A × B) → C =
λ A B C ⇒ uncurry A (λ _ ⇒ B) (λ _ _ ⇒ C);
def curry :
0.(A : ★) → 0.(B : A → ★) → 0.(C : (Σ A B) → ★) →
(f : (p : Σ A B) → C p) → (x : A) → (y : B x) → C (x, y) =
λ A B C f x y ⇒ f (x, y);
def curry' :
0.(A B C : ★) → (A × B → C) → A → B → C =
λ A B C ⇒ curry A (λ _ ⇒ B) (λ _ ⇒ C);
def0 fst-snd :
(A : ★) → (B : A → ★) →
(p : Σ A B) → p ≡ (fst p, snd p) : Σ A B =
λ A B p ⇒
case p
return p' ⇒ p' ≡ (fst p', snd p') : Σ A B
of { (x, y) ⇒ δ 𝑖 ⇒ (x, y) };
def0 fst-eq :
(A : ★) → (B : A → ★) →
(p q : Σ A B) → p ≡ q : Σ A B → fst p ≡ fst q : A =
λ A B p q eq ⇒ δ 𝑖 ⇒ fst (eq @𝑖);
def0 snd-eq :
(A : ★) → (B : A → ★) →
(p q : Σ A B) → (eq : p ≡ q : Σ A B) →
Eq (𝑖 ⇒ B (fst-eq A B p q eq @𝑖)) (snd p) (snd q) =
λ A B p q eq ⇒ δ 𝑖 ⇒ snd (eq @𝑖);
def map :
0.(A A' : ★) →
0.(B : A → ★) → 0.(B' : A' → ★) →
(f : A → A') → (g : 0.(x : A) → (B x) → B' (f x)) →
Σ A B → Σ A' B' =
λ A A' B B' f g p ⇒
case p return Σ A' B' of { (x, y) ⇒ (f x, g x y) };
def map' : 0.(A A' B B' : ★) → (A → A') → (B → B') → (A × B) → A' × B' =
λ A A' B B' f g ⇒ map A A' (λ _ ⇒ B) (λ _ ⇒ B') f (λ _ ⇒ g);
def map-fst : 0.(A A' B : ★) → (A → A') → A × B → A' × B =
λ A A' B f ⇒ map' A A' B B f (λ x ⇒ x);
def map-snd : 0.(A B B' : ★) → (B → B') → A × B → A × B' =
λ A B B' f ⇒ map' A A B B' (λ x ⇒ x) f;
}
def0 Σ = pair.Σ;
-- def fst = pair.fst;
-- def snd = pair.snd;