aoc2023/lib/sub.quox

66 lines
2.2 KiB
Text
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

load "maybe.quox"
namespace sub {
def0 Irr : ★ → ★ =
λ A ⇒ (x y : A) → x ≡ y : A
def0 Irr1 : (A : ★) → (A → ★) → ★ =
λ A P ⇒ (x : A) → Irr (P x)
def0 Sub : (A : ★) → (P : A → ★) → ★ =
λ A P ⇒ (x : A) × [0. P x]
def sub : 0.(A : ★) → 0.(P : A → ★) → (x : A) → 0.(P x) → Sub A P =
λ A P x p ⇒ (x, [p])
def sub? : 0.(A : ★) → 0.(P : A → ★) → (ω.(x : A) → Dec (P x)) →
ω.(x : A) → Maybe (Sub A P) =
λ A P p? x ⇒
dec.elim (P x) (λ _ ⇒ Maybe (Sub A P))
(λ yes ⇒ Just (Sub A P) (sub A P x yes))
(λ no ⇒ Nothing (Sub A P))
(p? x)
def0 sub-eq : (A : ★) → (P : A → ★) → (Irr1 A P) → (x y : Sub A P) →
(fst x ≡ fst y : A) → (x ≡ y : Sub A P) =
λ A P pirr x y xy0 ⇒
let x1 = get0 (P (fst x)) (snd x); y1 = get0 (P (fst y)) (snd y) in
let xy1 : Eq (𝑖 ⇒ P (xy0 @𝑖)) x1 y1 =
δ 𝑖 ⇒ pirr (xy0 @𝑖)
(coe (𝑗 ⇒ P (xy0 @𝑗)) @0 @𝑖 x1)
(coe (𝑗 ⇒ P (xy0 @𝑗)) @1 @𝑖 y1) @𝑖 in
δ 𝑖 ⇒ (xy0 @𝑖, [xy1 @𝑖])
def0 SubDup : (A : ★) → (P : A → ★) → Sub A P → ★ =
λ A P s ⇒ (x! : [ω.A]) × [0. x! ≡ [fst s] : [ω.A]]
def subdup : 0.(A : ★) → 0.(P : A → ★) →
((x : A) → Dup A x) → (s : Sub A P) → SubDup A P s =
λ A P dupA s ⇒
case s return s' ⇒ SubDup A P s' of { (x, p) ⇒
drop0 (P x) (SubDup A P (x, p)) p (dupA x)
}
{-
type checker loop?????????????????? :(
def subdup-to-dup :
0.(A : ★) → 0.(P : A → ★) → 0.(Irr1 A P) →
0.(s : Sub A P) → SubDup A P s → Dup (Sub A P) s =
λ A P pirr s sd ⇒
case sd return Dup (Sub A P) s of { (sω, ss0) ⇒
case sω
return sω' ⇒ 0.(sω' ≡ [fst s] : [ω.A]) → Dup (Sub A P) s
of { [s!] ⇒ λ ss' ⇒
let ω.p : [0.P (fst s)] = revive0 (P (fst s)) (snd s);
0.ss : s! ≡ fst s : A = boxω-inj A s! (fst s) ss';
0.pss : [0.P s!] ≡ [0.P (fst s)] : ★ = (δ 𝑖 ⇒ [0.P (ss @𝑖)]) in
([(s!, coe (𝑖 ⇒ pss @𝑖) @1 @0 p)],
𝑖 ⇒ [(ss @𝑖, coe (𝑗 ⇒ pss @𝑗) @1 @𝑖 p)]])
} (δ _ ⇒ sω)
}
-}
}