aoc2023/lib/nat.quox

264 lines
8 KiB
Text
Raw Normal View History

2023-12-01 12:52:23 -05:00
load "misc.quox";
load "bool.quox";
load "either.quox";
namespace nat {
def elim-0-1 :
0.(P : → ★) →
ω.(P 0) → ω.(P 1) →
ω.(0.(n : ) → P n → P (succ n)) →
(n : ) → P n =
λ P p0 p1 ps n ⇒
case n return n' ⇒ P n' of {
zero ⇒ p0;
succ n' ⇒
case n' return n'' ⇒ P (succ n'') of {
zero ⇒ p1;
succ n'', IH ⇒ ps (succ n'') IH
}
}
2023-12-06 21:47:23 -05:00
def elim-pair' :
2023-12-01 12:52:23 -05:00
0.(P : → ★) →
ω.(P 0 0) →
ω.(0.(n : ) → P 0 n → P 0 (succ n)) →
ω.(0.(m : ) → P m 0 → P (succ m) 0) →
ω.(0.(m n : ) → P m n → P (succ m) (succ n)) →
ω.(m : ) → (n : ) → P m n =
λ P zz zs sz ss m ⇒
caseω m return m' ⇒ (n : ) → P m' n of {
0 ⇒ λ n ⇒ case n return n' ⇒ P 0 n' of {
0 ⇒ zz;
succ n', ihn ⇒ zs n' ihn
};
succ m', ω.ihm ⇒ λ n ⇒ case n return n' ⇒ P (succ m') n' of {
0 ⇒ sz m' (ihm 0);
succ n' ⇒ ss m' n' (ihm n')
}
}
2023-12-06 21:47:23 -05:00
def elim-pairω :
0.(P : → ★) →
ω.(P 0 0) →
ω.(0.(n : ) → ω.(P 0 n) → P 0 (succ n)) →
ω.(0.(m : ) → ω.(P m 0) → P (succ m) 0) →
ω.(0.(m n : ) → ω.(P m n) → P (succ m) (succ n)) →
ω.(m n : ) → P m n =
λ P zz zs sz ss m ⇒
caseω m return m' ⇒ ω.(n : ) → P m' n of {
0 ⇒ λ n ⇒ caseω n return n' ⇒ P 0 n' of {
0 ⇒ zz;
succ n', ω.ihn ⇒ zs n' ihn
};
succ m', ω.ihm ⇒ λ n ⇒ caseω n return n' ⇒ P (succ m') n' of {
0 ⇒ sz m' (ihm 0);
succ n' ⇒ ss m' n' (ihm n')
}
}
2023-12-01 12:52:23 -05:00
2023-12-12 14:37:05 -05:00
def succ-boxω : [ω.] → [ω.] =
λ n ⇒ case n return [ω.] of { [n] ⇒ [succ n] }
#[compile-scheme "(lambda (n) n)"]
2023-12-01 12:52:23 -05:00
def dup : → [ω.] =
2023-12-12 14:37:05 -05:00
λ n ⇒ case n return [ω.] of {
0 ⇒ [0];
succ _, n! ⇒ succ-boxω n!
}
def0 dup-ok : (n : ) → dup n ≡ [n] : [ω.] =
λ n ⇒
case n return n' ⇒ dup n' ≡ [n'] : [ω.] of {
0 ⇒ δ 𝑖 ⇒ [0];
succ _, ih ⇒ δ 𝑖 ⇒ succ-boxω (ih @𝑖)
}
def dup! : (n : ) → Dup n =
2023-12-12 14:37:05 -05:00
dup-from-parts dup dup-ok
2023-12-01 12:52:23 -05:00
2023-12-06 21:47:23 -05:00
def drop : 0.(A : ★) → → A → A =
2023-12-12 14:37:05 -05:00
drop-from-dup dup
2023-12-06 21:47:23 -05:00
2023-12-01 12:52:23 -05:00
#[compile-scheme "(lambda% (m n) (+ m n))"]
def plus : =
λ m n ⇒
case m return of {
zero ⇒ n;
succ _, p ⇒ succ p
};
#[compile-scheme "(lambda% (m n) (* m n))"]
def timesω : → ω. =
λ m n ⇒
case m return of {
zero ⇒ zero;
succ _, t ⇒ plus n t
};
def times : =
λ m n ⇒ case dup n return of { [n] ⇒ timesω m n };
def pred : = λ n ⇒ case n return of { zero ⇒ zero; succ n ⇒ n };
def pred-succ : ω.(n : ) → pred (succ n) ≡ n : =
λ n ⇒ δ 𝑖 ⇒ n;
def0 succ-inj : (m n : ) → succ m ≡ succ n : → m ≡ n : =
λ m n eq ⇒ δ 𝑖 ⇒ pred (eq @𝑖);
#[compile-scheme "(lambda% (m n) (max 0 (- m n)))"]
def minus : =
λ m n ⇒
(case n return of {
zero ⇒ λ m ⇒ m;
succ _, f ⇒ λ m ⇒ f (pred m)
}) m;
2023-12-06 21:47:23 -05:00
def minω : ω. → ω. =
elim-pairω (λ _ _ ⇒ ) 0 (λ _ _ ⇒ 0) (λ _ _ ⇒ 0) (λ _ _ x ⇒ succ x)
def min : =
λ m n ⇒
case dup m return of { [m] ⇒ case dup n return of { [n] ⇒ minω m n } }
2023-12-01 12:52:23 -05:00
def0 IsSucc : → ★ =
λ n ⇒ case n return ★ of { zero ⇒ False; succ _ ⇒ True };
def isSucc? : ω.(n : ) → Dec (IsSucc n) =
λ n ⇒
caseω n return n' ⇒ Dec (IsSucc n') of {
zero ⇒ No (IsSucc zero) (λ v ⇒ v);
succ n ⇒ Yes (IsSucc (succ n)) 'true
};
def zero-not-succ : 0.(m : ) → Not (zero ≡ succ m : ) =
λ m eq ⇒ coe (𝑖 ⇒ IsSucc (eq @𝑖)) @1 @0 'true;
def succ-not-zero : 0.(m : ) → Not (succ m ≡ zero : ) =
λ m eq ⇒ coe (𝑖 ⇒ IsSucc (eq @𝑖)) 'true;
def0 not-succ-self : (m : ) → Not (m ≡ succ m : ) =
λ m ⇒
case m return m' ⇒ Not (m' ≡ succ m' : ) of {
zero ⇒ zero-not-succ 0;
succ n, ω.ih ⇒ λ eq ⇒ ih (succ-inj n (succ n) eq)
}
def divmod : × =
-- https://coq.inria.fr/doc/V8.18.0/stdlib/Coq.Init.Nat.html#divmod
letω divmod' : → ω. × =
λ x ⇒
case x return ω. × of {
0 ⇒ λ y q u ⇒ (q, u);
succ _, 1.f' ⇒ λ y q u ⇒
case u return × of {
0 ⇒ f' y (succ q) y;
succ u' ⇒ f' y q u'
}
} in
λ x y ⇒
case y return × of {
0 ⇒ drop ( × ) x (0, 0);
succ y' ⇒
case dup y' return × of { [y'] ⇒
case divmod' x y' 0 y' return × of { (d, m) ⇒ (d, minus y' m) }
}
}
def div : =
λ x y ⇒ case divmod x y return of { (d, m) ⇒ drop m d }
def mod : =
λ x y ⇒ case divmod x y return of { (d, m) ⇒ drop d m }
def0 div-5-2 : div 5 2 ≡ 2 : = δ 𝑖 ⇒ 2
def0 mod-5-2 : mod 5 2 ≡ 1 : = δ 𝑖 ⇒ 1
2023-12-01 12:52:23 -05:00
#[compile-scheme "(lambda% (m n) (if (= m n) Yes No))"]
def eq? : DecEq =
2023-12-06 21:47:23 -05:00
λ m n ⇒
elim-pair' (λ m n ⇒ Dec (m ≡ n : ))
(Yes (0 ≡ 0 : ) (δ 𝑖 ⇒ 0))
(λ n p ⇒
dec.drop (0 ≡ n : ) (Dec (0 ≡ succ n : )) p
(No (0 ≡ succ n : ) (λ zs ⇒ zero-not-succ n zs)))
(λ m p ⇒
dec.drop (m ≡ 0 : ) (Dec (succ m ≡ 0 : )) p
(No (succ m ≡ 0 : ) (λ sz ⇒ succ-not-zero m sz)))
(λ m n ⇒
dec.elim (m ≡ n : ) (λ _ ⇒ Dec (succ m ≡ succ n : ))
(λ yy ⇒ Yes (succ m ≡ succ n : ) (δ 𝑖 ⇒ succ (yy @𝑖)))
(λ nn ⇒ No (succ m ≡ succ n : ) (λ yy ⇒ nn (succ-inj m n yy))))
m n
2023-12-01 12:52:23 -05:00
def0 Ordering : ★ = {lt, eq, gt}
2023-12-06 21:47:23 -05:00
namespace ordering {
def from : 0.(A : ★) → ω.A → ω.A → ω.A → Ordering → A =
λ A lt eq gt o ⇒
case o return A of { 'lt ⇒ lt; 'eq ⇒ eq; 'gt ⇒ gt }
def drop : 0.(A : ★) → Ordering → A → A =
λ A o x ⇒ case o return A of { 'lt ⇒ x; 'eq ⇒ x; 'gt ⇒ x }
2023-12-01 12:52:23 -05:00
2023-12-06 21:47:23 -05:00
def eq : Ordering → Ordering → Bool =
λ x y ⇒
case x return Bool of {
'lt ⇒ case y return Bool of { 'lt ⇒ 'true; 'eq ⇒ 'false; 'gt ⇒ 'false };
'eq ⇒ case y return Bool of { 'lt ⇒ 'false; 'eq ⇒ 'true; 'gt ⇒ 'false };
'gt ⇒ case y return Bool of { 'lt ⇒ 'false; 'eq ⇒ 'false; 'gt ⇒ 'true };
}
}
2023-12-01 12:52:23 -05:00
def compareω : ω. → Ordering =
2023-12-06 21:47:23 -05:00
elim-pair' (λ _ _ ⇒ Ordering)
2023-12-01 12:52:23 -05:00
'eq
2023-12-06 21:47:23 -05:00
(λ _ o ⇒ ordering.drop Ordering o 'lt)
(λ _ o ⇒ ordering.drop Ordering o 'gt)
2023-12-01 12:52:23 -05:00
(λ _ _ x ⇒ x)
def compare : → Ordering =
2023-12-06 21:47:23 -05:00
λ m n ⇒ case dup m return Ordering of { [m] ⇒ compareω m n }
def lt : ω. → ω. → Bool = λ m n ⇒ ordering.eq (compare m n) 'lt
def eq : ω. → ω. → Bool = λ m n ⇒ ordering.eq (compare m n) 'eq
def gt : ω. → ω. → Bool = λ m n ⇒ ordering.eq (compare m n) 'gt
def ne : ω. → ω. → Bool = λ m n ⇒ bool.not (eq m n)
def le : ω. → ω. → Bool = λ m n ⇒ bool.not (gt m n)
def ge : ω. → ω. → Bool = λ m n ⇒ bool.not (lt m n)
2023-12-01 12:52:23 -05:00
def0 plus-zero : (m : ) → m ≡ plus m 0 : =
λ m ⇒
case m return m' ⇒ m' ≡ plus m' 0 : of {
zero ⇒ δ _ ⇒ 0;
succ m', ih ⇒ δ 𝑖 ⇒ succ (ih @𝑖)
};
def0 plus-succ : (m n : ) → succ (plus m n) ≡ plus m (succ n) : =
λ m n ⇒
case m return m' ⇒ succ (plus m' n) ≡ plus m' (succ n) : of {
zero ⇒ δ _ ⇒ succ n;
succ _, ih ⇒ δ 𝑖 ⇒ succ (ih @𝑖)
};
def0 times-zero : (m : ) → 0 ≡ timesω m 0 : =
λ m ⇒
case m return m' ⇒ 0 ≡ timesω m' 0 : of {
zero ⇒ δ _ ⇒ zero;
succ m', ih ⇒ ih
};
}